irrlicht/source/Irrlicht/CParticleMeshEmitter.cpp
2007-08-29 16:13:38 +00:00

197 lines
6.3 KiB
C++

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "CParticleMeshEmitter.h"
#include "os.h"
#include <math.h>
namespace irr
{
namespace scene
{
//! constructor
CParticleMeshEmitter::CParticleMeshEmitter(
IMesh* mesh, bool useNormalDirection,
const core::vector3df& direction, f32 normalDirectionModifier,
s32 mbNumber, bool everyMeshVertex,
u32 minParticlesPerSecond, u32 maxParticlesPerSecond,
const video::SColor& minStartColor, const video::SColor& maxStartColor,
u32 lifeTimeMin, u32 lifeTimeMax, s32 maxAngleDegrees )
: Mesh(mesh), TotalVertices(0), MBCount(0), MBNumber(mbNumber),
EveryMeshVertex(everyMeshVertex), UseNormalDirection(useNormalDirection),
NormalDirectionModifier(normalDirectionModifier), Direction(direction),
MinParticlesPerSecond(minParticlesPerSecond), MaxParticlesPerSecond(maxParticlesPerSecond),
MinStartColor(minStartColor), MaxStartColor(maxStartColor),
MinLifeTime(lifeTimeMin), MaxLifeTime(lifeTimeMax),
Time(0), Emitted(0), MaxAngleDegrees(maxAngleDegrees)
{
MBCount = Mesh->getMeshBufferCount();
for( u32 i = 0; i < MBCount; ++i )
{
VertexPerMeshBufferList.push_back( Mesh->getMeshBuffer(i)->getVertexCount() );
TotalVertices += Mesh->getMeshBuffer(i)->getVertexCount();
}
}
//! Prepares an array with new particles to emitt into the system
//! and returns how much new particles there are.
s32 CParticleMeshEmitter::emitt(u32 now, u32 timeSinceLastCall, SParticle*& outArray)
{
Time += timeSinceLastCall;
u32 pps = (MaxParticlesPerSecond - MinParticlesPerSecond);
f32 perSecond = pps ? (f32)MinParticlesPerSecond + (os::Randomizer::rand() % pps) : MinParticlesPerSecond;
f32 everyWhatMillisecond = 1000.0f / perSecond;
if(Time > everyWhatMillisecond)
{
Particles.set_used(0);
u32 amount = (u32)((Time / everyWhatMillisecond) + 0.5f);
Time = 0;
SParticle p;
if(amount > MaxParticlesPerSecond * 2)
amount = MaxParticlesPerSecond * 2;
for(u32 i=0; i<amount; ++i)
{
if( EveryMeshVertex )
{
for( u32 j=0; j<Mesh->getMeshBufferCount(); ++j )
{
for( u32 k=0; k<Mesh->getMeshBuffer(j)->getVertexCount(); ++k )
{
switch( Mesh->getMeshBuffer(j)->getVertexType() )
{
case video::EVT_STANDARD:
p.pos = ((video::S3DVertex*)Mesh->getMeshBuffer(j)->getVertices())[k].Pos;
if( UseNormalDirection )
p.vector = ((video::S3DVertex*)Mesh->getMeshBuffer(j)->getVertices())[k].Normal / NormalDirectionModifier;
else
p.vector = Direction;
break;
case video::EVT_TANGENTS:
p.pos = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(j)->getVertices())[k].Pos;
if( UseNormalDirection )
p.vector = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(j)->getVertices())[k].Normal / NormalDirectionModifier;
else
p.vector = Direction;
break;
}
p.startTime = now;
if( MaxAngleDegrees )
{
core::vector3df tgt = p.vector;
tgt.rotateXYBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0));
tgt.rotateYZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0));
tgt.rotateXZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0));
p.vector = tgt;
}
if(MaxLifeTime - MinLifeTime == 0)
p.endTime = now + MinLifeTime;
else
p.endTime = now + MinLifeTime + (os::Randomizer::rand() % (MaxLifeTime - MinLifeTime));
p.color = MinStartColor.getInterpolated(
MaxStartColor, (os::Randomizer::rand() % 100) / 100.0f);
p.startColor = p.color;
p.startVector = p.vector;
Particles.push_back(p);
}
}
}
else
{
s32 randomMB = 0;
if( MBNumber < 0 )
{
randomMB = os::Randomizer::rand() % MBCount;
}
else
{
randomMB = MBNumber;
}
u32 vertexNumber = os::Randomizer::rand() % Mesh->getMeshBuffer(randomMB)->getVertexCount();
switch( Mesh->getMeshBuffer(randomMB)->getVertexType() )
{
case video::EVT_STANDARD:
p.pos = ((video::S3DVertex*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Pos;
if( UseNormalDirection )
p.vector = ((video::S3DVertex*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Normal / NormalDirectionModifier;
else
p.vector = Direction;
break;
case video::EVT_TANGENTS:
p.pos = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Pos;
if( UseNormalDirection )
p.vector = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Normal / NormalDirectionModifier;
else
p.vector = Direction;
break;
}
p.startTime = now;
if( MaxAngleDegrees )
{
core::vector3df tgt = Direction;
tgt.rotateXYBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0));
tgt.rotateYZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0));
tgt.rotateXZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0));
p.vector = tgt;
}
if(MaxLifeTime - MinLifeTime == 0)
p.endTime = now + MinLifeTime;
else
p.endTime = now + MinLifeTime + (os::Randomizer::rand() % (MaxLifeTime - MinLifeTime));
p.color = MinStartColor.getInterpolated(
MaxStartColor, (os::Randomizer::rand() % 100) / 100.0f);
p.startColor = p.color;
p.startVector = p.vector;
Particles.push_back(p);
}
}
outArray = Particles.pointer();
return Particles.size();
}
return 0;
}
//! Set Mesh to emit particles from
void CParticleMeshEmitter::setMesh( IMesh* mesh )
{
Mesh = mesh;
TotalVertices = 0;
MBCount = Mesh->getMeshBufferCount();
for( u32 i = 0; i < MBCount; ++i )
{
VertexPerMeshBufferList.push_back( Mesh->getMeshBuffer(i)->getVertexCount() );
TotalVertices += Mesh->getMeshBuffer(i)->getVertexCount();
}
}
} // end namespace scene
} // end namespace irr