irrlicht/source/Irrlicht/COctTreeSceneNode.cpp
2007-09-18 14:01:28 +00:00

422 lines
11 KiB
C++

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "COctTreeSceneNode.h"
#include "OctTree.h"
#include "ISceneManager.h"
#include "IVideoDriver.h"
#include "ICameraSceneNode.h"
#include "IMeshCache.h"
#include "IAnimatedMesh.h"
#include "IMaterialRenderer.h"
#include "os.h"
namespace irr
{
namespace scene
{
//! constructor
COctTreeSceneNode::COctTreeSceneNode(ISceneNode* parent, ISceneManager* mgr,
s32 id, s32 minimalPolysPerNode)
: ISceneNode(parent, mgr, id), StdOctTree(0), LightMapOctTree(0),
MinimalPolysPerNode(minimalPolysPerNode)
//,Mesh(0)
{
#ifdef _DEBUG
setDebugName("COctTreeSceneNode");
#endif
vertexType = (video::E_VERTEX_TYPE)-1;
}
//! destructor
COctTreeSceneNode::~COctTreeSceneNode()
{
//if (Mesh)
// Mesh->drop();
deleteTree();
}
void COctTreeSceneNode::OnRegisterSceneNode()
{
if (IsVisible)
{
// because this node supports rendering of mixed mode meshes consisting of
// transparent and solid material at the same time, we need to go through all
// materials, check of what type they are and register this node for the right
// render pass according to that.
video::IVideoDriver* driver = SceneManager->getVideoDriver();
PassCount = 0;
int transparentCount = 0;
int solidCount = 0;
// count transparent and solid materials in this scene node
for (u32 i=0; i<Materials.size(); ++i)
{
video::IMaterialRenderer* rnd =
driver->getMaterialRenderer(Materials[i].MaterialType);
if (rnd && rnd->isTransparent())
++transparentCount;
else
++solidCount;
if (solidCount && transparentCount)
break;
}
// register according to material types counted
if (solidCount)
SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
if (transparentCount)
SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
ISceneNode::OnRegisterSceneNode();
}
}
//! renders the node.
void COctTreeSceneNode::render()
{
video::IVideoDriver* driver = SceneManager->getVideoDriver();
if (vertexType == -1 || !driver)
return;
ICameraSceneNode* camera = SceneManager->getActiveCamera();
if (!camera)
return;
bool isTransparentPass =
SceneManager->getSceneNodeRenderPass() == scene::ESNRP_TRANSPARENT;
++PassCount;
driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
SViewFrustum frust = *camera->getViewFrustum();
//transform the frustum to the current absolute transformation
core::matrix4 invTrans(AbsoluteTransformation);
invTrans.makeInverse();
/*
//frust.transform(invTrans);
//const core::aabbox3d<float> &box = frust.getBoundingBox();
*/
frust.transform(invTrans);
switch(vertexType)
{
case video::EVT_STANDARD:
{
//StdOctTree->calculatePolys(box);
StdOctTree->calculatePolys(frust);
OctTree<video::S3DVertex>::SIndexData* d = StdOctTree->getIndexData();
for (u32 i=0; i<Materials.size(); ++i)
{
if ( 0 == d[i].CurrentSize )
continue;
video::IMaterialRenderer* rnd = driver->getMaterialRenderer(Materials[i].MaterialType);
bool transparent = (rnd && rnd->isTransparent());
// only render transparent buffer if this is the transparent render pass
// and solid only in solid pass
if (transparent == isTransparentPass)
{
driver->setMaterial(Materials[i]);
driver->drawIndexedTriangleList(
&StdMeshes[i].Vertices[0], StdMeshes[i].Vertices.size(),
d[i].Indices, d[i].CurrentSize / 3);
}
}
// for debug purposes only
if ( DebugDataVisible && !Materials.empty() && PassCount==1)
{
const core::aabbox3d<float> &box = frust.getBoundingBox();
core::array< core::aabbox3d<f32> > boxes;
video::SMaterial m;
m.Lighting = false;
driver->setMaterial(m);
if ( DebugDataVisible & scene::EDS_BBOX_BUFFERS )
{
StdOctTree->renderBoundingBoxes(box, boxes);
for (u32 b=0; b<boxes.size(); ++b)
driver->draw3DBox(boxes[b], video::SColor(0,255,255,255));
}
if ( DebugDataVisible & scene::EDS_BBOX )
driver->draw3DBox(Box,video::SColor(0,255,0,0));
}
break;
}
case video::EVT_2TCOORDS:
{
//LightMapOctTree->calculatePolys(box);
LightMapOctTree->calculatePolys(frust);
OctTree<video::S3DVertex2TCoords>::SIndexData* d = LightMapOctTree->getIndexData();
for (u32 i=0; i<Materials.size(); ++i)
{
if ( 0 == d[i].CurrentSize )
continue;
video::IMaterialRenderer* rnd = driver->getMaterialRenderer(Materials[i].MaterialType);
bool transparent = (rnd && rnd->isTransparent());
// only render transparent buffer if this is the transparent render pass
// and solid only in solid pass
if (transparent == isTransparentPass)
{
driver->setMaterial(Materials[i]);
driver->drawIndexedTriangleList(
&LightMapMeshes[i].Vertices[0], LightMapMeshes[i].Vertices.size(),
d[i].Indices, d[i].CurrentSize / 3);
}
}
// for debug purposes only
if (DebugDataVisible && !Materials.empty() && PassCount==1)
{
const core::aabbox3d<float> &box = frust.getBoundingBox();
core::array< core::aabbox3d<f32> > boxes;
video::SMaterial m;
m.Lighting = false;
driver->setMaterial(m);
if ( DebugDataVisible & scene::EDS_BBOX_BUFFERS )
{
LightMapOctTree->renderBoundingBoxes(box, boxes);
for (u32 b=0; b<boxes.size(); ++b)
driver->draw3DBox(boxes[b], video::SColor(0,255,255,255));
}
if ( DebugDataVisible & scene::EDS_BBOX )
driver->draw3DBox(Box,video::SColor(0,255,0,0));
}
}
break;
}
}
//! returns the axis aligned bounding box of this node
const core::aabbox3d<f32>& COctTreeSceneNode::getBoundingBox() const
{
return Box;
}
//! creates the tree
bool COctTreeSceneNode::createTree(IMesh* mesh)
{
if (!mesh)
return false;
//if (Mesh)
// Mesh->drop();
MeshName = SceneManager->getMeshCache()->getMeshFilename( mesh );
// Mesh = mesh;
// Mesh->grab();
deleteTree();
u32 beginTime = os::Timer::getRealTime();
u32 nodeCount = 0;
u32 polyCount = 0;
Box = mesh->getBoundingBox();
if (mesh->getMeshBufferCount())
{
vertexType = mesh->getMeshBuffer(0)->getVertexType();
switch(vertexType)
{
case video::EVT_STANDARD:
{
for (u32 i=0; i<mesh->getMeshBufferCount(); ++i)
{
IMeshBuffer* b = mesh->getMeshBuffer(i);
if (b->getVertexCount() && b->getIndexCount())
{
Materials.push_back(b->getMaterial());
OctTree<video::S3DVertex>::SMeshChunk chunk;
chunk.MaterialId = Materials.size() - 1;
StdMeshes.push_back(chunk);
OctTree<video::S3DVertex>::SMeshChunk &nchunk = StdMeshes[StdMeshes.size()-1];
u32 v;
for (v=0; v<b->getVertexCount(); ++v)
nchunk.Vertices.push_back(((video::S3DVertex*)b->getVertices())[v]);
polyCount += b->getIndexCount();
for (v=0; v<b->getIndexCount(); ++v)
nchunk.Indices.push_back(b->getIndices()[v]);
}
}
StdOctTree = new OctTree<video::S3DVertex>(StdMeshes, MinimalPolysPerNode);
nodeCount = StdOctTree->nodeCount;
}
break;
case video::EVT_2TCOORDS:
{
for (u32 i=0; i<mesh->getMeshBufferCount(); ++i)
{
IMeshBuffer* b = mesh->getMeshBuffer(i);
if (b->getVertexCount() && b->getIndexCount())
{
Materials.push_back(b->getMaterial());
OctTree<video::S3DVertex2TCoords>::SMeshChunk chunk;
chunk.MaterialId = Materials.size() - 1;
LightMapMeshes.push_back(chunk);
OctTree<video::S3DVertex2TCoords>::SMeshChunk& nchunk =
LightMapMeshes[LightMapMeshes.size()-1];
u32 v;
for (v=0; v<b->getVertexCount(); ++v)
nchunk.Vertices.push_back(((video::S3DVertex2TCoords*)b->getVertices())[v]);
polyCount += b->getIndexCount();
for (v=0; v<b->getIndexCount(); ++v)
nchunk.Indices.push_back(b->getIndices()[v]);
}
}
LightMapOctTree = new OctTree<video::S3DVertex2TCoords>(LightMapMeshes, MinimalPolysPerNode);
nodeCount = LightMapOctTree->nodeCount;
}
break;
}
}
u32 endTime = os::Timer::getRealTime();
c8 tmp[255];
sprintf(tmp, "Needed %ums to create OctTree SceneNode.(%u nodes, %u polys)",
endTime - beginTime, nodeCount, polyCount/3);
os::Printer::log(tmp, ELL_INFORMATION);
return true;
}
//! returns the material based on the zero based index i. To get the amount
//! of materials used by this scene node, use getMaterialCount().
//! This function is needed for inserting the node into the scene hirachy on a
//! optimal position for minimizing renderstate changes, but can also be used
//! to directly modify the material of a scene node.
video::SMaterial& COctTreeSceneNode::getMaterial(u32 i)
{
if ( i >= Materials.size() )
return ISceneNode::getMaterial(i);
return Materials[i];
}
//! returns amount of materials used by this scene node.
u32 COctTreeSceneNode::getMaterialCount() const
{
return Materials.size();
}
//! Writes attributes of the scene node.
void COctTreeSceneNode::serializeAttributes(io::IAttributes* out, io::SAttributeReadWriteOptions* options) const
{
ISceneNode::serializeAttributes(out, options);
out->addInt ("MinimalPolysPerNode", MinimalPolysPerNode);
//out->addString("Mesh", SceneManager->getMeshCache()->getMeshFilename(Mesh));
out->addString("Mesh", MeshName.c_str());
}
//! Reads attributes of the scene node.
void COctTreeSceneNode::deserializeAttributes(io::IAttributes* in, io::SAttributeReadWriteOptions* options)
{
int oldMinimal = MinimalPolysPerNode;
//core::stringc oldMeshStr = SceneManager->getMeshCache()->getMeshFilename(Mesh);
core::stringc oldMeshStr = MeshName;
MinimalPolysPerNode = in->getAttributeAsInt("MinimalPolysPerNode");
core::stringc newMeshStr = in->getAttributeAsString("Mesh");
bool loadedNewMesh = false;
IMesh* newMesh = 0;
if (newMeshStr != "" && oldMeshStr != newMeshStr)
{
IAnimatedMesh* newAnimatedMesh = SceneManager->getMesh(newMeshStr.c_str());
if (newAnimatedMesh)
newMesh = newAnimatedMesh->getMesh(0);
if (newMesh)
{
// if (Mesh)
// Mesh->drop();
// Mesh = newMesh;
// Mesh->grab();
loadedNewMesh = true;
}
}
if (loadedNewMesh || MinimalPolysPerNode != oldMinimal)
{
// recalculate tree
//createTree(Mesh);
createTree ( newMesh );
// newMesh->drop ();
}
ISceneNode::deserializeAttributes(in, options);
}
void COctTreeSceneNode::deleteTree()
{
delete StdOctTree;
StdOctTree = 0;
StdMeshes.clear();
delete LightMapOctTree;
LightMapOctTree = 0;
LightMapMeshes.clear();
Materials.clear();
}
} // end namespace scene
} // end namespace irr