5e04a990eb
git-svn-id: http://svn.code.sf.net/p/irrlicht/code/trunk@1353 dfc29bdd-3216-0410-991c-e03cc46cb475
157 lines
7.0 KiB
C++
157 lines
7.0 KiB
C++
// Copyright (C) 2002-2008 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __I_SCENE_COLLISION_MANAGER_H_INCLUDED__
|
|
#define __I_SCENE_COLLISION_MANAGER_H_INCLUDED__
|
|
|
|
#include "IReferenceCounted.h"
|
|
#include "vector3d.h"
|
|
#include "triangle3d.h"
|
|
#include "position2d.h"
|
|
#include "line3d.h"
|
|
|
|
namespace irr
|
|
{
|
|
|
|
namespace scene
|
|
{
|
|
class ISceneNode;
|
|
class ICameraSceneNode;
|
|
class ITriangleSelector;
|
|
|
|
//! The Scene Collision Manager provides methods for performing collision tests and picking on scene nodes.
|
|
class ISceneCollisionManager : public virtual IReferenceCounted
|
|
{
|
|
public:
|
|
|
|
//! Destructor
|
|
virtual ~ISceneCollisionManager() {}
|
|
|
|
//! Finds the collision point of a line and lots of triangles, if there is one.
|
|
/** \param ray: Line with witch collisions are tested.
|
|
\param selector: TriangleSelector containing the triangles. It
|
|
can be created for example using
|
|
ISceneManager::createTriangleSelector() or
|
|
ISceneManager::createTriangleOctTreeSelector().
|
|
\param outCollisionPoint: If a collision is detected, this will
|
|
contain the position of the nearest collision.
|
|
\param outTriangle: If a collision is detected, this will
|
|
contain the triangle with which the ray collided.
|
|
\return True if a collision was detected and false if not. */
|
|
virtual bool getCollisionPoint(const core::line3d<f32>& ray,
|
|
ITriangleSelector* selector, core::vector3df& outCollisionPoint,
|
|
core::triangle3df& outTriangle) = 0;
|
|
|
|
//! Collides a moving ellipsoid with a 3d world with gravity and returns the resulting new position of the ellipsoid.
|
|
/** This can be used for moving a character in a 3d world: The
|
|
character will slide at walls and is able to walk up stairs.
|
|
The method used how to calculate the collision result position
|
|
is based on the paper "Improved Collision detection and
|
|
Response" by Kasper Fauerby.
|
|
\param selector: TriangleSelector containing the triangles of
|
|
the world. It can be created for example using
|
|
ISceneManager::createTriangleSelector() or
|
|
ISceneManager::createTriangleOctTreeSelector().
|
|
\param ellipsoidPosition: Position of the ellipsoid.
|
|
\param ellipsoidRadius: Radius of the ellipsoid.
|
|
\param ellipsoidDirectionAndSpeed: Direction and speed of the
|
|
movement of the ellipsoid.
|
|
\param triout: Optional parameter where the last triangle
|
|
causing a collision is stored, if there is a collision.
|
|
\param outFalling: Is set to true if the ellipsoid is falling
|
|
down, caused by gravity.
|
|
\param slidingSpeed: DOCUMENTATION NEEDED.
|
|
\param gravityDirectionAndSpeed: Direction and force of gravity.
|
|
\return New position of the ellipsoid. */
|
|
virtual core::vector3df getCollisionResultPosition(
|
|
ITriangleSelector* selector,
|
|
const core::vector3df &ellipsoidPosition,
|
|
const core::vector3df& ellipsoidRadius,
|
|
const core::vector3df& ellipsoidDirectionAndSpeed,
|
|
core::triangle3df& triout,
|
|
bool& outFalling,
|
|
f32 slidingSpeed = 0.0005f,
|
|
const core::vector3df& gravityDirectionAndSpeed
|
|
= core::vector3df(0.0f, 0.0f, 0.0f)) = 0;
|
|
|
|
//! Returns a 3d ray which would go through the 2d screen coodinates.
|
|
/** \param pos: Screen coordinates in pixels.
|
|
\param camera: Camera from which the ray starts. If null, the
|
|
active camera is used.
|
|
\return Ray starting from the position of the camera and ending
|
|
at a length of the far value of the camera at a position which
|
|
would be behind the 2d screen coodinates. */
|
|
virtual core::line3d<f32> getRayFromScreenCoordinates(
|
|
core::position2d<s32> pos, ICameraSceneNode* camera = 0) = 0;
|
|
|
|
//! Calculates 2d screen position from a 3d position.
|
|
/** \param pos: 3D position in world space to be transformed
|
|
into 2d.
|
|
\param camera: Camera to be used. If null, the currently active
|
|
camera is used.
|
|
\return 2d screen coordinates which a object in the 3d world
|
|
would have if it would be rendered to the screen. If the 3d
|
|
position is behind the camera, it is set to (-10000,-10000). In
|
|
most cases you can ignore this fact, because if you use this
|
|
method for drawing a decorator over a 3d object, it will be
|
|
clipped by the screen borders. */
|
|
virtual core::position2d<s32> getScreenCoordinatesFrom3DPosition(
|
|
core::vector3df pos, ICameraSceneNode* camera=0) = 0;
|
|
|
|
//! Gets the scene node, which is currently visible under the given screencoordinates, viewed from the currently active camera.
|
|
/** The collision tests are done using a bounding box for each
|
|
scene node.
|
|
\param pos: Position in pixel screen coordinates, under which
|
|
the returned scene node will be.
|
|
\param idBitMask: Only scene nodes with an id with bits set
|
|
like in this mask will be tested. If the BitMask is 0, this
|
|
feature is disabled.
|
|
\param bNoDebugObjects: Doesn't take debug objects into account
|
|
when true. These are scene nodes with IsDebugObject() = true.
|
|
\return Visible scene node under screen coordinates with
|
|
matching bits in its id. If there is no scene node under this
|
|
position, 0 is returned. */
|
|
virtual ISceneNode* getSceneNodeFromScreenCoordinatesBB(core::position2d<s32> pos,
|
|
s32 idBitMask=0, bool bNoDebugObjects = false) = 0;
|
|
|
|
//! Get the nearest scene node which collides with a 3d ray and whose id matches a bitmask.
|
|
/** The collision tests are done using a bounding box for each
|
|
scene node.
|
|
\param ray: Line with witch collisions are tested.
|
|
\param idBitMask: Only scene nodes with an id with bits set
|
|
like in this mask will be tested. If the BitMask is 0, this
|
|
feature is disabled.
|
|
\param bNoDebugObjects: Doesn't take debug objects into account
|
|
when true. These are scene nodes with IsDebugObject() = true.
|
|
\return Scene node nearest to ray.start, which collides with
|
|
the ray and matches the idBitMask, if the mask is not null. If
|
|
no scene node is found, 0 is returned. */
|
|
virtual ISceneNode* getSceneNodeFromRayBB(core::line3d<f32> ray,
|
|
s32 idBitMask=0, bool bNoDebugObjects = false) = 0;
|
|
|
|
//! Get the scene node, which the overgiven camera is looking at and whose id matches the bitmask.
|
|
/** A ray is simply casted from the position of the camera to
|
|
the view target position, and all scene nodes are tested
|
|
against this ray. The collision tests are done using a bounding
|
|
box for each scene node.
|
|
\param camera: Camera from which the ray is casted.
|
|
\param idBitMask: Only scene nodes with an id with bits set
|
|
like in this mask will be tested. If the BitMask is 0, this
|
|
feature is disabled.
|
|
\param bNoDebugObjects: Doesn't take debug objects into account
|
|
when true. These are scene nodes with IsDebugObject() = true.
|
|
\return Scene node nearest to the camera, which collides with
|
|
the ray and matches the idBitMask, if the mask is not null. If
|
|
no scene node is found, 0 is returned. */
|
|
virtual ISceneNode* getSceneNodeFromCameraBB(ICameraSceneNode* camera,
|
|
s32 idBitMask=0, bool bNoDebugObjects = false) = 0;
|
|
};
|
|
|
|
|
|
} // end namespace scene
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|