irrlicht/source/Irrlicht/CTRTextureGouraud2.cpp
2007-09-24 22:41:52 +00:00

704 lines
14 KiB
C++

// Copyright (C) 2002-2007 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "IBurningShader.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
// compile flag for this file
#undef USE_ZBUFFER
#undef IPOL_Z
#undef CMP_Z
#undef WRITE_Z
#undef IPOL_W
#undef CMP_W
#undef WRITE_W
#undef SUBTEXEL
#undef INVERSE_W
#undef IPOL_C0
#undef IPOL_T0
#undef IPOL_T1
// define render case
#define SUBTEXEL
#define INVERSE_W
#define USE_ZBUFFER
#define IPOL_W
#define CMP_W
#define WRITE_W
#define IPOL_C0
#define IPOL_T0
//#define IPOL_T1
// apply global override
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef INVERSE_W
#endif
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
#undef SUBTEXEL
#endif
#ifndef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
#undef IPOL_C0
#endif
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef IPOL_W
#endif
#define IPOL_Z
#ifdef CMP_W
#undef CMP_W
#define CMP_Z
#endif
#ifdef WRITE_W
#undef WRITE_W
#define WRITE_Z
#endif
#endif
namespace irr
{
namespace video
{
class CTRTextureGouraud2 : public IBurningShader
{
public:
//! constructor
CTRTextureGouraud2(IDepthBuffer* zbuffer);
//! draws an indexed triangle list
virtual void drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c );
private:
void scanline_bilinear ();
sScanConvertData scan;
sScanLineData line;
};
//! constructor
CTRTextureGouraud2::CTRTextureGouraud2(IDepthBuffer* zbuffer)
: IBurningShader(zbuffer)
{
#ifdef _DEBUG
setDebugName("CTRTextureGouraud2");
#endif
}
/*!
*/
void CTRTextureGouraud2::scanline_bilinear ()
{
tVideoSample *dst;
#ifdef USE_ZBUFFER
fp24 *z;
#endif
s32 xStart;
s32 xEnd;
s32 dx;
#ifdef SUBTEXEL
f32 subPixel;
#endif
#ifdef IPOL_Z
f32 slopeZ;
#endif
#ifdef IPOL_W
fp24 slopeW;
#endif
#ifdef IPOL_C0
sVec4 slopeC;
#endif
#ifdef IPOL_T0
sVec2 slopeT0;
#endif
#ifdef IPOL_T1
sVec2 slopeT1;
#endif
// apply top-left fill-convention, left
xStart = core::ceil32( line.x[0] );
xEnd = core::ceil32( line.x[1] ) - 1;
dx = xEnd - xStart;
if ( dx < 0 )
return;
// slopes
const f32 invDeltaX = core::reciprocal_approxim ( line.x[1] - line.x[0] );
#ifdef IPOL_Z
slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
#endif
#ifdef IPOL_W
slopeW = (line.w[1] - line.w[0]) * invDeltaX;
#endif
#ifdef IPOL_C0
slopeC = (line.c[1] - line.c[0]) * invDeltaX;
#endif
#ifdef IPOL_T0
slopeT0 = (line.t0[1] - line.t0[0]) * invDeltaX;
#endif
#ifdef IPOL_T1
slopeT1 = (line.t1[1] - line.t1[0]) * invDeltaX;
#endif
#ifdef SUBTEXEL
subPixel = ( (f32) xStart ) - line.x[0];
#ifdef IPOL_Z
line.z[0] += slopeZ * subPixel;
#endif
#ifdef IPOL_W
line.w[0] += slopeW * subPixel;
#endif
#ifdef IPOL_C0
line.c[0] += slopeC * subPixel;
#endif
#ifdef IPOL_T0
line.t0[0] += slopeT0 * subPixel;
#endif
#ifdef IPOL_T1
line.t1[0] += slopeT1 * subPixel;
#endif
#endif
dst = lockedSurface + ( line.y * SurfaceWidth ) + xStart;
#ifdef USE_ZBUFFER
z = lockedZBuffer + ( line.y * SurfaceWidth ) + xStart;
#endif
#ifdef INVERSE_W
f32 inversew;
#endif
tFixPoint tx0;
tFixPoint ty0;
#ifdef IPOL_C0
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
#endif
#ifdef BURNINGVIDEO_RENDERER_FAST
u32 dIndex = ( line.y & 3 ) << 2;
#endif
for ( s32 i = 0; i <= dx; ++i )
{
#ifdef CMP_Z
if ( line.z[0] < z[i] )
#endif
#ifdef CMP_W
if ( line.w[0] >= z[i] )
#endif
{
#ifdef WRITE_Z
z[i] = line.z[0];
#endif
#ifdef WRITE_W
z[i] = line.w[0];
#endif
#ifdef INVERSE_W
inversew = fix_inverse32 ( line.w[0] );
tx0 = f32_to_fixPoint ( line.t0[0].x, inversew);
ty0 = f32_to_fixPoint ( line.t0[0].y, inversew);
#ifdef IPOL_C0
r1 = f32_to_fixPoint ( line.c[0].y ,inversew );
g1 = f32_to_fixPoint ( line.c[0].z ,inversew );
b1 = f32_to_fixPoint ( line.c[0].w ,inversew );
#endif
#else
tx0 = f32_to_fixPoint ( line.t0[0].x );
ty0 = f32_to_fixPoint ( line.t0[0].y );
#ifdef IPOL_C0
getTexel_plain2 ( r1, g1, b1, line.c[0] );
#endif
#endif
#ifdef IPOL_C0
getSample_texture ( r0, g0, b0, &IT[0], tx0,ty0 );
dst[i] = fix_to_color ( imulFix ( r0, r1 ),
imulFix ( g0, g1 ),
imulFix ( b0, b1 )
);
#else
#ifdef BURNINGVIDEO_RENDERER_FAST
const tFixPointu d = dithermask [ dIndex | ( i ) & 3 ];
dst[i] = getTexel_plain ( &IT[0], d + tx0, d + ty0 );
#else
getSample_texture ( r0, g0, b0, &IT[0], tx0,ty0 );
dst[i] = fix_to_color ( r0, g0, b0 );
#endif
#endif
}
#ifdef IPOL_Z
line.z[0] += slopeZ;
#endif
#ifdef IPOL_W
line.w[0] += slopeW;
#endif
#ifdef IPOL_C0
line.c[0] += slopeC;
#endif
#ifdef IPOL_T0
line.t0[0] += slopeT0;
#endif
#ifdef IPOL_T1
line.t1[0] += slopeT1;
#endif
}
}
void CTRTextureGouraud2::drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c )
{
// sort on height, y
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
if ( F32_A_GREATER_B ( a->Pos.y , c->Pos.y ) ) swapVertexPointer(&a, &c);
if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c);
// calculate delta y of the edges
scan.invDeltaY[0] = core::reciprocal ( c->Pos.y - a->Pos.y );
scan.invDeltaY[1] = core::reciprocal ( b->Pos.y - a->Pos.y );
scan.invDeltaY[2] = core::reciprocal ( c->Pos.y - b->Pos.y );
if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) )
return;
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = a->Pos.y - c->Pos.y;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = b->Pos.y - a->Pos.y;
scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > (f32) 0.0 ? 0 : 1;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT0[0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t0[0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT1[0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t1[0] = a->Tex[1];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
lockedSurface = (tVideoSample*)RenderTarget->lock();
#ifdef USE_ZBUFFER
lockedZBuffer = ZBuffer->lock();
#endif
#ifdef IPOL_T0
IT[0].data = (tVideoSample*)IT[0].Texture->lock();
#endif
#ifdef IPOL_T1
IT[1].data = (tVideoSample*)IT[1].Texture->lock();
#endif
// rasterize upper sub-triangle
if ( (f32) 0.0 != scan.invDeltaY[1] )
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[1] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT0[1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t0[1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT1[1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t1[1] = a->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = core::ceil32( a->Pos.y );
yEnd = core::ceil32( b->Pos.y ) - 1;
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t0[0] += scan.slopeT0[0] * subPixel;
scan.t0[1] += scan.slopeT0[1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t1[0] += scan.slopeT1[0] * subPixel;
scan.t1[1] += scan.slopeT1[1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; ++line.y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t0[scan.left] = scan.t0[0];
line.t0[scan.right] = scan.t0[1];
#endif
#ifdef IPOL_T1
line.t1[scan.left] = scan.t1[0];
line.t1[scan.right] = scan.t1[1];
#endif
// render a scanline
scanline_bilinear ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t0[0] += scan.slopeT0[0];
scan.t0[1] += scan.slopeT0[1];
#endif
#ifdef IPOL_T1
scan.t1[0] += scan.slopeT1[0];
scan.t1[1] += scan.slopeT1[1];
#endif
}
}
// rasterize lower sub-triangle
if ( (f32) 0.0 != scan.invDeltaY[2] )
{
// advance to middle point
if( (f32) 0.0 != scan.invDeltaY[1] )
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t0[0] = a->Tex[0] + scan.slopeT0[0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t1[0] = a->Tex[1] + scan.slopeT1[0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[1] = b->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT0[1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t0[1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT1[1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t1[1] = b->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = core::ceil32( b->Pos.y );
yEnd = core::ceil32( c->Pos.y ) - 1;
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t0[0] += scan.slopeT0[0] * subPixel;
scan.t0[1] += scan.slopeT0[1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t1[0] += scan.slopeT1[0] * subPixel;
scan.t1[1] += scan.slopeT1[1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; ++line.y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t0[scan.left] = scan.t0[0];
line.t0[scan.right] = scan.t0[1];
#endif
#ifdef IPOL_T1
line.t1[scan.left] = scan.t1[0];
line.t1[scan.right] = scan.t1[1];
#endif
// render a scanline
scanline_bilinear ( );
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t0[0] += scan.slopeT0[0];
scan.t0[1] += scan.slopeT0[1];
#endif
#ifdef IPOL_T1
scan.t1[0] += scan.slopeT1[0];
scan.t1[1] += scan.slopeT1[1];
#endif
}
}
RenderTarget->unlock();
#ifdef USE_ZBUFFER
ZBuffer->unlock();
#endif
#ifdef IPOL_T0
IT[0].Texture->unlock();
#endif
#ifdef IPOL_T1
IT[1].Texture->unlock();
#endif
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a flat triangle renderer
IBurningShader* createTriangleRendererTextureGouraud2(IDepthBuffer* zbuffer)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CTRTextureGouraud2(zbuffer);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr