2007-05-20 18:03:49 +00:00
|
|
|
// Copyright (C) 2002-2007 Nikolaus Gebhardt
|
|
|
|
// This file is part of the "Irrlicht Engine".
|
|
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
|
|
|
|
#ifndef __I_SCENE_MANAGER_H_INCLUDED__
|
|
|
|
#define __I_SCENE_MANAGER_H_INCLUDED__
|
|
|
|
|
|
|
|
#include "IUnknown.h"
|
|
|
|
#include "irrArray.h"
|
|
|
|
#include "vector3d.h"
|
|
|
|
#include "dimension2d.h"
|
|
|
|
#include "SColor.h"
|
|
|
|
#include "ETerrainElements.h"
|
|
|
|
#include "ESceneNodeTypes.h"
|
|
|
|
#include "SceneParameters.h"
|
|
|
|
|
|
|
|
namespace irr
|
|
|
|
{
|
|
|
|
struct SKeyMap;
|
|
|
|
struct SEvent;
|
|
|
|
|
|
|
|
namespace io
|
|
|
|
{
|
|
|
|
class IFileSystem;
|
|
|
|
class IReadFile;
|
|
|
|
class IAttributes;
|
|
|
|
class IWriteFile;
|
|
|
|
} // end namespace io
|
|
|
|
|
|
|
|
namespace gui
|
|
|
|
{
|
|
|
|
class IGUIFont;
|
|
|
|
class IGUIFontBitmap;
|
|
|
|
class IGUIEnvironment;
|
|
|
|
} // end namespace gui
|
|
|
|
|
|
|
|
namespace video
|
|
|
|
{
|
|
|
|
class IVideoDriver;
|
|
|
|
class SMaterial;
|
|
|
|
class IImage;
|
|
|
|
class ITexture;
|
|
|
|
} // end namespace video
|
|
|
|
|
|
|
|
namespace scene
|
|
|
|
{
|
|
|
|
//! Enumeration for render passes.
|
|
|
|
/** A parameter passed to the registerNodeForRendering() method of the ISceneManager,
|
|
|
|
specifying when the mode wants to be drawn in relation to the other nodes. */
|
|
|
|
enum E_SCENE_NODE_RENDER_PASS
|
|
|
|
{
|
|
|
|
//! Camera pass. The active view is set up here.
|
|
|
|
//! The very first pass.
|
|
|
|
ESNRP_CAMERA,
|
|
|
|
|
|
|
|
//! In this pass, lights are transformed into camera space and added to the driver
|
|
|
|
ESNRP_LIGHT,
|
|
|
|
|
|
|
|
//! This is used for sky boxes.
|
|
|
|
ESNRP_SKY_BOX,
|
|
|
|
|
|
|
|
//! All normal objects can use this for registering themselves.
|
|
|
|
//! This value will never be returned by ISceneManager::getSceneNodeRenderPass().
|
|
|
|
//! The scene manager will determine by itself if an object is
|
|
|
|
//! transparent or solid and register the object as SNRT_TRANSPARENT or
|
|
|
|
//! SNRT_SOLD automaticly if you call registerNodeForRendering with this
|
|
|
|
//! value (which is default). Note that it will register the node only as ONE type.
|
|
|
|
//! If your scene node has both solid and transparent material types register
|
|
|
|
//! it twice (one time as SNRT_SOLID, the other time as SNRT_TRANSPARENT) and
|
|
|
|
//! in the render() method call getSceneNodeRenderPass() to find out the current
|
|
|
|
//! render pass and render only the corresponding parts of the node.
|
|
|
|
ESNRP_AUTOMATIC,
|
|
|
|
|
|
|
|
//! Solid scene nodes or special scene nodes without materials.
|
|
|
|
ESNRP_SOLID,
|
|
|
|
|
|
|
|
//! Drawn after the transparent nodes, the time for drawing shadow volumes
|
|
|
|
ESNRP_SHADOW,
|
|
|
|
|
|
|
|
//! Transparent scene nodes, drawn after shadow nodes. They are sorted from back
|
|
|
|
//! to front and drawn in that order.
|
|
|
|
ESNRP_TRANSPARENT,
|
|
|
|
|
|
|
|
//! Scene Nodes with special support
|
|
|
|
ESNRP_SHADER_0,
|
|
|
|
ESNRP_SHADER_1,
|
|
|
|
ESNRP_SHADER_2,
|
|
|
|
ESNRP_SHADER_3,
|
|
|
|
ESNRP_SHADER_4,
|
|
|
|
ESNRP_SHADER_5,
|
|
|
|
ESNRP_SHADER_6,
|
|
|
|
ESNRP_SHADER_7,
|
|
|
|
ESNRP_SHADER_8,
|
|
|
|
ESNRP_SHADER_9,
|
|
|
|
ESNRP_SHADER_10,
|
|
|
|
|
|
|
|
//! Never used, value specifing how much parameters there are.
|
|
|
|
ESNRP_COUNT
|
|
|
|
};
|
|
|
|
|
|
|
|
class IMesh;
|
|
|
|
class IMeshBuffer;
|
|
|
|
class IAnimatedMesh;
|
|
|
|
class IMeshCache;
|
|
|
|
class ISceneNode;
|
|
|
|
class ICameraSceneNode;
|
|
|
|
class IAnimatedMeshSceneNode;
|
|
|
|
class ISceneNodeAnimator;
|
|
|
|
class ISceneNodeAnimatorCollisionResponse;
|
|
|
|
class ILightSceneNode;
|
|
|
|
class IBillboardSceneNode;
|
|
|
|
class ITerrainSceneNode;
|
|
|
|
class IMeshSceneNode;
|
|
|
|
class IMeshLoader;
|
|
|
|
class ISceneCollisionManager;
|
|
|
|
class IParticleSystemSceneNode;
|
|
|
|
class IDummyTransformationSceneNode;
|
|
|
|
class ITriangleSelector;
|
|
|
|
class IMetaTriangleSelector;
|
|
|
|
class IMeshManipulator;
|
|
|
|
class ITextSceneNode;
|
|
|
|
class ISceneNodeFactory;
|
|
|
|
class ISceneNodeAnimatorFactory;
|
|
|
|
class ISceneUserDataSerializer;
|
|
|
|
|
|
|
|
namespace quake3
|
|
|
|
{
|
|
|
|
class SShader;
|
|
|
|
} // end namespace quake3
|
|
|
|
|
|
|
|
//! The Scene Manager manages scene nodes, mesh recources, cameras and all the other stuff.
|
|
|
|
/** All Scene nodes can be created only here. There is a always growing list of scene
|
|
|
|
nodes for lots of purposes: Indoor rendering scene nodes like the Octree
|
|
|
|
(addOctTreeSceneNode()) or the terrain renderer (addTerrainSceneNode()),
|
|
|
|
different Camera scene nodes (addCameraSceneNode(), addCameraSceneNodeMaya()),
|
|
|
|
scene nodes for Light (addLightSceneNode()), Billboards (addBillboardSceneNode())
|
|
|
|
and so on.
|
|
|
|
A scene node is a node in the hierachical scene graph. Every scene node may have children,
|
|
|
|
which are other scene nodes. Children move relative the their parents position. If the parent of a node is not
|
|
|
|
visible, its children won't be visible, too. In this way, it is for example easily possible
|
|
|
|
to attach a light to a moving car or to place a walking character on a moving platform
|
|
|
|
on a moving ship.
|
|
|
|
The SceneManager is also able to load 3d mesh files of different formats. Take a look
|
|
|
|
at getMesh() to find out what formats are supported. And if these formats are not enough
|
|
|
|
use addExternalMeshLoader() to add new formats to the engine.
|
|
|
|
*/
|
|
|
|
class ISceneManager : public virtual IUnknown
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
//! destructor
|
|
|
|
virtual ~ISceneManager() {};
|
|
|
|
|
|
|
|
//! Returns pointer to an animateable mesh. Loads the file if not loaded already.
|
|
|
|
/**
|
|
|
|
* If you want to remove a loaded mesh from the cache again, use removeMesh().
|
|
|
|
* Currently there are the following mesh formats supported:
|
|
|
|
* <TABLE border="1" cellpadding="2" cellspacing="0">
|
|
|
|
* <TR>
|
|
|
|
* <TD>Format</TD>
|
|
|
|
* <TD>Description</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>3D Studio (.3ds)</TD>
|
|
|
|
* <TD>Loader for 3D-Studio files which lots of 3D packages are able to export.
|
|
|
|
* Only static meshes are currently supported by this importer. </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Bliz Basic B3D (.b3d)</TD>
|
|
|
|
* <TD>Loader for blitz basic files, developed by Mark Sibly, also supports animations.</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Cartography shop 4 (.csm)</TD>
|
|
|
|
* <TD>Cartography Shop is a modeling program for creating architecture and calculating
|
|
|
|
* lighting. Irrlicht can directly import .csm files thanks to the IrrCSM library
|
|
|
|
* created by Saurav Mohapatra which is now integrated directly in Irrlicht.
|
|
|
|
* If you are using this loader, please note that you'll have to set the path
|
|
|
|
* of the textures before loading .csm files. You can do this using SceneManager->getParameters()->setParameter(scene::CSM_TEXTURE_PATH,
|
|
|
|
* "path/to/your/textures");</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>COLLADA (.dae, .xml)</TD>
|
|
|
|
* <TD>COLLADA is an open Digital Asset Exchange Schema for the interactive 3D industry. There are
|
|
|
|
* exporters and importers for this format available for most of the big 3d packages
|
|
|
|
* at http://collada.org. Irrlicht can import COLLADA files by using the
|
|
|
|
* ISceneManager::getMesh() method. COLLADA files need not contain only one single mesh
|
|
|
|
* but multiple meshes and a whole scene setup with lights, cameras and mesh instances,
|
|
|
|
* this loader can set up a scene as described by the COLLADA file instead of loading
|
|
|
|
* and returning one single mesh. By default, this loader behaves like the other loaders
|
|
|
|
* and does not create instances, but it can be switched into this mode by using
|
|
|
|
* SceneManager->getParameters()->setParameter(COLLADA_CREATE_SCENE_INSTANCES, true);
|
|
|
|
* Created scene nodes will be named as the names of the nodes in the
|
|
|
|
* COLLADA file. The returned mesh is just a dummy object in this mode. Meshes included in
|
|
|
|
* the scene will be added into the scene manager with the following naming scheme:
|
|
|
|
* path/to/file/file.dea#meshname. The loading of such meshes is logged.
|
|
|
|
* Currently, this loader is able to create meshes (made of only polygons), lights,
|
|
|
|
* and cameras. Materials and animations are currently not supported but this will
|
|
|
|
* change with future releases.
|
|
|
|
* </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Delgine DeleD (.dmf)</TD>
|
|
|
|
* <TD>DeleD (delgine.com) is a 3D editor and level-editor combined into one and is specifically
|
|
|
|
* designed for 3D game-development. With this loader, it is possible to directly load
|
|
|
|
* all geometry is as well as textures and lightmaps from .dmf files. To set texture and
|
|
|
|
* material paths, see scene::DMF_USE_MATERIALS_DIRS and scene::DMF_TEXTURE_PATH. It is also
|
|
|
|
* possible to flip the alpha texture by setting scene::DMF_FLIP_ALPHA_TEXTURES to true and
|
|
|
|
* to set the material transparent reference value by setting scene::DMF_ALPHA_CHANNEL_REF to
|
|
|
|
* a float between 0 and 1. The loader is
|
|
|
|
* based on Salvatore Russo's .dmf loader, I just changed some parts of it. Thanks to
|
|
|
|
* Salvatore for his work and for allowing me to use his code in Irrlicht and put it under Irrlicht's
|
|
|
|
* license. For newer and more enchanced versions of the loader, take a look at delgine.com.
|
|
|
|
* </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>DirectX (.x)</TD>
|
|
|
|
* <TD>Platform independent importer (so not D3D-only) for .x files. Most 3D
|
|
|
|
* packages can export these natively and there are several tools for them
|
|
|
|
* available. (e.g. the Maya exporter included in the DX SDK) .x files can
|
|
|
|
* include skeletal animations and Irrlicht is able to play and display them.
|
|
|
|
* Currently, Irrlicht only supports uncompressed .x files.</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Maya (.obj)</TD>
|
|
|
|
* <TD>Most 3D software can create .obj files which contain static geometry without
|
|
|
|
* material data. The material files .mtl are also supported. This importer
|
|
|
|
* for Irrlicht can load them directly. </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Milkshape (.ms3d)</TD>
|
|
|
|
* <TD>.MS3D files contain models and sometimes skeletal animations from the
|
|
|
|
* Milkshape 3D modeling and animation software. This importer for Irrlicht
|
|
|
|
* can display and/or animate these files. </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>My3D (.my3d)</TD>
|
|
|
|
* <TD>.my3D is a flexible 3D file format. The My3DTools contains plug-ins to
|
|
|
|
* export .my3D files from several 3D packages. With this built-in importer,
|
|
|
|
* Irrlicht can read and display those files directly. This loader was written
|
|
|
|
* by Zhuck Dimitry who also created the whole My3DTools package. If you are using this loader, please
|
|
|
|
* note that you can set the path of the textures before loading .my3d files.
|
|
|
|
* You can do this using SceneManager->getParameters()->setParameter(scene::MY3D_TEXTURE_PATH,
|
|
|
|
* "path/to/your/textures"); </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>OCT (.oct)</TD>
|
|
|
|
* <TD>The oct file format contains 3D geometry and lightmaps and can be loaded
|
|
|
|
* directly by Irrlicht. OCT files<br>
|
|
|
|
* can be created by FSRad, Paul Nette's radiosity processor or exported from
|
|
|
|
* Blender using OCTTools which can be found in the exporters/OCTTools directory
|
|
|
|
* of the SDK. Thanks to Murphy McCauley for creating all this.</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>OGRE Meshes (.mesh)</TD>
|
|
|
|
* <TD>Ogre .mesh files contain 3D data for the OGRE 3D engine. Irrlicht can read and
|
|
|
|
* display them directly with this importer. To define materials for the mesh,
|
|
|
|
* copy a .material file named like the corresponding .mesh file where the .mesh
|
|
|
|
* file is. (For example ogrehead.material for ogrehead.mesh). Thanks to Christian Stehno
|
|
|
|
* who wrote and contributed this loader.</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Pulsar LMTools (.lmts)</TD>
|
|
|
|
* <TD>LMTools is a set of tools (Windows & Linux) for creating lightmaps.
|
|
|
|
* Irrlicht can directly read .lmts files thanks to<br>
|
|
|
|
* the importer created by Jonas Petersen. If you are using this loader, please
|
|
|
|
* note that you can set the path of the textures before loading .lmts files.
|
|
|
|
* You can do this using SceneManager->getParameters()->setParameter(scene::LMTS_TEXTURE_PATH,
|
|
|
|
* "path/to/your/textures"); Notes for<br>
|
|
|
|
* this version of the loader:<br>
|
|
|
|
* - It does not recognice/support user data in the *.lmts files.<br>
|
|
|
|
* - The TGAs generated by LMTools don't work in Irrlicht for some reason (the
|
|
|
|
* textures are upside down). Opening and resaving them in a graphics app will
|
|
|
|
* solve the problem.</TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Quake 3 levels (.bsp)</TD>
|
|
|
|
* <TD>Quake 3 is a popular game by IDSoftware, and .pk3 files contain .bsp files
|
|
|
|
* and textures/lightmaps describing huge<br>
|
|
|
|
* prelighted levels. Irrlicht can read .pk3 and .bsp files directly and thus
|
|
|
|
* render Quake 3 levels directly. Written by Nikolaus Gebhardt enhanced by
|
|
|
|
* Dean P. Macri with the curved surfaces feature. </TD>
|
|
|
|
* </TR>
|
|
|
|
* <TR>
|
|
|
|
* <TD>Quake 2 models (.md2)</TD>
|
|
|
|
* <TD>Quake 2 models are characters with morph target animation. Irrlicht can
|
|
|
|
* read, display and animate them directly with this importer. </TD>
|
|
|
|
* </TR>
|
|
|
|
* </TABLE>
|
|
|
|
*
|
|
|
|
* To load and display a mesh quickly, just do this:
|
|
|
|
* \code
|
|
|
|
* SceneManager->addAnimatedMeshSceneNode(
|
|
|
|
* SceneManager->getMesh("yourmesh.3ds"));
|
|
|
|
* \endcode
|
|
|
|
* If you would like to implement and add your own file format loader to Irrlicht,
|
|
|
|
* see addExternalMeshLoader().
|
|
|
|
* \param filename: Filename of the mesh to load.
|
|
|
|
* \return Returns NULL if failed and the pointer to the mesh if
|
|
|
|
* successful.
|
|
|
|
* This pointer should not be dropped. See IUnknown::drop() for more information.
|
|
|
|
**/
|
|
|
|
virtual IAnimatedMesh* getMesh(const c8* filename) = 0;
|
|
|
|
|
|
|
|
//! Returns an interface to the mesh cache which is shared beween all existing scene managers.
|
|
|
|
/** With this interface, it is possible to manually add new loaded
|
|
|
|
meshes (if ISceneManager::getMesh() is not sufficient), to remove them and to iterate
|
|
|
|
through already loaded meshes. */
|
|
|
|
virtual IMeshCache* getMeshCache() = 0;
|
|
|
|
|
|
|
|
//! Returns the video driver.
|
|
|
|
/** \return Returns pointer to the video Driver.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual video::IVideoDriver* getVideoDriver() = 0;
|
|
|
|
|
|
|
|
//! Returns the active GUIEnvironment
|
|
|
|
/** \return Returns pointer to the GUIEnvironment
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual gui::IGUIEnvironment* getGUIEnvironment() = 0;
|
|
|
|
|
|
|
|
//! Adds a test scene node for test purposes to the scene.
|
|
|
|
/** It is a simple cube of (1,1,1) size.
|
|
|
|
\param size: Size of the cube.
|
|
|
|
\param parent: Parent of the scene node. Can be NULL if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: Position of the space relative to its parent where the
|
|
|
|
scene node will be placed.
|
|
|
|
\param rotation: Initital rotation of the scene node.
|
|
|
|
\param scale: Initial scale of the scene node.
|
|
|
|
\return Returns pointer to the created test scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addCubeSceneNode(f32 size=10.0f, ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f, 1.0f, 1.0f)) = 0;
|
|
|
|
|
|
|
|
//! Adds a sphere scene node for test purposes to the scene.
|
|
|
|
/** It is a simple sphere.
|
|
|
|
\param radius: Radius of the sphere.
|
|
|
|
\param polyCount: Polycount of the sphere.
|
|
|
|
\param parent: Parent of the scene node. Can be NULL if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: Position of the space relative to its parent where the
|
|
|
|
scene node will be placed.
|
|
|
|
\param rotation: Initital rotation of the scene node.
|
|
|
|
\param scale: Initial scale of the scene node.
|
|
|
|
\return Returns pointer to the created test scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addSphereSceneNode(f32 radius=5.0f, s32 polyCount=16, ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f, 1.0f, 1.0f)) = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node for rendering an animated mesh model.
|
|
|
|
/** \param mesh: Pointer to the loaded animated mesh to be displayed.
|
|
|
|
\param parent: Parent of the scene node. Can be NULL if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: Position of the space relative to its parent where the
|
|
|
|
scene node will be placed.
|
|
|
|
\param rotation: Initital rotation of the scene node.
|
|
|
|
\param scale: Initial scale of the scene node.
|
|
|
|
\param alsoAddIfMeshPointerZero: Add the scene node even if a 0 pointer is passed.
|
|
|
|
\return Returns pointer to the created scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IAnimatedMeshSceneNode* addAnimatedMeshSceneNode(IAnimatedMesh* mesh, ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f, 1.0f, 1.0f),
|
|
|
|
bool alsoAddIfMeshPointerZero=false) = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node for rendering a static mesh.
|
|
|
|
/** \param mesh: Pointer to the loaded static mesh to be displayed.
|
|
|
|
\param parent: Parent of the scene node. Can be NULL if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: Position of the space relative to its parent where the
|
|
|
|
scene node will be placed.
|
|
|
|
\param rotation: Initital rotation of the scene node.
|
|
|
|
\param scale: Initial scale of the scene node.
|
|
|
|
\param alsoAddIfMeshPointerZero: Add the scene node even if a 0 pointer is passed.
|
|
|
|
\return Returns pointer to the created scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IMeshSceneNode* addMeshSceneNode(IMesh* mesh, ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f, 1.0f, 1.0f),
|
|
|
|
bool alsoAddIfMeshPointerZero=false) = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node for rendering a animated water surface mesh.
|
|
|
|
/** Looks really good when the Material type EMT_TRANSPARENT_REFLECTION
|
|
|
|
is used.
|
|
|
|
\param waveHeight: Height of the water waves.
|
|
|
|
\param waveSpeed: Speed of the water waves.
|
|
|
|
\param waveLength: Lenght of a water wave.
|
|
|
|
\param mesh: Pointer to the loaded static mesh to be displayed with water waves on it.
|
|
|
|
\param parent: Parent of the scene node. Can be NULL if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: Position of the space relative to its parent where the
|
|
|
|
scene node will be placed.
|
|
|
|
\param rotation: Initital rotation of the scene node.
|
|
|
|
\param scale: Initial scale of the scene node.
|
|
|
|
\return Returns pointer to the created scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addWaterSurfaceSceneNode(IMesh* mesh,
|
|
|
|
f32 waveHeight=2.0f, f32 waveSpeed=300.0f, f32 waveLength=10.0f,
|
|
|
|
ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f, 1.0f, 1.0f)) = 0;
|
|
|
|
|
|
|
|
|
|
|
|
//! Adds a scene node for rendering using a octtree to the scene graph.
|
|
|
|
/** This a good method for rendering
|
|
|
|
scenes with lots of geometry. The Octree is built on the fly from the mesh.
|
|
|
|
\param mesh: The mesh containing all geometry from which the octtree will be build.
|
|
|
|
If this animated mesh has more than one frames in it, the first frame is taken.
|
|
|
|
\param parent: Parent node of the octtree node.
|
|
|
|
\param id: id of the node. This id can be used to identify the node.
|
|
|
|
\param minimalPolysPerNode: Specifies the minimal polygons contained a octree node.
|
|
|
|
If a node gets less polys than this value it will not be split into
|
|
|
|
smaller nodes.
|
|
|
|
\param alsoAddIfMeshPointerZero: Add the scene node even if a 0 pointer is passed.
|
|
|
|
\return Returns the pointer to the OctTree if successful, otherwise 0.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addOctTreeSceneNode(IAnimatedMesh* mesh, ISceneNode* parent=0,
|
|
|
|
s32 id=-1, s32 minimalPolysPerNode=256, bool alsoAddIfMeshPointerZero=false) = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node for rendering using a octtree to the scene graph.
|
|
|
|
/** This a good method for rendering
|
|
|
|
scenes with lots of geometry. The Octree is built on the fly from the mesh, much
|
|
|
|
faster then a bsp tree.
|
|
|
|
\param mesh: The mesh containing all geometry from which the octtree will be build.
|
|
|
|
\param parent: Parent node of the octtree node.
|
|
|
|
\param id: id of the node. This id can be used to identify the node.
|
|
|
|
\param minimalPolysPerNode: Specifies the minimal polygons contained a octree node.
|
|
|
|
If a node gets less polys than this value it will not be split into
|
|
|
|
smaller nodes.
|
|
|
|
\param alsoAddIfMeshPointerZero: Add the scene node even if a 0 pointer is passed.
|
|
|
|
\return Returns the pointer to the octtree if successful, otherwise 0.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addOctTreeSceneNode(IMesh* mesh, ISceneNode* parent=0,
|
|
|
|
s32 id=-1, s32 minimalPolysPerNode=256, bool alsoAddIfMeshPointerZero=false) = 0;
|
|
|
|
|
|
|
|
//! Adds a camera scene node to the scene graph and sets it as active camera.
|
|
|
|
/** This camera does not react on user input like for example the one created with
|
|
|
|
addCameraSceneNodeFPS(). If you want to move or animate it, use animators or the
|
|
|
|
ISceneNode::setPosition(), ICameraSceneNode::setTarget() etc methods.
|
|
|
|
\param position: Position of the space relative to its parent where the camera will be placed.
|
|
|
|
\param lookat: Position where the camera will look at. Also known as target.
|
|
|
|
\param parent: Parent scene node of the camera. Can be null. If the parent moves,
|
|
|
|
the camera will move too.
|
|
|
|
\param id: id of the camera. This id can be used to identify the camera.
|
|
|
|
\return Returns pointer to interface to camera if successful, otherwise 0.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ICameraSceneNode* addCameraSceneNode(ISceneNode* parent = 0,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& lookat = core::vector3df(0,0,100), s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a maya style user controlled camera scene node to the scene graph.
|
|
|
|
/** The maya camera is able to be controlled with the mouse similar
|
|
|
|
like in the 3D Software Maya by Alias Wavefront.
|
|
|
|
\param parent: Parent scene node of the camera. Can be null.
|
|
|
|
\param rotateSpeed: Rotation speed of the camera.
|
|
|
|
\param zoomSpeed: Zoom speed of the camera.
|
|
|
|
\param translationSpeed: TranslationSpeed of the camera.
|
|
|
|
\param id: id of the camera. This id can be used to identify the camera.
|
|
|
|
\return Returns a pointer to the interface of the camera if successful, otherwise 0.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ICameraSceneNode* addCameraSceneNodeMaya(ISceneNode* parent = 0,
|
|
|
|
f32 rotateSpeed = -1500.0f, f32 zoomSpeed = 200.0f, f32 translationSpeed = 1500.0f, s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a camera scene node which is able to be controlled with the mouse and keys like in most first person shooters (FPS).
|
|
|
|
/** Look with the mouse, move with cursor keys. If you do not like the default
|
|
|
|
key layout, you may want to specify your own. For example to make the camera
|
|
|
|
be controlled by the cursor keys AND the keys W,A,S, and D, do something
|
|
|
|
like this:
|
|
|
|
\code
|
|
|
|
SKeyMap keyMap[8];
|
|
|
|
keyMap[0].Action = EKA_MOVE_FORWARD;
|
|
|
|
keyMap[0].KeyCode = KEY_UP;
|
|
|
|
keyMap[1].Action = EKA_MOVE_FORWARD;
|
|
|
|
keyMap[1].KeyCode = KEY_KEY_W;
|
|
|
|
|
|
|
|
keyMap[2].Action = EKA_MOVE_BACKWARD;
|
|
|
|
keyMap[2].KeyCode = KEY_DOWN;
|
|
|
|
keyMap[3].Action = EKA_MOVE_BACKWARD;
|
|
|
|
keyMap[3].KeyCode = KEY_KEY_S;
|
|
|
|
|
|
|
|
keyMap[4].Action = EKA_STRAFE_LEFT;
|
|
|
|
keyMap[4].KeyCode = KEY_LEFT;
|
|
|
|
keyMap[5].Action = EKA_STRAFE_LEFT;
|
|
|
|
keyMap[5].KeyCode = KEY_KEY_A;
|
|
|
|
|
|
|
|
keyMap[6].Action = EKA_STRAFE_RIGHT;
|
|
|
|
keyMap[6].KeyCode = KEY_RIGHT;
|
|
|
|
keyMap[7].Action = EKA_STRAFE_RIGHT;
|
|
|
|
keyMap[7].KeyCode = KEY_KEY_D;
|
|
|
|
|
|
|
|
camera = sceneManager->addCameraSceneNodeFPS(0, 100, 500, -1, keyMap, 8);
|
|
|
|
\endcode
|
|
|
|
\param parent: Parent scene node of the camera. Can be null.
|
2007-07-07 20:08:47 +00:00
|
|
|
\param rotateSpeed: Speed with which the camera is rotated. This can be done
|
2007-05-20 18:03:49 +00:00
|
|
|
only with the mouse.
|
|
|
|
\param moveSpeed: Speed with which the camera is moved. Movement is done with
|
|
|
|
the cursor keys.
|
|
|
|
\param id: id of the camera. This id can be used to identify the camera.
|
|
|
|
\param keyMapArray: Optional pointer to an array of a keymap, specifying what
|
|
|
|
keys should be used to move the camera. If this is null, the default keymap
|
|
|
|
is used. You can define actions more then one time in the array, to bind
|
|
|
|
multiple keys to the same action.
|
|
|
|
\param keyMapSize: Amount of items in the keymap array.
|
|
|
|
\param noVerticalMovement: Setting this to true makes the camera only move within a
|
|
|
|
horizontal plane, and disables vertical movement as known from most ego shooters. Default
|
|
|
|
is 'false', with which it is possible to fly around in space, if no gravity is there.
|
|
|
|
\param jumpSpeed: Speed with which the camera is moved when jumping.
|
|
|
|
\return Returns a pointer to the interface of the camera if successful, otherwise 0.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ICameraSceneNode* addCameraSceneNodeFPS(ISceneNode* parent = 0,
|
|
|
|
f32 rotateSpeed = 100.0f, f32 moveSpeed = 500.0f, s32 id=-1,
|
|
|
|
SKeyMap* keyMapArray=0, s32 keyMapSize=0, bool noVerticalMovement=false,
|
|
|
|
f32 jumpSpeed = 0.f) = 0;
|
|
|
|
|
|
|
|
//! Adds a dynamic light scene node to the scene graph.
|
|
|
|
/** The light will cast dynamic light on all
|
|
|
|
other scene nodes in the scene, which have the material flag video::MTF_LIGHTING
|
|
|
|
turned on. (This is the default setting in most scene nodes).
|
|
|
|
\param parent: Parent scene node of the light. Can be null. If the parent moves,
|
|
|
|
the light will move too.
|
|
|
|
\param position: Position of the space relative to its parent where the light will be placed.
|
|
|
|
\param color: Diffuse color of the light. Ambient or Specular colors can be set manually with
|
|
|
|
the ILightSceneNode::getLightData() method.
|
|
|
|
\param radius: Radius of the light.
|
|
|
|
\param id: id of the node. This id can be used to identify the node.
|
|
|
|
\return Returns pointer to the interface of the light if successful, otherwise NULL.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ILightSceneNode* addLightSceneNode(ISceneNode* parent = 0,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
video::SColorf color = video::SColorf(1.0f, 1.0f, 1.0f),
|
|
|
|
f32 radius=100.0f, s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a billboard scene node to the scene graph.
|
|
|
|
/** A billboard is like a 3d sprite: A 2d element,
|
|
|
|
which always looks to the camera. It is usually used for things like explosions, fire,
|
|
|
|
lensflares and things like that.
|
|
|
|
\param parent: Parent scene node of the billboard. Can be null. If the parent moves,
|
|
|
|
the billboard will move too.
|
|
|
|
\param position: Position of the space relative to its parent where the billboard will be placed.
|
|
|
|
\param size: Size of the billboard. This size is 2 dimensional because a billboard only has
|
|
|
|
width and height.
|
|
|
|
\param id: An id of the node. This id can be used to identify the node.
|
|
|
|
\param shade_top: vertex color top
|
|
|
|
\param shade_down: vertex color down
|
|
|
|
\return Returns pointer to the billboard if successful, otherwise NULL.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IBillboardSceneNode* addBillboardSceneNode(ISceneNode* parent = 0,
|
|
|
|
const core::dimension2d<f32>& size = core::dimension2d<f32>(10.0f, 10.0f),
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0), s32 id=-1,
|
|
|
|
video::SColor shade_top = 0xFFFFFFFF, video::SColor shade_down = 0xFFFFFFFF) = 0;
|
|
|
|
|
|
|
|
//! Adds a skybox scene node to the scene graph.
|
|
|
|
/** A skybox is a big cube with 6 textures on it and
|
|
|
|
is drawn around the camera position.
|
|
|
|
\param top: Texture for the top plane of the box.
|
|
|
|
\param bottom: Texture for the bottom plane of the box.
|
|
|
|
\param left: Texture for the left plane of the box.
|
|
|
|
\param right: Texture for the right plane of the box.
|
|
|
|
\param front: Texture for the front plane of the box.
|
|
|
|
\param back: Texture for the back plane of the box.
|
|
|
|
\param parent: Parent scene node of the skybox. A skybox usually has no parent,
|
|
|
|
so this should be null. Note: If a parent is set to the skybox, the box will not
|
|
|
|
change how it is drawn.
|
|
|
|
\param id: An id of the node. This id can be used to identify the node.
|
|
|
|
\return Returns a pointer to the sky box if successful, otherwise NULL.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addSkyBoxSceneNode(video::ITexture* top, video::ITexture* bottom,
|
|
|
|
video::ITexture* left, video::ITexture* right, video::ITexture* front,
|
|
|
|
video::ITexture* back, ISceneNode* parent = 0, s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a skydome scene node to the scene graph.
|
|
|
|
/** A skydome is a large (half-) sphere with a panoramic texture
|
|
|
|
on the inside and is drawn around the camera position.
|
|
|
|
\param texture: Texture for the dome.
|
|
|
|
\param horiRes: Number of vertices of a horizontal layer of the sphere.
|
|
|
|
\param vertRes: Number of vertices of a vertical layer of the sphere.
|
|
|
|
\param texturePercentage: How much of the height of the texture is used. Should be between 0 and 1.
|
|
|
|
\param spherePercentage: How much of the sphere is drawn. Value should be between 0 and 2, where 1 is an exact half-sphere and 2 is a full sphere.
|
|
|
|
\param parent: Parent scene node of the dome. A dome usually has no parent,
|
|
|
|
so this should be null. Note: If a parent is set, the dome will not
|
|
|
|
change how it is drawn.
|
|
|
|
\param id: An id of the node. This id can be used to identify the node.
|
|
|
|
\return Returns a pointer to the sky dome if successful, otherwise NULL.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addSkyDomeSceneNode(video::ITexture* texture,
|
|
|
|
u32 horiRes, u32 vertRes, f64 texturePercentage, f64 spherePercentage,
|
|
|
|
ISceneNode* parent = 0, s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a particle system scene node to the scene graph.
|
|
|
|
/** \param withDefaultEmitter: Creates a default working point emitter
|
|
|
|
which emitts some particles. Set this to true to see a particle system
|
|
|
|
in action. If set to false, you'll have to set the emitter you want by
|
|
|
|
calling IParticleSystemSceneNode::setEmitter().
|
|
|
|
\param parent: Parent of the scene node. Can be NULL if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: Position of the space relative to its parent where the
|
|
|
|
scene node will be placed.
|
|
|
|
\param rotation: Initital rotation of the scene node.
|
|
|
|
\param scale: Initial scale of the scene node.
|
|
|
|
\return Returns pointer to the created scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IParticleSystemSceneNode* addParticleSystemSceneNode(
|
|
|
|
bool withDefaultEmitter=true, ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0,0,0),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f, 1.0f, 1.0f)) = 0;
|
|
|
|
|
|
|
|
//! Adds a terrain scene node to the scene graph.
|
|
|
|
/** This node implements is a simple terrain renderer which uses
|
|
|
|
a technique known as geo mip mapping
|
|
|
|
for reducing the detail of triangle blocks which are far away.
|
|
|
|
The code for the TerrainSceneNode is based on the terrain
|
|
|
|
renderer by Soconne and the GeoMipMapSceneNode developed by
|
|
|
|
Spintz. They made their code available for Irrlicht and allowed
|
|
|
|
it to be distributed under this licence. I only modified some
|
|
|
|
parts. A lot of thanks go to them.
|
|
|
|
|
|
|
|
This scene node is capable of loading terrains and updating
|
|
|
|
the indices at runtime to enable viewing very large terrains
|
|
|
|
very quickly. It uses a CLOD (Continuous Level of Detail)
|
|
|
|
algorithm which updates the indices for each patch based on
|
|
|
|
a LOD (Level of Detail) which is determined based on a patch's
|
|
|
|
distance from the camera.
|
|
|
|
|
|
|
|
The patch size of the terrain must always be a size of ( 2^N+1, i.e. 8+1(9), 16+1(17), etc. ).
|
|
|
|
The MaxLOD available is directly dependent on the patch size of the terrain. LOD 0 contains all
|
|
|
|
of the indices to draw all the triangles at the max detail for a patch. As each LOD goes up by 1
|
|
|
|
the step taken, in generating indices increases by - 2^LOD, so for LOD 1, the step taken is 2, for
|
|
|
|
LOD 2, the step taken is 4, LOD 3 - 8, etc. The step can be no larger than the size of the patch,
|
|
|
|
so having a LOD of 8, with a patch size of 17, is asking the algoritm to generate indices every
|
|
|
|
2^8 ( 256 ) vertices, which is not possible with a patch size of 17. The maximum LOD for a patch
|
|
|
|
size of 17 is 2^4 ( 16 ). So, with a MaxLOD of 5, you'll have LOD 0 ( full detail ), LOD 1 ( every
|
|
|
|
2 vertices ), LOD 2 ( every 4 vertices ), LOD 3 ( every 8 vertices ) and LOD 4 ( every 16 vertices ).
|
|
|
|
\param heightMapFileName: The name of the file on disk, to read vertex data from. This should
|
|
|
|
be a gray scale bitmap.
|
|
|
|
\param parent: Parent of the scene node. Can be 0 if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: The absolute position of this node.
|
|
|
|
\param rotation: The absolute rotation of this node. ( NOT YET IMPLEMENTED )
|
|
|
|
\param scale: The scale factor for the terrain. If you're using a heightmap of size 129x129 and would like
|
|
|
|
your terrain to be 12900x12900 in game units, then use a scale factor of ( core::vector ( 100.0f, 100.0f, 100.0f ).
|
|
|
|
If you use a Y scaling factor of 0.0f, then your terrain will be flat.
|
|
|
|
\param vertexColor: The default color of all the vertices. If no texture is associated
|
|
|
|
with the scene node, then all vertices will be this color. Defaults to white.
|
|
|
|
\param maxLOD: The maximum LOD (level of detail) for the node. Only change if you
|
|
|
|
know what you are doing, this might lead to strange behaviour.
|
|
|
|
\param patchSize: patch size of the terrain. Only change if you
|
|
|
|
know what you are doing, this might lead to strange behaviour.
|
|
|
|
\param smoothFactor: The number of times the vertices are smoothed.
|
|
|
|
\param addAlsoIfHeightmapEmpty: Add terrain node even with empty heightmap.
|
|
|
|
\return Returns pointer to the created scene node. Can be null if the
|
|
|
|
terrain could not be created, for example because the heightmap could not be loaded.
|
|
|
|
The returned pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ITerrainSceneNode* addTerrainSceneNode(
|
|
|
|
const c8* heightMapFileName,
|
|
|
|
ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0.0f,0.0f,0.0f),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0.0f,0.0f,0.0f),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f,1.0f,1.0f),
|
|
|
|
video::SColor vertexColor = video::SColor(255,255,255,255),
|
|
|
|
s32 maxLOD=5, E_TERRAIN_PATCH_SIZE patchSize=ETPS_17, s32 smoothFactor=0,
|
|
|
|
bool addAlsoIfHeightmapEmpty = false) = 0;
|
|
|
|
|
|
|
|
//! Adds a terrain scene node to the scene graph.
|
|
|
|
/** Just like the other addTerrainSceneNode() method, but takes an IReadFile
|
|
|
|
pointer as parameter for the heightmap. For more informations take a look
|
|
|
|
at the other function.
|
|
|
|
\param heightMapFile: The file handle to read vertex data from. This should
|
|
|
|
be a gray scale bitmap.
|
|
|
|
\param parent: Parent of the scene node. Can be 0 if no parent.
|
|
|
|
\param id: Id of the node. This id can be used to identify the scene node.
|
|
|
|
\param position: The absolute position of this node.
|
|
|
|
\param rotation: The absolute rotation of this node. ( NOT YET IMPLEMENTED )
|
|
|
|
\param scale: The scale factor for the terrain. If you're using a heightmap of size 129x129 and would like
|
|
|
|
your terrain to be 12900x12900 in game units, then use a scale factor of ( core::vector ( 100.0f, 100.0f, 100.0f ).
|
|
|
|
If you use a Y scaling factor of 0.0f, then your terrain will be flat.
|
|
|
|
\param vertexColor: The default color of all the vertices. If no texture is associated
|
|
|
|
with the scene node, then all vertices will be this color. Defaults to white.
|
|
|
|
\param maxLOD: The maximum LOD (level of detail) for the node. Only change if you
|
|
|
|
know what you are doing, this might lead to strange behaviour.
|
|
|
|
\param patchSize: patch size of the terrain. Only change if you
|
|
|
|
know what you are doing, this might lead to strange behaviour.
|
|
|
|
\param smoothFactor: The number of times the vertices are smoothed.
|
|
|
|
\param addAlsoIfHeightmapEmpty: Add terrain node even with empty heightmap.
|
|
|
|
\return Returns pointer to the created scene node. Can be null if the
|
|
|
|
terrain could not be created, for example because the heightmap could not be loaded.
|
|
|
|
The returned pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ITerrainSceneNode* addTerrainSceneNode(
|
|
|
|
io::IReadFile* heightMapFile,
|
|
|
|
ISceneNode* parent=0, s32 id=-1,
|
|
|
|
const core::vector3df& position = core::vector3df(0.0f,0.0f,0.0f),
|
|
|
|
const core::vector3df& rotation = core::vector3df(0.0f,0.0f,0.0f),
|
|
|
|
const core::vector3df& scale = core::vector3df(1.0f,1.0f,1.0f),
|
|
|
|
video::SColor vertexColor = video::SColor(255,255,255,255),
|
|
|
|
s32 maxLOD=5, E_TERRAIN_PATCH_SIZE patchSize=ETPS_17, s32 smoothFactor=0,
|
|
|
|
bool addAlsoIfHeightmapEmpty = false) = 0;
|
|
|
|
|
|
|
|
//! Adds a quake3 scene node to the scene graph.
|
|
|
|
/** A Quake3 Scene renders multiple meshes for a specific HighLanguage Shader (Quake3 Style )
|
|
|
|
\return Returns a pointer to the quake3 scene node if successful, otherwise NULL.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addQuake3SceneNode(IMeshBuffer* meshBuffer, const quake3::SShader * shader,
|
|
|
|
ISceneNode* parent=0, s32 id=-1
|
|
|
|
) = 0;
|
|
|
|
|
|
|
|
|
|
|
|
//! Adds an empty scene node to the scene graph.
|
|
|
|
/** Can be used for doing advanced transformations
|
|
|
|
or structuring the scene graph.
|
|
|
|
\return Returns pointer to the created scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNode* addEmptySceneNode(ISceneNode* parent=0, s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a dummy transformation scene node to the scene graph.
|
|
|
|
/** This scene node does not render itself, and does not respond to set/getPosition,
|
|
|
|
set/getRotation and set/getScale. Its just a simple scene node that takes a
|
|
|
|
matrix as relative transformation, making it possible to insert any transformation
|
|
|
|
anywhere into the scene graph.
|
|
|
|
\return Returns pointer to the created scene node.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IDummyTransformationSceneNode* addDummyTransformationSceneNode(
|
|
|
|
ISceneNode* parent=0, s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a text scene node, which is able to display 2d text at a position in three dimensional space
|
|
|
|
virtual ITextSceneNode* addTextSceneNode(gui::IGUIFont* font, const wchar_t* text,
|
|
|
|
video::SColor color=video::SColor(100,255,255,255),
|
|
|
|
ISceneNode* parent = 0, const core::vector3df& position = core::vector3df(0,0,0),
|
|
|
|
s32 id=-1) = 0;
|
|
|
|
|
|
|
|
//! Adds a text scene node, which uses billboards
|
|
|
|
virtual ITextSceneNode* addBillboardTextSceneNode( gui::IGUIFont* font, const wchar_t* text,
|
|
|
|
ISceneNode* parent = 0,
|
|
|
|
const core::dimension2d<f32>& size = core::dimension2d<f32>(10.0f, 10.0f),
|
|
|
|
const core::vector3df& position = core::vector3df(0,0,0), s32 id=-1,
|
|
|
|
video::SColor shade_top = 0xFFFFFFFF, video::SColor shade_down = 0xFFFFFFFF) = 0;
|
|
|
|
|
|
|
|
//! Adds a Hill Plane mesh to the mesh pool.
|
|
|
|
/** The mesh is generated on the fly
|
|
|
|
and looks like a plane with some hills on it. It is uses mostly for quick
|
|
|
|
tests of the engine only. You can specify how many hills there should be
|
|
|
|
on the plane and how high they should be. Also you must specify a name for
|
|
|
|
the mesh, because the mesh is added to the mesh pool, and can be retieved
|
|
|
|
again using ISceneManager::getMesh() with the name as parameter.
|
|
|
|
\param name: The name of this mesh which must be specified in order
|
|
|
|
to be able to retrieve the mesh later with ISceneManager::getMesh().
|
|
|
|
\param tileSize: Size of a tile of the mesh. (10.0f, 10.0f) would be a
|
|
|
|
good value to start, for example.
|
|
|
|
\param tileCount: Specifies how much tiles there will be. If you specifiy
|
|
|
|
for example that a tile has the size (10.0f, 10.0f) and the tileCount is
|
2007-07-07 20:08:47 +00:00
|
|
|
(10,10), than you get a field of 100 tiles which has the dimension 100.0fx100.0f.
|
2007-05-20 18:03:49 +00:00
|
|
|
\param material: Material of the hill mesh.
|
|
|
|
\param hillHeight: Height of the hills. If you specify a negative value
|
|
|
|
you will get holes instead of hills. If the height is 0, no hills will be
|
|
|
|
created.
|
|
|
|
\param countHills: Amount of hills on the plane. There will be countHills.X
|
|
|
|
hills along the X axis and countHills.Y along the Y axis. So in total there
|
|
|
|
will be countHills.X * countHills.Y hills.
|
|
|
|
\param textureRepeatCount: Defines how often the texture will be repeated in
|
|
|
|
x and y direction.
|
|
|
|
\return Returns null if the creation failed. The reason could be that you
|
|
|
|
specified some invalid parameters or that a mesh with that name already
|
|
|
|
exists. If successful, a pointer to the mesh is returned.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IAnimatedMesh* addHillPlaneMesh(const c8* name,
|
|
|
|
const core::dimension2d<f32>& tileSize, const core::dimension2d<s32>& tileCount,
|
|
|
|
video::SMaterial* material = 0, f32 hillHeight = 0.0f,
|
|
|
|
const core::dimension2d<f32>& countHills = core::dimension2d<f32>(0.0f, 0.0f),
|
|
|
|
const core::dimension2d<f32>& textureRepeatCount = core::dimension2d<f32>(1.0f, 1.0f)) = 0;
|
|
|
|
|
|
|
|
//! Adds a static terrain mesh to the mesh pool.
|
|
|
|
/** The mesh is generated on the fly
|
|
|
|
from a texture file and a height map file. Both files may be huge
|
|
|
|
(8000x8000 pixels would be no problem) because the generator splits the
|
|
|
|
files into smaller textures if necessary.
|
|
|
|
You must specify a name for the mesh, because the mesh is added to the mesh pool,
|
|
|
|
and can be retieved again using ISceneManager::getMesh() with the name as parameter.
|
|
|
|
\param meshname: The name of this mesh which must be specified in order
|
|
|
|
to be able to retrieve the mesh later with ISceneManager::getMesh().
|
|
|
|
\param texture: Texture for the terrain. Please note that this is not a
|
|
|
|
hardware texture as usual (ITexture), but an IImage software texture.
|
|
|
|
You can load this texture with IVideoDriver::createImageFromFile().
|
|
|
|
\param heightmap: A grayscaled heightmap image. Like the texture,
|
|
|
|
it can be created with IVideoDriver::createImageFromFile(). The amount
|
|
|
|
of triangles created depends on the size of this texture, so use a small
|
|
|
|
heightmap to increase rendering speed.
|
|
|
|
\param stretchSize: Parameter defining how big a is pixel on the heightmap.
|
|
|
|
\param maxHeight: Defines how height a white pixel on the heighmap is.
|
|
|
|
\param defaultVertexBlockSize: Defines the initial dimension between vertices.
|
|
|
|
\return Returns null if the creation failed. The reason could be that you
|
|
|
|
specified some invalid parameters, that a mesh with that name already
|
|
|
|
exists, or that a texture could not be found. If successful, a pointer to the mesh is returned.
|
|
|
|
This pointer should not be dropped. See IUnknown::drop() for more information. */
|
|
|
|
virtual IAnimatedMesh* addTerrainMesh(const c8* meshname,
|
|
|
|
video::IImage* texture, video::IImage* heightmap,
|
|
|
|
const core::dimension2d<f32>& stretchSize = core::dimension2d<f32>(10.0f,10.0f),
|
|
|
|
f32 maxHeight=200.0f,
|
|
|
|
const core::dimension2d<s32>& defaultVertexBlockSize = core::dimension2d<s32>(64,64)) = 0;
|
|
|
|
|
|
|
|
//! add a static arrow mesh to the meshpool
|
2007-07-07 20:08:47 +00:00
|
|
|
virtual IAnimatedMesh* addArrowMesh(const c8* name,
|
|
|
|
video::SColor vtxColor0=0xFFFFFFFF,
|
|
|
|
video::SColor vtxColor1=0xFFFFFFFF,
|
|
|
|
u32 tesselationCylinder=4, u32 tesselationCone=8,
|
|
|
|
f32 height=1.f, f32 cylinderHeight=0.6f,
|
|
|
|
f32 width0=0.05f, f32 width1=0.3f) = 0;
|
2007-05-20 18:03:49 +00:00
|
|
|
|
|
|
|
//! Returns the root scene node.
|
2007-07-07 20:08:47 +00:00
|
|
|
/** This is the scene node which is parent
|
2007-05-20 18:03:49 +00:00
|
|
|
of all scene nodes. The root scene node is a special scene node which
|
|
|
|
only exists to manage all scene nodes. It will not be rendered and cannot
|
|
|
|
be removed from the scene.
|
|
|
|
\return Returns a pointer to the root scene node. */
|
|
|
|
virtual ISceneNode* getRootSceneNode() = 0;
|
|
|
|
|
|
|
|
//! Returns the first scene node with the specified id.
|
|
|
|
/** \param id: The id to search for
|
|
|
|
\param start: Scene node to start from. All children of this scene
|
|
|
|
node are searched. If null is specified, the root scene node is
|
|
|
|
taken.
|
|
|
|
\return Returns pointer to the first scene node with this id,
|
|
|
|
and null if no scene node could be found. */
|
|
|
|
virtual ISceneNode* getSceneNodeFromId(s32 id, ISceneNode* start=0) = 0;
|
|
|
|
|
|
|
|
//! Returns the first scene node with the specified name.
|
|
|
|
/** \param name: The name to search for
|
|
|
|
\param start: Scene node to start from. All children of this scene
|
|
|
|
node are searched. If null is specified, the root scene node is
|
|
|
|
taken.
|
|
|
|
\return Returns pointer to the first scene node with this id,
|
|
|
|
and null if no scene node could be found. */
|
|
|
|
virtual ISceneNode* getSceneNodeFromName(const c8* name, ISceneNode* start=0) = 0;
|
|
|
|
|
|
|
|
//! Returns the first scene node with the specified type.
|
|
|
|
/** \param type: The type to search for
|
|
|
|
\param start: Scene node to start from. All children of this scene
|
|
|
|
node are searched. If null is specified, the root scene node is
|
|
|
|
taken.
|
|
|
|
\return Returns pointer to the first scene node with this type,
|
|
|
|
and null if no scene node could be found. */
|
|
|
|
virtual ISceneNode* getSceneNodeFromType(scene::ESCENE_NODE_TYPE type, ISceneNode* start=0) = 0;
|
|
|
|
|
|
|
|
//! returns scene nodes by type.
|
|
|
|
/** \param type: Type of scene node to find.
|
|
|
|
\param outNodes: array to be filled with results.
|
|
|
|
\param start: Scene node to start from. All children of this scene
|
|
|
|
node are searched. If null is specified, the root scene node is
|
|
|
|
taken. */
|
|
|
|
virtual void getSceneNodesFromType(ESCENE_NODE_TYPE type, core::array<scene::ISceneNode*>& outNodes, ISceneNode* start=0) = 0;
|
|
|
|
|
|
|
|
//! Returns the current active camera.
|
|
|
|
/** \return The active camera is returned. Note that this can be NULL, if there
|
|
|
|
was no camera created yet. */
|
|
|
|
virtual ICameraSceneNode* getActiveCamera() = 0;
|
|
|
|
|
|
|
|
//! Sets the currently active camera.
|
|
|
|
/** The previous active camera will be deactivated.
|
|
|
|
\param camera: The new camera which should be active. */
|
|
|
|
virtual void setActiveCamera(ICameraSceneNode* camera) = 0;
|
|
|
|
|
|
|
|
//! Sets the color of stencil buffers shadows drawn by the scene manager.
|
|
|
|
virtual void setShadowColor(video::SColor color = video::SColor(150,0,0,0)) = 0;
|
|
|
|
|
|
|
|
//! Returns the current color of shadows.
|
|
|
|
virtual video::SColor getShadowColor() const = 0;
|
|
|
|
|
|
|
|
//! Registers a node for rendering it at a specific time.
|
|
|
|
/** This method should only be used by SceneNodes when they get a
|
|
|
|
ISceneNode::OnRegisterSceneNode() call.
|
|
|
|
\param node: Node to register for drawing. Usually scene nodes would set 'this'
|
|
|
|
as parameter here because they want to be drawn.
|
|
|
|
\param pass: Specifies when the mode wants to be drawn in relation to the other nodes.
|
|
|
|
For example, if the node is a shadow, it usually wants to be drawn after all other nodes
|
|
|
|
and will use ESNRP_SHADOW for this. See E_SCENE_NODE_RENDER_PASS for details.
|
|
|
|
\return scene will be rendered ( passed culling ) */
|
|
|
|
virtual u32 registerNodeForRendering(ISceneNode* node,
|
|
|
|
E_SCENE_NODE_RENDER_PASS pass = ESNRP_AUTOMATIC) = 0;
|
|
|
|
|
|
|
|
//! Draws all the scene nodes.
|
|
|
|
/** This can only be invoked between
|
|
|
|
IVideoDriver::beginScene() and IVideoDriver::endScene(). Please note that
|
|
|
|
the scene is not only drawn when calling this, but also animated
|
|
|
|
by existing scene node animators, culling of scene nodes is done, etc. */
|
|
|
|
virtual void drawAll() = 0;
|
|
|
|
|
|
|
|
//! Creates a rotation animator, which rotates the attached scene node around itself.
|
|
|
|
/** \param rotationPerSecond: Specifies the speed of the animation
|
|
|
|
\return Returns the animator. Attach it to a scene node with ISceneNode::addAnimator()
|
|
|
|
and the animator will animate it.
|
|
|
|
If you no longer need the animator, you should call ISceneNodeAnimator::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNodeAnimator* createRotationAnimator(const core::vector3df& rotationPerSecond) = 0;
|
|
|
|
|
|
|
|
//! Creates a fly circle animator, which lets the attached scene node fly around a center.
|
|
|
|
/** \param center: Center of the circle.
|
|
|
|
\param radius: Radius of the circle.
|
|
|
|
\param speed: Specifies the speed of the flight.
|
|
|
|
\param direction: Specifies the upvector used for alignment of the mesh.
|
|
|
|
\return Returns the animator. Attach it to a scene node with ISceneNode::addAnimator()
|
|
|
|
and the animator will animate it.
|
|
|
|
If you no longer need the animator, you should call ISceneNodeAnimator::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNodeAnimator* createFlyCircleAnimator(const core::vector3df& center,
|
|
|
|
f32 radius, f32 speed=0.001f, const core::vector3df& direction= core::vector3df ( 0.f, 1.f, 0.f ) ) = 0;
|
|
|
|
|
|
|
|
//! Creates a fly straight animator, which lets the attached scene node fly or move along a line between two points.
|
|
|
|
/** \param startPoint: Start point of the line.
|
|
|
|
\param endPoint: End point of the line.
|
|
|
|
\param timeForWay: Time in milli seconds how long the node should need to
|
|
|
|
move from the start point to the end point.
|
|
|
|
\param loop: If set to false, the node stops when the end point is reached.
|
|
|
|
If loop is true, the node begins again at the start.
|
|
|
|
\return Returns the animator. Attach it to a scene node with ISceneNode::addAnimator()
|
|
|
|
and the animator will animate it.
|
|
|
|
If you no longer need the animator, you should call ISceneNodeAnimator::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNodeAnimator* createFlyStraightAnimator(const core::vector3df& startPoint,
|
|
|
|
const core::vector3df& endPoint, u32 timeForWay, bool loop=false) = 0;
|
|
|
|
|
|
|
|
//! Creates a texture animator, which switches the textures of the target scene node based on a list of textures.
|
|
|
|
/** \param textures: List of textures to use.
|
|
|
|
\param timePerFrame: Time in milliseconds, how long any texture in the list
|
|
|
|
should be visible.
|
|
|
|
\param loop: If set to to false, the last texture remains set, and the animation
|
|
|
|
stops. If set to true, the animation restarts with the first texture.
|
|
|
|
\return Returns the animator. Attach it to a scene node with ISceneNode::addAnimator()
|
|
|
|
and the animator will animate it.
|
|
|
|
If you no longer need the animator, you should call ISceneNodeAnimator::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNodeAnimator* createTextureAnimator(const core::array<video::ITexture*>& textures,
|
|
|
|
s32 timePerFrame, bool loop=true) = 0;
|
|
|
|
|
|
|
|
//! Creates a scene node animator, which deletes the scene node after some time automatically.
|
|
|
|
/** \param timeMs: Time in milliseconds, after when the node will be deleted.
|
|
|
|
\return Returns the animator. Attach it to a scene node with ISceneNode::addAnimator()
|
|
|
|
and the animator will animate it.
|
|
|
|
If you no longer need the animator, you should call ISceneNodeAnimator::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNodeAnimator* createDeleteAnimator(u32 timeMs) = 0;
|
|
|
|
|
|
|
|
//! Creates a special scene node animator for doing automatic collision detection and response.
|
|
|
|
/** See ISceneNodeAnimatorCollisionResponse for details.
|
|
|
|
\param world: Triangle selector holding all triangles of the world with which
|
|
|
|
the scene node may collide. You can create a triangle selector with
|
|
|
|
ISceneManager::createTriangleSelector();
|
|
|
|
\param sceneNode: SceneNode which should be manipulated. After you added this animator
|
|
|
|
to the scene node, the scene node will not be able to move through walls and is
|
|
|
|
affected by gravity.
|
|
|
|
\param ellipsoidRadius: Radius of the ellipsoid with which collision detection and
|
|
|
|
response is done. If you have got a scene node, and you are unsure about
|
|
|
|
how big the radius should be, you could use the following code to determine
|
|
|
|
it:
|
|
|
|
\code
|
|
|
|
core::aabbox<f32> box = yourSceneNode->getBoundingBox();
|
|
|
|
core::vector3df radius = box.MaxEdge - box.getCenter();
|
|
|
|
\endcode
|
|
|
|
\param gravityPerSecond: Sets the gravity of the environment. A good example value would be
|
|
|
|
core::vector3df(0,-100.0f,0) for letting gravity affect all object to
|
|
|
|
fall down. For bigger gravity, make increase the length of the vector.
|
|
|
|
You can disable gravity by setting it to core::vector3df(0,0,0).
|
|
|
|
\param ellipsoidTranslation: By default, the ellipsoid for collision detection is created around
|
|
|
|
the center of the scene node, which means that the ellipsoid surrounds
|
|
|
|
it completely. If this is not what you want, you may specify a translation
|
|
|
|
for the ellipsoid.
|
|
|
|
\param slidingValue: DOCUMENTATION NEEDED.
|
|
|
|
\return Returns the animator. Attach it to a scene node with ISceneNode::addAnimator()
|
|
|
|
and the animator will cause it to do collision detection and response.
|
|
|
|
If you no longer need the animator, you should call ISceneNodeAnimator::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneNodeAnimatorCollisionResponse* createCollisionResponseAnimator(
|
|
|
|
ITriangleSelector* world, ISceneNode* sceneNode,
|
|
|
|
const core::vector3df& ellipsoidRadius = core::vector3df(30,60,30),
|
|
|
|
const core::vector3df& gravityPerSecond = core::vector3df(0,-100.0f,0),
|
|
|
|
const core::vector3df& ellipsoidTranslation = core::vector3df(0,0,0),
|
|
|
|
f32 slidingValue = 0.0005f) = 0;
|
|
|
|
|
|
|
|
//! Creates a follow spline animator.
|
|
|
|
/** The animator modifies the position of
|
|
|
|
the attached scene node to make it follow a hermite spline.
|
|
|
|
The code of the is based on a scene node
|
|
|
|
Matthias Gall sent in. Thanks! I adapted the code just a little bit. Matthias
|
|
|
|
wrote:
|
|
|
|
Uses a subset of hermite splines: either cardinal splines (tightness != 0.5) or catmull-rom-splines (tightness == 0.5)
|
|
|
|
but this is just my understanding of this stuff, I'm not a mathematician, so this might be wrong ;) */
|
|
|
|
virtual ISceneNodeAnimator* createFollowSplineAnimator(s32 startTime,
|
|
|
|
const core::array< core::vector3df >& points,
|
|
|
|
f32 speed = 1.0f, f32 tightness = 0.5f) = 0;
|
|
|
|
|
|
|
|
//! Creates a simple ITriangleSelector, based on a mesh.
|
|
|
|
/** Triangle selectors
|
|
|
|
can be used for doing collision detection. Don't use this selector
|
|
|
|
for a huge amount of triangles like in Quake3 maps.
|
|
|
|
Instead, use for example ISceneManager::createOctTreeTriangleSelector().
|
|
|
|
Please note that the created triangle selector is not automaticly attached
|
|
|
|
to the scene node. You will have to call ISceneNode::setTriangleSelector()
|
|
|
|
for this. To create and attach a triangle selector is done like this:
|
|
|
|
\code
|
|
|
|
ITriangleSelector* s = sceneManager->createTriangleSelector(yourMesh,
|
|
|
|
yourSceneNode);
|
|
|
|
yourSceneNode->setTriangleSelector(s);
|
|
|
|
s->drop();
|
|
|
|
\endcode
|
|
|
|
\param mesh: Mesh of which the triangles are taken.
|
|
|
|
\param node: Scene node of which visibility and transformation is used.
|
|
|
|
\return Returns the selector, or null if not successful.
|
|
|
|
If you no longer need the selector, you should call ITriangleSelector::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ITriangleSelector* createTriangleSelector(IMesh* mesh, ISceneNode* node) = 0;
|
|
|
|
|
|
|
|
//! Creates a simple dynamic ITriangleSelector, based on a axis aligned bounding box.
|
|
|
|
/** Triangle selectors
|
|
|
|
can be used for doing collision detection. Every time when triangles are
|
|
|
|
queried, the triangle selector gets the bounding box of the scene node,
|
|
|
|
an creates new triangles. In this way, it works good with animated scene nodes.
|
|
|
|
\param node: Scene node of which the bounding box, visibility and transformation is used.
|
|
|
|
\return Returns the selector, or null if not successful.
|
|
|
|
If you no longer need the selector, you should call ITriangleSelector::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ITriangleSelector* createTriangleSelectorFromBoundingBox(ISceneNode* node) = 0;
|
|
|
|
|
|
|
|
//! Creates a Triangle Selector, optimized by an octtree.
|
|
|
|
/** Triangle selectors
|
|
|
|
can be used for doing collision detection. This triangle selector is
|
|
|
|
optimized for huge amounts of triangle, it organizes them in an octtree.
|
|
|
|
Please note that the created triangle selector is not automaticly attached
|
|
|
|
to the scene node. You will have to call ISceneNode::setTriangleSelector()
|
|
|
|
for this. To create and attach a triangle selector is done like this:
|
|
|
|
\code
|
|
|
|
ITriangleSelector* s = sceneManager->createOctTreeTriangleSelector(yourMesh,
|
|
|
|
yourSceneNode);
|
|
|
|
yourSceneNode->setTriangleSelector(s);
|
|
|
|
s->drop();
|
|
|
|
\endcode
|
|
|
|
For more informations and examples on this, take a look at the collision
|
|
|
|
tutorial in the SDK.
|
|
|
|
\param mesh: Mesh of which the triangles are taken.
|
|
|
|
\param node: Scene node of which visibility and transformation is used.
|
|
|
|
\param minimalPolysPerNode: Specifies the minimal polygons contained a octree node.
|
|
|
|
If a node gets less polys the this value, it will not be splitted into
|
|
|
|
smaller nodes.
|
|
|
|
\return Returns the selector, or null if not successful.
|
|
|
|
If you no longer need the selector, you should call ITriangleSelector::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ITriangleSelector* createOctTreeTriangleSelector(IMesh* mesh,
|
|
|
|
ISceneNode* node, s32 minimalPolysPerNode=32) = 0;
|
|
|
|
|
|
|
|
//! Creates a meta triangle selector.
|
|
|
|
/** A meta triangle selector is nothing more than a
|
|
|
|
collection of one or more triangle selectors providing together
|
|
|
|
the interface of one triangle selector. In this way,
|
|
|
|
collision tests can be done with different triangle soups in one pass.
|
|
|
|
\return Returns the selector, or null if not successful.
|
|
|
|
If you no longer need the selector, you should call ITriangleSelector::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual IMetaTriangleSelector* createMetaTriangleSelector() = 0;
|
|
|
|
|
|
|
|
//! Creates a triangle selector which can select triangles from a terrain scene node.
|
|
|
|
/** \param node: Pointer to the created terrain scene node
|
|
|
|
\param LOD: Level of detail, 0 for highest detail. */
|
|
|
|
virtual ITriangleSelector* createTerrainTriangleSelector(
|
|
|
|
ITerrainSceneNode* node, s32 LOD=0) = 0;
|
|
|
|
|
|
|
|
//! Adds an external mesh loader for extending the engine with new file formats.
|
|
|
|
/** If you want the engine to be extended with
|
|
|
|
file formats it currently is not able to load (e.g. .cob), just implement
|
|
|
|
the IMeshLoader interface in your loading class and add it with this method.
|
|
|
|
Using this method it is also possible to override built-in mesh loaders with
|
|
|
|
newer or updated versions without the need of recompiling the engine.
|
|
|
|
\param externalLoader: Implementation of a new mesh loader. */
|
|
|
|
virtual void addExternalMeshLoader(IMeshLoader* externalLoader) = 0;
|
|
|
|
|
|
|
|
//! Returns a pointer to the scene collision manager.
|
|
|
|
virtual ISceneCollisionManager* getSceneCollisionManager() = 0;
|
|
|
|
|
|
|
|
//! Returns a pointer to the mesh manipulator.
|
|
|
|
virtual IMeshManipulator* getMeshManipulator() = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node to the deletion queue.
|
|
|
|
/** The scene node is immediatly
|
|
|
|
deleted when it's secure. Which means when the scene node does not
|
|
|
|
execute animators and things like that. This method is for example
|
|
|
|
used for deleting scene nodes by their scene node animators. In
|
|
|
|
most other cases, a ISceneNode::remove() call is enough, using this
|
|
|
|
deletion queue is not necessary.
|
|
|
|
See ISceneManager::createDeleteAnimator() for details.
|
|
|
|
\param node: Node to detete. */
|
|
|
|
virtual void addToDeletionQueue(ISceneNode* node) = 0;
|
|
|
|
|
|
|
|
//! Posts an input event to the environment.
|
|
|
|
/** Usually you do not have to
|
|
|
|
use this method, it is used by the internal engine. */
|
|
|
|
virtual bool postEventFromUser(SEvent event) = 0;
|
|
|
|
|
|
|
|
//! Clears the whole scene.
|
|
|
|
/** All scene nodes are removed. */
|
|
|
|
virtual void clear() = 0;
|
|
|
|
|
|
|
|
//! Returns interface to the parameters set in this scene.
|
|
|
|
/** String parameters can be used by plugins and mesh loaders.
|
|
|
|
For example the CMS and LMTS loader want a parameter named 'CSM_TexturePath'
|
|
|
|
and 'LMTS_TexturePath' set to the path were attached textures can be found. See
|
|
|
|
CSM_TEXTURE_PATH, LMTS_TEXTURE_PATH, MY3D_TEXTURE_PATH,
|
|
|
|
COLLADA_CREATE_SCENE_INSTANCES, DMF_TEXTURE_PATH and DMF_USE_MATERIALS_DIRS*/
|
|
|
|
virtual io::IAttributes* getParameters() = 0;
|
|
|
|
|
|
|
|
//! Returns current render pass.
|
|
|
|
/** All scene nodes are being rendered in a specific order.
|
|
|
|
First lights, cameras, sky boxes, solid geometry, and then transparent
|
|
|
|
stuff. During the rendering process, scene nodes may want to know what the scene
|
|
|
|
manager is rendering currently, because for example they registered for rendering
|
|
|
|
twice, once for transparent geometry and once for solid. When knowing what rendering
|
|
|
|
pass currently is active they can render the correct part of their geometry. */
|
|
|
|
virtual E_SCENE_NODE_RENDER_PASS getSceneNodeRenderPass() = 0;
|
|
|
|
|
|
|
|
//! Returns the default scene node factory which can create all built in scene nodes
|
|
|
|
virtual ISceneNodeFactory* getDefaultSceneNodeFactory() = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node factory to the scene manager.
|
|
|
|
/** Use this to extend the scene manager with new scene node types which it should be
|
|
|
|
able to create automaticly, for example when loading data from xml files. */
|
|
|
|
virtual void registerSceneNodeFactory(ISceneNodeFactory* factoryToAdd) = 0;
|
|
|
|
|
|
|
|
//! Returns amount of registered scene node factories.
|
|
|
|
virtual s32 getRegisteredSceneNodeFactoryCount() = 0;
|
|
|
|
|
|
|
|
//! Returns a scene node factory by index
|
|
|
|
virtual ISceneNodeFactory* getSceneNodeFactory(s32 index) = 0;
|
|
|
|
|
|
|
|
//! Returns the default scene node animator factory which can create all built-in scene node animators
|
|
|
|
virtual ISceneNodeAnimatorFactory* getDefaultSceneNodeAnimatorFactory() = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node animator factory to the scene manager.
|
|
|
|
/** Use this to extend the scene manager with new scene node animator types which it should be
|
|
|
|
able to create automaticly, for example when loading data from xml files. */
|
|
|
|
virtual void registerSceneNodeAnimatorFactory(ISceneNodeAnimatorFactory* factoryToAdd) = 0;
|
|
|
|
|
|
|
|
//! Returns amount of registered scene node animator factories.
|
|
|
|
virtual s32 getRegisteredSceneNodeAnimatorFactoryCount() = 0;
|
|
|
|
|
|
|
|
//! Returns a scene node animator factory by index
|
|
|
|
virtual ISceneNodeAnimatorFactory* getSceneNodeAnimatorFactory(s32 index) = 0;
|
|
|
|
|
|
|
|
//! Returns a typename from a scene node type or null if not found
|
|
|
|
virtual const c8* getSceneNodeTypeName(ESCENE_NODE_TYPE type) = 0;
|
|
|
|
|
|
|
|
//! Adds a scene node to the scene by name
|
|
|
|
virtual ISceneNode* addSceneNode(const char* sceneNodeTypeName, ISceneNode* parent) = 0;
|
|
|
|
|
|
|
|
//! Creates a new scene manager.
|
|
|
|
/** This can be used to easily draw and/or store two independent scenes at the same time.
|
|
|
|
The mesh cache will be shared between all existing scene managers, which means if you load
|
|
|
|
a mesh in the original scene manager using for example getMesh(), the mesh will be available
|
|
|
|
in all other scene managers too, without loading.
|
|
|
|
The original/main scene manager will still be there and accessible via IrrlichtDevice::getSceneManager().
|
|
|
|
If you need input event in this new scene manager, for example for FPS cameras, you'll need
|
|
|
|
to forward input to this manually: Just implement an IEventReceiver and call
|
|
|
|
yourNewSceneManager->postEventFromUser(), and return true so that the original scene manager
|
|
|
|
doesn't get the event. Otherwise, all input will go automaticly to the main scene manager.
|
|
|
|
If you no longer need the new scene manager, you should call ISceneManager::drop().
|
|
|
|
See IUnknown::drop() for more information. */
|
|
|
|
virtual ISceneManager* createNewSceneManager(bool cloneContent=false) = 0;
|
|
|
|
|
|
|
|
//! Saves the current scene into a file.
|
|
|
|
/** Scene nodes with the option isDebugObject set to true are not being saved.
|
|
|
|
The scene is usually written to an .irr file, an xml based format. .irr files can
|
|
|
|
Be edited with the Irrlicht Engine Editor, irrEdit (http://irredit.irrlicht3d.org).
|
|
|
|
To load .irr files again, see ISceneManager::loadScene().
|
|
|
|
\param filename: Name of the file.
|
|
|
|
\param userDataSerializer: If you want to save some user data for every scene node into the
|
|
|
|
file, implement the ISceneUserDataSerializer interface and provide it as parameter here.
|
|
|
|
Otherwise, simply specify 0 as this parameter.
|
|
|
|
\return Returns true if successful. */
|
|
|
|
virtual bool saveScene(const c8* filename, ISceneUserDataSerializer* userDataSerializer=0) = 0;
|
|
|
|
|
|
|
|
//! Saves the current scene into a file.
|
|
|
|
/** Scene nodes with the option isDebugObject set to true are not being saved.
|
|
|
|
The scene is usually written to an .irr file, an xml based format. .irr files can
|
|
|
|
Be edited with the Irrlicht Engine Editor, irrEdit (http://irredit.irrlicht3d.org).
|
|
|
|
To load .irr files again, see ISceneManager::loadScene().
|
|
|
|
\param file: File where the scene is saved into.
|
|
|
|
\param userDataSerializer: If you want to save some user data for every scene node into the
|
|
|
|
file, implement the ISceneUserDataSerializer interface and provide it as parameter here.
|
|
|
|
Otherwise, simply specify 0 as this parameter.
|
|
|
|
\return Returns true if successful. */
|
|
|
|
virtual bool saveScene(io::IWriteFile* file, ISceneUserDataSerializer* userDataSerializer=0) = 0;
|
|
|
|
|
|
|
|
//! Loads a scene. Note that the current scene is not cleared before.
|
|
|
|
/** The scene is usually load from an .irr file, an xml based format. .irr files can
|
|
|
|
Be edited with the Irrlicht Engine Editor, irrEdit (http://irredit.irrlicht3d.org) or
|
|
|
|
saved directly by the engine using ISceneManager::saveScene().
|
|
|
|
\param filename: Name of the file.
|
|
|
|
\param userDataSerializer: If you want to load user data possibily saved in that file for
|
|
|
|
some scene nodes in the file, implement the ISceneUserDataSerializer interface and provide it as parameter here.
|
|
|
|
Otherwise, simply specify 0 as this parameter.
|
|
|
|
\return Returns true if successful. */
|
|
|
|
virtual bool loadScene(const c8* filename, ISceneUserDataSerializer* userDataSerializer=0) = 0;
|
|
|
|
|
|
|
|
//! Loads a scene. Note that the current scene is not cleared before.
|
|
|
|
/** The scene is usually load from an .irr file, an xml based format. .irr files can
|
|
|
|
Be edited with the Irrlicht Engine Editor, irrEdit (http://irredit.irrlicht3d.org) or
|
|
|
|
saved directly by the engine using ISceneManager::saveScene().
|
|
|
|
\param file: File where the scene is going to be saved into.
|
|
|
|
\param userDataSerializer: If you want to load user data possibily saved in that file for
|
|
|
|
some scene nodes in the file, implement the ISceneUserDataSerializer interface and provide it as parameter here.
|
|
|
|
Otherwise, simply specify 0 as this parameter.
|
|
|
|
\return Returns true if successful. */
|
|
|
|
virtual bool loadScene(io::IReadFile* file, ISceneUserDataSerializer* userDataSerializer=0) = 0;
|
|
|
|
|
|
|
|
//! Sets ambient color of the scene
|
|
|
|
virtual void setAmbientLight(const video::SColorf &ambientColor) = 0;
|
|
|
|
|
|
|
|
//! Returns ambient color of the scene
|
|
|
|
virtual video::SColorf getAmbientLight() = 0;
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
} // end namespace scene
|
|
|
|
} // end namespace irr
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|