irrlicht/include/SMaterial.h

384 lines
12 KiB
C
Raw Normal View History

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __S_MATERIAL_H_INCLUDED__
#define __S_MATERIAL_H_INCLUDED__
#include "SColor.h"
#include "matrix4.h"
#include "irrArray.h"
#include "EMaterialTypes.h"
#include "EMaterialFlags.h"
#include "SMaterialLayer.h"
namespace irr
{
namespace video
{
class ITexture;
//! Flag for EMT_ONETEXTURE_BLEND, ( BlendFactor )
//! BlendFunc = source * sourceFactor + dest * destFactor
enum E_BLEND_FACTOR
{
EBF_ZERO = 0, // src & dest (0, 0, 0, 0)
EBF_ONE, // src & dest (1, 1, 1, 1)
EBF_DST_COLOR, // src (destR, destG, destB, destA)
EBF_ONE_MINUS_DST_COLOR, // src (1-destR, 1-destG, 1-destB, 1-destA)
EBF_SRC_COLOR, // dest (srcR, srcG, srcB, srcA)
EBF_ONE_MINUS_SRC_COLOR, // dest (1-srcR, 1-srcG, 1-srcB, 1-srcA)
EBF_SRC_ALPHA, // src & dest (srcA, srcA, srcA, srcA)
EBF_ONE_MINUS_SRC_ALPHA, // src & dest (1-srcA, 1-srcA, 1-srcA, 1-srcA)
EBF_DST_ALPHA, // src & dest (destA, destA, destA, destA)
EBF_ONE_MINUS_DST_ALPHA, // src & dest (1-destA, 1-destA, 1-destA, 1-destA)
EBF_SRC_ALPHA_SATURATE // src (min(srcA, 1-destA), idem, ...)
};
//! MaterialTypeParam: e.g. DirectX: D3DTOP_MODULATE, D3DTOP_MODULATE2X, D3DTOP_MODULATE4X
enum E_MODULATE_FUNC
{
EMFN_MODULATE_1X = 1,
EMFN_MODULATE_2X = 2,
EMFN_MODULATE_4X = 4
};
//! EMT_ONETEXTURE_BLEND: pack srcFact & dstFact and Modulo to MaterialTypeParam
inline f32 pack_texureBlendFunc ( const E_BLEND_FACTOR srcFact, const E_BLEND_FACTOR dstFact, const E_MODULATE_FUNC modulate )
{
return (f32)(modulate << 16 | srcFact << 8 | dstFact);
}
//! EMT_ONETEXTURE_BLEND: unpack srcFact & dstFact and Modulo to MaterialTypeParam
inline void unpack_texureBlendFunc ( E_BLEND_FACTOR &srcFact, E_BLEND_FACTOR &dstFact, E_MODULATE_FUNC &modulo, const f32 param )
{
const u32 state = (u32)param;
modulo = E_MODULATE_FUNC ( ( state & 0x00FF0000 ) >> 16 );
srcFact = E_BLEND_FACTOR ( ( state & 0x0000FF00 ) >> 8 );
dstFact = E_BLEND_FACTOR ( ( state & 0x000000FF ) );
}
//! Maximum number of texture an SMaterial can have.
const u32 MATERIAL_MAX_TEXTURES = 4;
//! struct for holding parameters for a material renderer
class SMaterial
{
public:
//! default constructor, creates a solid material with standard colors
SMaterial()
: MaterialType(EMT_SOLID), AmbientColor(255,255,255,255), DiffuseColor(255,255,255,255),
EmissiveColor(0,0,0,0), SpecularColor(255,255,255,255),
Shininess(0.0f), MaterialTypeParam(0.0f), MaterialTypeParam2(0.0f), Thickness(1.0f),
Wireframe(false), PointCloud(false), GouraudShading(true), Lighting(true),
ZBuffer(true), ZWriteEnable(true), BackfaceCulling(true),
FogEnable(false), NormalizeNormals(false)
{ }
//! copy constructor
SMaterial(const SMaterial& other)
{
// These pointers are checked during assignment
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
TextureLayer[i].TextureMatrix = 0;
*this = other;
}
//! Assignment operator
SMaterial& operator=(const SMaterial& other)
{
MaterialType = other.MaterialType;
AmbientColor = other.AmbientColor;
DiffuseColor = other.DiffuseColor;
EmissiveColor = other.EmissiveColor;
SpecularColor = other.SpecularColor;
Shininess = other.Shininess;
MaterialTypeParam = other.MaterialTypeParam;
MaterialTypeParam2 = other.MaterialTypeParam2;
Thickness = other.Thickness;
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
{
TextureLayer[i] = other.TextureLayer[i];
}
Wireframe = other.Wireframe;
PointCloud = other.PointCloud;
GouraudShading = other.GouraudShading;
Lighting = other.Lighting;
ZBuffer = other.ZBuffer;
ZWriteEnable = other.ZWriteEnable;
BackfaceCulling = other.BackfaceCulling;
FogEnable = other.FogEnable;
NormalizeNormals = other.NormalizeNormals;
return *this;
}
//! Type of the material. Specifies how everything is blended together
E_MATERIAL_TYPE MaterialType;
//! How much ambient light (a global light) is reflected by this material.
/** The default is full white, meaning objects are completely globally illuminated.
Reduce this if you want to see diffuse or specular light effects. */
SColor AmbientColor;
//! How much diffuse light coming from a light source is reflected by this material.
/** The default is full white. */
SColor DiffuseColor;
//! Light emitted by this material. Default is to emitt no light.
SColor EmissiveColor;
//! How much specular light (highlights from a light) is reflected.
/** The default is to reflect white specular light. See SMaterial::Shininess how to
enable specular lights. */
SColor SpecularColor;
//! Value affecting the size of specular highlights. A value of 20 is common.
/** If set to 0, no specular highlights are being used.
To activate, simply set the shininess of a material to a value other than 0:
Using scene nodes:
\code
sceneNode->getMaterial(0).Shininess = 20.0f;
\endcode
You can also change the color of the highlights using
\code
sceneNode->getMaterial(0).SpecularColor.set(255,255,255,255);
\endcode
The specular color of the dynamic lights (SLight::SpecularColor) will influence
the the highlight color too, but they are set to a useful value by default when
creating the light scene node. Here is a simple example on how
to use specular highlights:
\code
// load and display mesh
scene::IAnimatedMeshSceneNode* node = smgr->addAnimatedMeshSceneNode(
smgr->getMesh("data/faerie.md2"));
node->setMaterialTexture(0, driver->getTexture("data/Faerie2.pcx")); // set diffuse texture
node->setMaterialFlag(video::EMF_LIGHTING, true); // enable dynamic lighting
node->getMaterial(0).Shininess = 20.0f; // set size of specular highlights
// add white light
scene::ILightSceneNode* light = smgr->addLightSceneNode(0,
core::vector3df(5,5,5), video::SColorf(1.0f, 1.0f, 1.0f));
\endcode */
f32 Shininess;
//! Free parameter, dependent on the material type.
/** Mostly ignored, used for example in EMT_PARALLAX_MAP_SOLID
and EMT_TRANSPARENT_ALPHA_CHANNEL. */
f32 MaterialTypeParam;
//! Second free parameter, dependent on the material type.
/** Mostly ignored. */
f32 MaterialTypeParam2;
//! Thickness of non-3dimensional elements such as lines and points.
f32 Thickness;
//! Texture layer array.
SMaterialLayer TextureLayer[MATERIAL_MAX_TEXTURES];
//! material flags
/** The user can access the material flag using
material.Wireframe = true or material.setFlag(EMF_WIREFRAME, true); */
//! Draw as wireframe or filled triangles? Default: false
bool Wireframe;
//! Draw as point cloud or filled triangles? Default: false
bool PointCloud;
//! Flat or Gouraud shading? Default: true
bool GouraudShading;
//! Will this material be lighted? Default: true
bool Lighting;
//! Is the ZBuffer enabled? Default: true
//! Changed from bool to integer
// ( 0 == ZBuffer Off, 1 == ZBuffer LessEqual, 2 == ZBuffer Equal )
u32 ZBuffer;
//! Is the zbuffer writeable or is it read-only.
/** Default: 1 This flag is ignored, if the MaterialType
is a transparent type. */
bool ZWriteEnable;
//! Is backface culling enabled? Default: true
bool BackfaceCulling;
//! Is fog enabled? Default: false
bool FogEnable;
//! Should normals be normalized? Default: false
bool NormalizeNormals;
//! Gets the texture transformation matrix for level i
core::matrix4& getTextureMatrix(u32 i)
{
return TextureLayer[i].getTextureMatrix();
}
//! Gets the immutable texture transformation matrix for level i
const core::matrix4& getTextureMatrix(u32 i) const
{
if (i<MATERIAL_MAX_TEXTURES)
return TextureLayer[i].getTextureMatrix();
else
return core::IdentityMatrix;
}
//! Sets the i-th texture transformation matrix to mat
void setTextureMatrix(u32 i, const core::matrix4& mat)
{
if (i>=MATERIAL_MAX_TEXTURES)
return;
TextureLayer[i].setTextureMatrix(mat);
}
//! Gets the i-th texture
ITexture* getTexture(u32 i) const
{
return i < MATERIAL_MAX_TEXTURES ? TextureLayer[i].Texture : 0;
}
//! Sets the i-th texture
void setTexture(u32 i, ITexture* tex)
{
if (i>=MATERIAL_MAX_TEXTURES)
return;
TextureLayer[i].Texture = tex;
}
//! Sets the Material flag to the given value
void setFlag(E_MATERIAL_FLAG flag, bool value)
{
switch (flag)
{
case EMF_WIREFRAME:
Wireframe = value; break;
case EMF_POINTCLOUD:
PointCloud = value; break;
case EMF_GOURAUD_SHADING:
GouraudShading = value; break;
case EMF_LIGHTING:
Lighting = value; break;
case EMF_ZBUFFER:
ZBuffer = value; break;
case EMF_ZWRITE_ENABLE:
ZWriteEnable = value; break;
case EMF_BACK_FACE_CULLING:
BackfaceCulling = value; break;
case EMF_BILINEAR_FILTER:
{
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
TextureLayer[i].BilinearFilter = value;
}
break;
case EMF_TRILINEAR_FILTER:
{
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
TextureLayer[i].TrilinearFilter = value;
}
break;
case EMF_ANISOTROPIC_FILTER:
{
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
TextureLayer[i].AnisotropicFilter = value;
}
break;
case EMF_FOG_ENABLE:
FogEnable = value; break;
case EMF_NORMALIZE_NORMALS:
NormalizeNormals = value; break;
case EMF_TEXTURE_WRAP:
{
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
TextureLayer[i].TextureWrap = (E_TEXTURE_CLAMP)value;
}
break;
default:
break;
}
}
//! Gets the Material flag
bool getFlag(E_MATERIAL_FLAG flag) const
{
switch (flag)
{
case EMF_WIREFRAME:
return Wireframe;
case EMF_POINTCLOUD:
return PointCloud;
case EMF_GOURAUD_SHADING:
return GouraudShading;
case EMF_LIGHTING:
return Lighting;
case EMF_ZBUFFER:
return ZBuffer!=0;
case EMF_ZWRITE_ENABLE:
return ZWriteEnable;
case EMF_BACK_FACE_CULLING:
return BackfaceCulling;
case EMF_BILINEAR_FILTER:
return TextureLayer[0].BilinearFilter;
case EMF_TRILINEAR_FILTER:
return TextureLayer[0].TrilinearFilter;
case EMF_ANISOTROPIC_FILTER:
return TextureLayer[0].AnisotropicFilter;
case EMF_FOG_ENABLE:
return FogEnable;
case EMF_NORMALIZE_NORMALS:
return NormalizeNormals;
case EMF_TEXTURE_WRAP:
return !(TextureLayer[0].TextureWrap || TextureLayer[1].TextureWrap || TextureLayer[2].TextureWrap || TextureLayer[3].TextureWrap);
case EMF_MATERIAL_FLAG_COUNT:
break;
}
return false;
}
//! Inequality operator
inline bool operator!=(const SMaterial& b) const
{
bool different =
MaterialType != b.MaterialType ||
AmbientColor != b.AmbientColor ||
DiffuseColor != b.DiffuseColor ||
EmissiveColor != b.EmissiveColor ||
SpecularColor != b.SpecularColor ||
Shininess != b.Shininess ||
MaterialTypeParam != b.MaterialTypeParam ||
MaterialTypeParam2 != b.MaterialTypeParam2 ||
Thickness != b.Thickness ||
Wireframe != b.Wireframe ||
PointCloud != b.PointCloud ||
GouraudShading != b.GouraudShading ||
Lighting != b.Lighting ||
ZBuffer != b.ZBuffer ||
ZWriteEnable != b.ZWriteEnable ||
BackfaceCulling != b.BackfaceCulling ||
FogEnable != b.FogEnable ||
NormalizeNormals != b.NormalizeNormals;
for (u32 i=0; (i<MATERIAL_MAX_TEXTURES) && !different; ++i)
{
different |= (TextureLayer[i] != b.TextureLayer[i]);
}
return different;
}
//! Equality operator
inline bool operator==(const SMaterial& b) const
{ return !(b!=*this); }
};
} // end namespace video
} // end namespace irr
#endif