858 lines
25 KiB
C
858 lines
25 KiB
C
#include <limits.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "ldm.h"
|
|
|
|
#define LDM_HASHTABLESIZE (1 << (LDM_MEMORY_USAGE))
|
|
#define LDM_HASHTABLESIZE_U32 ((LDM_HASHTABLESIZE) >> 2)
|
|
#define LDM_HASHTABLESIZE_U64 ((LDM_HASHTABLESIZE) >> 3)
|
|
|
|
#if USE_CHECKSUM
|
|
#define LDM_HASH_ENTRY_SIZE_LOG 3
|
|
#else
|
|
#define LDM_HASH_ENTRY_SIZE_LOG 2
|
|
#endif
|
|
|
|
// Entries are inserted into the table HASH_ONLY_EVERY + 1 times "on average".
|
|
#ifndef HASH_ONLY_EVERY_LOG
|
|
#define HASH_ONLY_EVERY_LOG (LDM_WINDOW_SIZE_LOG-((LDM_MEMORY_USAGE)-(LDM_HASH_ENTRY_SIZE_LOG)))
|
|
#endif
|
|
|
|
#define HASH_ONLY_EVERY ((1 << (HASH_ONLY_EVERY_LOG)) - 1)
|
|
|
|
#define HASH_BUCKET_SIZE (1 << (HASH_BUCKET_SIZE_LOG))
|
|
#define NUM_HASH_BUCKETS_LOG ((LDM_MEMORY_USAGE)-(LDM_HASH_ENTRY_SIZE_LOG)-(HASH_BUCKET_SIZE_LOG))
|
|
|
|
#define HASH_CHAR_OFFSET 10
|
|
|
|
// Take the first match in the hash bucket only.
|
|
//#define ZSTD_SKIP
|
|
|
|
static const U64 prime8bytes = 11400714785074694791ULL;
|
|
|
|
// Type of the small hash used to index into the hash table.
|
|
typedef U32 hash_t;
|
|
|
|
#if USE_CHECKSUM
|
|
typedef struct LDM_hashEntry {
|
|
U32 offset;
|
|
U32 checksum;
|
|
} LDM_hashEntry;
|
|
#else
|
|
typedef struct LDM_hashEntry {
|
|
U32 offset;
|
|
} LDM_hashEntry;
|
|
#endif
|
|
|
|
struct LDM_compressStats {
|
|
U32 windowSizeLog, hashTableSizeLog;
|
|
U32 numMatches;
|
|
U64 totalMatchLength;
|
|
U64 totalLiteralLength;
|
|
U64 totalOffset;
|
|
|
|
U32 matchLengthHistogram[32];
|
|
|
|
U32 minOffset, maxOffset;
|
|
U32 offsetHistogram[32];
|
|
};
|
|
|
|
typedef struct LDM_hashTable LDM_hashTable;
|
|
|
|
struct LDM_CCtx {
|
|
size_t isize; /* Input size */
|
|
size_t maxOSize; /* Maximum output size */
|
|
|
|
const BYTE *ibase; /* Base of input */
|
|
const BYTE *ip; /* Current input position */
|
|
const BYTE *iend; /* End of input */
|
|
|
|
// Maximum input position such that hashing at the position does not exceed
|
|
// end of input.
|
|
const BYTE *ihashLimit;
|
|
|
|
// Maximum input position such that finding a match of at least the minimum
|
|
// match length does not exceed end of input.
|
|
const BYTE *imatchLimit;
|
|
|
|
const BYTE *obase; /* Base of output */
|
|
BYTE *op; /* Output */
|
|
|
|
const BYTE *anchor; /* Anchor to start of current (match) block */
|
|
|
|
LDM_compressStats stats; /* Compression statistics */
|
|
|
|
LDM_hashTable *hashTable;
|
|
|
|
const BYTE *lastPosHashed; /* Last position hashed */
|
|
U64 lastHash;
|
|
|
|
const BYTE *nextIp; // TODO: this is redundant (ip + step)
|
|
const BYTE *nextPosHashed;
|
|
U64 nextHash;
|
|
|
|
unsigned step; // ip step, should be 1.
|
|
|
|
const BYTE *lagIp;
|
|
U64 lagHash;
|
|
};
|
|
|
|
struct LDM_hashTable {
|
|
U32 numBuckets; // The number of buckets.
|
|
U32 numEntries; // numBuckets * HASH_BUCKET_SIZE.
|
|
|
|
LDM_hashEntry *entries;
|
|
BYTE *bucketOffsets; // A pointer (per bucket) to the next insert position.
|
|
};
|
|
|
|
static void HASH_destroyTable(LDM_hashTable *table) {
|
|
free(table->entries);
|
|
free(table->bucketOffsets);
|
|
free(table);
|
|
}
|
|
|
|
/**
|
|
* Create a hash table that can contain size elements.
|
|
* The number of buckets is determined by size >> HASH_BUCKET_SIZE_LOG.
|
|
*
|
|
* Returns NULL if table creation failed.
|
|
*/
|
|
static LDM_hashTable *HASH_createTable(U32 size) {
|
|
LDM_hashTable *table = malloc(sizeof(LDM_hashTable));
|
|
if (!table) return NULL;
|
|
|
|
table->numBuckets = size >> HASH_BUCKET_SIZE_LOG;
|
|
table->numEntries = size;
|
|
table->entries = calloc(size, sizeof(LDM_hashEntry));
|
|
table->bucketOffsets = calloc(size >> HASH_BUCKET_SIZE_LOG, sizeof(BYTE));
|
|
|
|
if (!table->entries || !table->bucketOffsets) {
|
|
HASH_destroyTable(table);
|
|
return NULL;
|
|
}
|
|
|
|
return table;
|
|
}
|
|
|
|
static LDM_hashEntry *getBucket(const LDM_hashTable *table, const hash_t hash) {
|
|
return table->entries + (hash << HASH_BUCKET_SIZE_LOG);
|
|
}
|
|
|
|
static unsigned ZSTD_NbCommonBytes (register size_t val) {
|
|
if (MEM_isLittleEndian()) {
|
|
if (MEM_64bits()) {
|
|
# if defined(_MSC_VER) && defined(_WIN64)
|
|
unsigned long r = 0;
|
|
_BitScanForward64( &r, (U64)val );
|
|
return (unsigned)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
|
return (__builtin_ctzll((U64)val) >> 3);
|
|
# else
|
|
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
|
|
0, 3, 1, 3, 1, 4, 2, 7,
|
|
0, 2, 3, 6, 1, 5, 3, 5,
|
|
1, 3, 4, 4, 2, 5, 6, 7,
|
|
7, 0, 1, 2, 3, 3, 4, 6,
|
|
2, 6, 5, 5, 3, 4, 5, 6,
|
|
7, 1, 2, 4, 6, 4, 4, 5,
|
|
7, 2, 6, 5, 7, 6, 7, 7 };
|
|
return DeBruijnBytePos[
|
|
((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
|
# endif
|
|
} else { /* 32 bits */
|
|
# if defined(_MSC_VER)
|
|
unsigned long r=0;
|
|
_BitScanForward( &r, (U32)val );
|
|
return (unsigned)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
|
return (__builtin_ctz((U32)val) >> 3);
|
|
# else
|
|
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
|
|
3, 2, 2, 1, 3, 2, 0, 1,
|
|
3, 3, 1, 2, 2, 2, 2, 0,
|
|
3, 1, 2, 0, 1, 0, 1, 1 };
|
|
return DeBruijnBytePos[
|
|
((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
|
# endif
|
|
}
|
|
} else { /* Big Endian CPU */
|
|
if (MEM_64bits()) {
|
|
# if defined(_MSC_VER) && defined(_WIN64)
|
|
unsigned long r = 0;
|
|
_BitScanReverse64( &r, val );
|
|
return (unsigned)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
|
return (__builtin_clzll(val) >> 3);
|
|
# else
|
|
unsigned r;
|
|
/* calculate this way due to compiler complaining in 32-bits mode */
|
|
const unsigned n32 = sizeof(size_t)*4;
|
|
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
|
|
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
|
|
r += (!val);
|
|
return r;
|
|
# endif
|
|
} else { /* 32 bits */
|
|
# if defined(_MSC_VER)
|
|
unsigned long r = 0;
|
|
_BitScanReverse( &r, (unsigned long)val );
|
|
return (unsigned)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3)
|
|
return (__builtin_clz((U32)val) >> 3);
|
|
# else
|
|
unsigned r;
|
|
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
|
|
r += (!val);
|
|
return r;
|
|
# endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// From lib/compress/zstd_compress.c
|
|
static size_t ZSTD_count(const BYTE *pIn, const BYTE *pMatch,
|
|
const BYTE *const pInLimit) {
|
|
const BYTE * const pStart = pIn;
|
|
const BYTE * const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
|
|
|
|
while (pIn < pInLoopLimit) {
|
|
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
|
if (!diff) {
|
|
pIn += sizeof(size_t);
|
|
pMatch += sizeof(size_t);
|
|
continue;
|
|
}
|
|
pIn += ZSTD_NbCommonBytes(diff);
|
|
return (size_t)(pIn - pStart);
|
|
}
|
|
|
|
if (MEM_64bits()) {
|
|
if ((pIn < (pInLimit - 3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) {
|
|
pIn += 4;
|
|
pMatch += 4;
|
|
}
|
|
}
|
|
if ((pIn < (pInLimit - 1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) {
|
|
pIn += 2;
|
|
pMatch += 2;
|
|
}
|
|
if ((pIn < pInLimit) && (*pMatch == *pIn)) {
|
|
pIn++;
|
|
}
|
|
return (size_t)(pIn - pStart);
|
|
}
|
|
|
|
/**
|
|
* Count number of bytes that match backwards before pIn and pMatch.
|
|
*
|
|
* We count only bytes where pMatch > pBase and pIn > pAnchor.
|
|
*/
|
|
static size_t countBackwardsMatch(const BYTE *pIn, const BYTE *pAnchor,
|
|
const BYTE *pMatch, const BYTE *pBase) {
|
|
size_t matchLength = 0;
|
|
while (pIn > pAnchor && pMatch > pBase && pIn[-1] == pMatch[-1]) {
|
|
pIn--;
|
|
pMatch--;
|
|
matchLength++;
|
|
}
|
|
return matchLength;
|
|
}
|
|
|
|
/**
|
|
* Returns a pointer to the entry in the hash table matching the hash and
|
|
* checksum with the "longest match length" as defined below. The forward and
|
|
* backward match lengths are written to *pForwardMatchLength and
|
|
* *pBackwardMatchLength.
|
|
*
|
|
* The match length is defined based on cctx->ip and the entry's offset.
|
|
* The forward match is computed from cctx->ip and entry->offset + cctx->ibase.
|
|
* The backward match is computed backwards from cctx->ip and
|
|
* cctx->ibase only if the forward match is longer than LDM_MIN_MATCH_LENGTH.
|
|
*/
|
|
static LDM_hashEntry *HASH_getBestEntry(const LDM_CCtx *cctx,
|
|
const hash_t hash,
|
|
const U32 checksum,
|
|
U64 *pForwardMatchLength,
|
|
U64 *pBackwardMatchLength) {
|
|
LDM_hashTable *table = cctx->hashTable;
|
|
LDM_hashEntry *bucket = getBucket(table, hash);
|
|
LDM_hashEntry *cur;
|
|
LDM_hashEntry *bestEntry = NULL;
|
|
U64 bestMatchLength = 0;
|
|
#if !(USE_CHECKSUM)
|
|
(void)checksum;
|
|
#endif
|
|
for (cur = bucket; cur < bucket + HASH_BUCKET_SIZE; ++cur) {
|
|
const BYTE *pMatch = cur->offset + cctx->ibase;
|
|
|
|
// Check checksum for faster check.
|
|
#if USE_CHECKSUM
|
|
if (cur->checksum == checksum &&
|
|
cctx->ip - pMatch <= LDM_WINDOW_SIZE) {
|
|
#else
|
|
if (cctx->ip - pMatch <= LDM_WINDOW_SIZE) {
|
|
#endif
|
|
U64 forwardMatchLength = ZSTD_count(cctx->ip, pMatch, cctx->iend);
|
|
U64 backwardMatchLength, totalMatchLength;
|
|
|
|
// Only take matches where the forward match length is large enough
|
|
// for speed.
|
|
if (forwardMatchLength < LDM_MIN_MATCH_LENGTH) {
|
|
continue;
|
|
}
|
|
|
|
backwardMatchLength =
|
|
countBackwardsMatch(cctx->ip, cctx->anchor,
|
|
cur->offset + cctx->ibase,
|
|
cctx->ibase);
|
|
|
|
totalMatchLength = forwardMatchLength + backwardMatchLength;
|
|
|
|
if (totalMatchLength >= bestMatchLength) {
|
|
bestMatchLength = totalMatchLength;
|
|
*pForwardMatchLength = forwardMatchLength;
|
|
*pBackwardMatchLength = backwardMatchLength;
|
|
|
|
bestEntry = cur;
|
|
#ifdef ZSTD_SKIP
|
|
return cur;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
if (bestEntry != NULL) {
|
|
return bestEntry;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Insert an entry into the hash table. The table uses a "circular buffer",
|
|
* with the oldest entry overwritten.
|
|
*/
|
|
static void HASH_insert(LDM_hashTable *table,
|
|
const hash_t hash, const LDM_hashEntry entry) {
|
|
*(getBucket(table, hash) + table->bucketOffsets[hash]) = entry;
|
|
table->bucketOffsets[hash]++;
|
|
table->bucketOffsets[hash] &= HASH_BUCKET_SIZE - 1;
|
|
}
|
|
|
|
static void HASH_outputTableOccupancy(const LDM_hashTable *table) {
|
|
U32 ctr = 0;
|
|
LDM_hashEntry *cur = table->entries;
|
|
LDM_hashEntry *end = table->entries + (table->numBuckets * HASH_BUCKET_SIZE);
|
|
for (; cur < end; ++cur) {
|
|
if (cur->offset == 0) {
|
|
ctr++;
|
|
}
|
|
}
|
|
|
|
// The number of buckets is repeated as a check for now.
|
|
printf("Num buckets, bucket size: %d (2^%d), %d\n",
|
|
table->numBuckets, NUM_HASH_BUCKETS_LOG, HASH_BUCKET_SIZE);
|
|
printf("Hash table size, empty slots, %% empty: %u, %u, %.3f\n",
|
|
table->numEntries, ctr,
|
|
100.0 * (double)(ctr) / table->numEntries);
|
|
}
|
|
|
|
// TODO: This can be done more efficiently, for example by using builtin
|
|
// functions (but it is not that important as it is only used for computing
|
|
// stats).
|
|
static int intLog2(U64 x) {
|
|
int ret = 0;
|
|
while (x >>= 1) {
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void LDM_printCompressStats(const LDM_compressStats *stats) {
|
|
printf("=====================\n");
|
|
printf("Compression statistics\n");
|
|
printf("Window size, hash table size (bytes): 2^%u, 2^%u\n",
|
|
stats->windowSizeLog, stats->hashTableSizeLog);
|
|
printf("num matches, total match length, %% matched: %u, %llu, %.3f\n",
|
|
stats->numMatches,
|
|
stats->totalMatchLength,
|
|
100.0 * (double)stats->totalMatchLength /
|
|
(double)(stats->totalMatchLength + stats->totalLiteralLength));
|
|
printf("avg match length: %.1f\n", ((double)stats->totalMatchLength) /
|
|
(double)stats->numMatches);
|
|
printf("avg literal length, total literalLength: %.1f, %llu\n",
|
|
((double)stats->totalLiteralLength) / (double)stats->numMatches,
|
|
stats->totalLiteralLength);
|
|
printf("avg offset length: %.1f\n",
|
|
((double)stats->totalOffset) / (double)stats->numMatches);
|
|
printf("min offset, max offset: %u, %u\n",
|
|
stats->minOffset, stats->maxOffset);
|
|
|
|
printf("\n");
|
|
printf("offset histogram | match length histogram\n");
|
|
printf("offset/ML, num matches, %% of matches | num matches, %% of matches\n");
|
|
|
|
{
|
|
int i;
|
|
int logMaxOffset = intLog2(stats->maxOffset);
|
|
for (i = 0; i <= logMaxOffset; i++) {
|
|
printf("2^%*d: %10u %6.3f%% |2^%*d: %10u %6.3f \n",
|
|
2, i,
|
|
stats->offsetHistogram[i],
|
|
100.0 * (double) stats->offsetHistogram[i] /
|
|
(double) stats->numMatches,
|
|
2, i,
|
|
stats->matchLengthHistogram[i],
|
|
100.0 * (double) stats->matchLengthHistogram[i] /
|
|
(double) stats->numMatches);
|
|
}
|
|
}
|
|
printf("\n");
|
|
printf("=====================\n");
|
|
}
|
|
|
|
/**
|
|
* Return the upper (most significant) NUM_HASH_BUCKETS_LOG bits.
|
|
*/
|
|
static hash_t getSmallHash(U64 hash) {
|
|
return hash >> (64 - NUM_HASH_BUCKETS_LOG);
|
|
}
|
|
|
|
/**
|
|
* Return the 32 bits after the upper NUM_HASH_BUCKETS_LOG bits.
|
|
*/
|
|
static U32 getChecksum(U64 hash) {
|
|
return (hash >> (64 - 32 - NUM_HASH_BUCKETS_LOG)) & 0xFFFFFFFF;
|
|
}
|
|
|
|
#if INSERT_BY_TAG
|
|
static U32 lowerBitsFromHfHash(U64 hash) {
|
|
// The number of bits used so far is NUM_HASH_BUCKETS_LOG + 32.
|
|
// So there are 32 - NUM_HASH_BUCKETS_LOG bits left.
|
|
// Occasional hashing requires HASH_ONLY_EVERY_LOG bits.
|
|
// So if 32 - LDMHASHLOG < HASH_ONLY_EVERY_LOG, just return lower bits
|
|
// allowing for reuse of bits.
|
|
if (32 - NUM_HASH_BUCKETS_LOG < HASH_ONLY_EVERY_LOG) {
|
|
return hash & HASH_ONLY_EVERY;
|
|
} else {
|
|
// Otherwise shift by
|
|
// (32 - NUM_HASH_BUCKETS_LOG - HASH_ONLY_EVERY_LOG) bits first.
|
|
return (hash >> (32 - NUM_HASH_BUCKETS_LOG - HASH_ONLY_EVERY_LOG)) &
|
|
HASH_ONLY_EVERY;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Get a 64-bit hash using the first len bytes from buf.
|
|
*
|
|
* Giving bytes s = s_1, s_2, ... s_k, the hash is defined to be
|
|
* H(s) = s_1*(a^(k-1)) + s_2*(a^(k-2)) + ... + s_k*(a^0)
|
|
*
|
|
* where the constant a is defined to be prime8bytes.
|
|
*
|
|
* The implementation adds an offset to each byte, so
|
|
* H(s) = (s_1 + HASH_CHAR_OFFSET)*(a^(k-1)) + ...
|
|
*/
|
|
static U64 getHash(const BYTE *buf, U32 len) {
|
|
U64 ret = 0;
|
|
U32 i;
|
|
for (i = 0; i < len; i++) {
|
|
ret *= prime8bytes;
|
|
ret += buf[i] + HASH_CHAR_OFFSET;
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
static U64 ipow(U64 base, U64 exp) {
|
|
U64 ret = 1;
|
|
while (exp) {
|
|
if (exp & 1) {
|
|
ret *= base;
|
|
}
|
|
exp >>= 1;
|
|
base *= base;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static U64 updateHash(U64 hash, U32 len,
|
|
BYTE toRemove, BYTE toAdd) {
|
|
// TODO: this relies on compiler optimization.
|
|
// The exponential can be calculated explicitly as len is constant.
|
|
hash -= ((toRemove + HASH_CHAR_OFFSET) *
|
|
ipow(prime8bytes, len - 1));
|
|
hash *= prime8bytes;
|
|
hash += toAdd + HASH_CHAR_OFFSET;
|
|
return hash;
|
|
}
|
|
|
|
/**
|
|
* Update cctx->nextHash and cctx->nextPosHashed
|
|
* based on cctx->lastHash and cctx->lastPosHashed.
|
|
*
|
|
* This uses a rolling hash and requires that the last position hashed
|
|
* corresponds to cctx->nextIp - step.
|
|
*/
|
|
static void setNextHash(LDM_CCtx *cctx) {
|
|
cctx->nextHash = updateHash(
|
|
cctx->lastHash, LDM_HASH_LENGTH,
|
|
cctx->lastPosHashed[0],
|
|
cctx->lastPosHashed[LDM_HASH_LENGTH]);
|
|
cctx->nextPosHashed = cctx->nextIp;
|
|
|
|
#if LDM_LAG
|
|
if (cctx->ip - cctx->ibase > LDM_LAG) {
|
|
cctx->lagHash = updateHash(
|
|
cctx->lagHash, LDM_HASH_LENGTH,
|
|
cctx->lagIp[0], cctx->lagIp[LDM_HASH_LENGTH]);
|
|
cctx->lagIp++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void putHashOfCurrentPositionFromHash(LDM_CCtx *cctx, U64 hash) {
|
|
// Hash only every HASH_ONLY_EVERY times, based on cctx->ip.
|
|
// Note: this works only when cctx->step is 1.
|
|
#if LDM_LAG
|
|
if (cctx -> lagIp - cctx->ibase > 0) {
|
|
#if INSERT_BY_TAG
|
|
U32 hashEveryMask = lowerBitsFromHfHash(cctx->lagHash);
|
|
if (hashEveryMask == HASH_ONLY_EVERY) {
|
|
#else
|
|
if (((cctx->ip - cctx->ibase) & HASH_ONLY_EVERY) == HASH_ONLY_EVERY) {
|
|
#endif
|
|
U32 smallHash = getSmallHash(cctx->lagHash);
|
|
|
|
# if USE_CHECKSUM
|
|
U32 checksum = getChecksum(cctx->lagHash);
|
|
const LDM_hashEntry entry = { cctx->lagIp - cctx->ibase, checksum };
|
|
# else
|
|
const LDM_hashEntry entry = { cctx->lagIp - cctx->ibase };
|
|
# endif
|
|
|
|
HASH_insert(cctx->hashTable, smallHash, entry);
|
|
}
|
|
} else {
|
|
#endif // LDM_LAG
|
|
#if INSERT_BY_TAG
|
|
U32 hashEveryMask = lowerBitsFromHfHash(hash);
|
|
if (hashEveryMask == HASH_ONLY_EVERY) {
|
|
#else
|
|
if (((cctx->ip - cctx->ibase) & HASH_ONLY_EVERY) == HASH_ONLY_EVERY) {
|
|
#endif
|
|
U32 smallHash = getSmallHash(hash);
|
|
|
|
#if USE_CHECKSUM
|
|
U32 checksum = getChecksum(hash);
|
|
const LDM_hashEntry entry = { cctx->ip - cctx->ibase, checksum };
|
|
#else
|
|
const LDM_hashEntry entry = { cctx->ip - cctx->ibase };
|
|
#endif
|
|
HASH_insert(cctx->hashTable, smallHash, entry);
|
|
}
|
|
#if LDM_LAG
|
|
}
|
|
#endif
|
|
|
|
cctx->lastPosHashed = cctx->ip;
|
|
cctx->lastHash = hash;
|
|
}
|
|
|
|
/**
|
|
* Copy over the cctx->lastHash, and cctx->lastPosHashed
|
|
* fields from the "next" fields.
|
|
*
|
|
* This requires that cctx->ip == cctx->nextPosHashed.
|
|
*/
|
|
static void LDM_updateLastHashFromNextHash(LDM_CCtx *cctx) {
|
|
putHashOfCurrentPositionFromHash(cctx, cctx->nextHash);
|
|
}
|
|
|
|
/**
|
|
* Insert hash of the current position into the hash table.
|
|
*/
|
|
static void LDM_putHashOfCurrentPosition(LDM_CCtx *cctx) {
|
|
U64 hash = getHash(cctx->ip, LDM_HASH_LENGTH);
|
|
|
|
putHashOfCurrentPositionFromHash(cctx, hash);
|
|
}
|
|
|
|
size_t LDM_initializeCCtx(LDM_CCtx *cctx,
|
|
const void *src, size_t srcSize,
|
|
void *dst, size_t maxDstSize) {
|
|
cctx->isize = srcSize;
|
|
cctx->maxOSize = maxDstSize;
|
|
|
|
cctx->ibase = (const BYTE *)src;
|
|
cctx->ip = cctx->ibase;
|
|
cctx->iend = cctx->ibase + srcSize;
|
|
|
|
cctx->ihashLimit = cctx->iend - LDM_HASH_LENGTH;
|
|
cctx->imatchLimit = cctx->iend - LDM_MIN_MATCH_LENGTH;
|
|
|
|
cctx->obase = (BYTE *)dst;
|
|
cctx->op = (BYTE *)dst;
|
|
|
|
cctx->anchor = cctx->ibase;
|
|
|
|
memset(&(cctx->stats), 0, sizeof(cctx->stats));
|
|
#if USE_CHECKSUM
|
|
cctx->hashTable = HASH_createTable(LDM_HASHTABLESIZE_U64);
|
|
#else
|
|
cctx->hashTable = HASH_createTable(LDM_HASHTABLESIZE_U32);
|
|
#endif
|
|
|
|
if (!cctx->hashTable) return 1;
|
|
|
|
cctx->stats.minOffset = UINT_MAX;
|
|
cctx->stats.windowSizeLog = LDM_WINDOW_SIZE_LOG;
|
|
cctx->stats.hashTableSizeLog = LDM_MEMORY_USAGE;
|
|
|
|
cctx->lastPosHashed = NULL;
|
|
|
|
cctx->step = 1; // Fixed to be 1 for now. Changing may break things.
|
|
cctx->nextIp = cctx->ip + cctx->step;
|
|
cctx->nextPosHashed = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void LDM_destroyCCtx(LDM_CCtx *cctx) {
|
|
HASH_destroyTable(cctx->hashTable);
|
|
}
|
|
|
|
/**
|
|
* Finds the "best" match.
|
|
*
|
|
* Returns 0 if successful and 1 otherwise (i.e. no match can be found
|
|
* in the remaining input that is long enough).
|
|
*
|
|
* forwardMatchLength contains the forward length of the match.
|
|
*/
|
|
static int LDM_findBestMatch(LDM_CCtx *cctx, const BYTE **match,
|
|
U64 *forwardMatchLength, U64 *backwardMatchLength) {
|
|
|
|
LDM_hashEntry *entry = NULL;
|
|
cctx->nextIp = cctx->ip + cctx->step;
|
|
|
|
while (entry == NULL) {
|
|
U64 hash;
|
|
hash_t smallHash;
|
|
U32 checksum;
|
|
#if INSERT_BY_TAG
|
|
U32 hashEveryMask;
|
|
#endif
|
|
setNextHash(cctx);
|
|
|
|
hash = cctx->nextHash;
|
|
smallHash = getSmallHash(hash);
|
|
checksum = getChecksum(hash);
|
|
#if INSERT_BY_TAG
|
|
hashEveryMask = lowerBitsFromHfHash(hash);
|
|
#endif
|
|
|
|
cctx->ip = cctx->nextIp;
|
|
cctx->nextIp += cctx->step;
|
|
|
|
if (cctx->ip > cctx->imatchLimit) {
|
|
return 1;
|
|
}
|
|
#if INSERT_BY_TAG
|
|
if (hashEveryMask == HASH_ONLY_EVERY) {
|
|
|
|
entry = HASH_getBestEntry(cctx, smallHash, checksum,
|
|
forwardMatchLength, backwardMatchLength);
|
|
}
|
|
#else
|
|
entry = HASH_getBestEntry(cctx, smallHash, checksum,
|
|
forwardMatchLength, backwardMatchLength);
|
|
#endif
|
|
|
|
if (entry != NULL) {
|
|
*match = entry->offset + cctx->ibase;
|
|
}
|
|
|
|
putHashOfCurrentPositionFromHash(cctx, hash);
|
|
|
|
}
|
|
setNextHash(cctx);
|
|
return 0;
|
|
}
|
|
|
|
void LDM_encodeLiteralLengthAndLiterals(
|
|
LDM_CCtx *cctx, BYTE *pToken, const U64 literalLength) {
|
|
/* Encode the literal length. */
|
|
if (literalLength >= RUN_MASK) {
|
|
U64 len = (U64)literalLength - RUN_MASK;
|
|
*pToken = (RUN_MASK << ML_BITS);
|
|
for (; len >= 255; len -= 255) {
|
|
*(cctx->op)++ = 255;
|
|
}
|
|
*(cctx->op)++ = (BYTE)len;
|
|
} else {
|
|
*pToken = (BYTE)(literalLength << ML_BITS);
|
|
}
|
|
|
|
/* Encode the literals. */
|
|
memcpy(cctx->op, cctx->anchor, literalLength);
|
|
cctx->op += literalLength;
|
|
}
|
|
|
|
void LDM_outputBlock(LDM_CCtx *cctx,
|
|
const U64 literalLength,
|
|
const U32 offset,
|
|
const U64 matchLength) {
|
|
BYTE *pToken = cctx->op++;
|
|
|
|
/* Encode the literal length and literals. */
|
|
LDM_encodeLiteralLengthAndLiterals(cctx, pToken, literalLength);
|
|
|
|
/* Encode the offset. */
|
|
MEM_write32(cctx->op, offset);
|
|
cctx->op += LDM_OFFSET_SIZE;
|
|
|
|
/* Encode the match length. */
|
|
if (matchLength >= ML_MASK) {
|
|
U64 matchLengthRemaining = matchLength;
|
|
*pToken += ML_MASK;
|
|
matchLengthRemaining -= ML_MASK;
|
|
MEM_write32(cctx->op, 0xFFFFFFFF);
|
|
while (matchLengthRemaining >= 4*0xFF) {
|
|
cctx->op += 4;
|
|
MEM_write32(cctx->op, 0xffffffff);
|
|
matchLengthRemaining -= 4*0xFF;
|
|
}
|
|
cctx->op += matchLengthRemaining / 255;
|
|
*(cctx->op)++ = (BYTE)(matchLengthRemaining % 255);
|
|
} else {
|
|
*pToken += (BYTE)(matchLength);
|
|
}
|
|
}
|
|
|
|
// TODO: maxDstSize is unused. This function may seg fault when writing
|
|
// beyond the size of dst, as it does not check maxDstSize. Writing to
|
|
// a buffer and performing checks is a possible solution.
|
|
//
|
|
// This is based upon lz4.
|
|
size_t LDM_compress(const void *src, size_t srcSize,
|
|
void *dst, size_t maxDstSize) {
|
|
LDM_CCtx cctx;
|
|
const BYTE *match = NULL;
|
|
U64 forwardMatchLength = 0;
|
|
U64 backwardsMatchLength = 0;
|
|
|
|
if (LDM_initializeCCtx(&cctx, src, srcSize, dst, maxDstSize)) {
|
|
// Initialization failed.
|
|
return 0;
|
|
}
|
|
|
|
#ifdef OUTPUT_CONFIGURATION
|
|
LDM_outputConfiguration();
|
|
#endif
|
|
|
|
/* Hash the first position and put it into the hash table. */
|
|
LDM_putHashOfCurrentPosition(&cctx);
|
|
|
|
cctx.lagIp = cctx.ip;
|
|
cctx.lagHash = cctx.lastHash;
|
|
|
|
/**
|
|
* Find a match.
|
|
* If no more matches can be found (i.e. the length of the remaining input
|
|
* is less than the minimum match length), then stop searching for matches
|
|
* and encode the final literals.
|
|
*/
|
|
while (!LDM_findBestMatch(&cctx, &match, &forwardMatchLength,
|
|
&backwardsMatchLength)) {
|
|
|
|
#ifdef COMPUTE_STATS
|
|
cctx.stats.numMatches++;
|
|
#endif
|
|
|
|
cctx.ip -= backwardsMatchLength;
|
|
match -= backwardsMatchLength;
|
|
|
|
/**
|
|
* Write current block (literals, literal length, match offset, match
|
|
* length) and update pointers and hashes.
|
|
*/
|
|
{
|
|
const U64 literalLength = cctx.ip - cctx.anchor;
|
|
const U32 offset = cctx.ip - match;
|
|
const U64 matchLength = forwardMatchLength +
|
|
backwardsMatchLength -
|
|
LDM_MIN_MATCH_LENGTH;
|
|
|
|
LDM_outputBlock(&cctx, literalLength, offset, matchLength);
|
|
|
|
#ifdef COMPUTE_STATS
|
|
cctx.stats.totalLiteralLength += literalLength;
|
|
cctx.stats.totalOffset += offset;
|
|
cctx.stats.totalMatchLength += matchLength + LDM_MIN_MATCH_LENGTH;
|
|
cctx.stats.minOffset =
|
|
offset < cctx.stats.minOffset ? offset : cctx.stats.minOffset;
|
|
cctx.stats.maxOffset =
|
|
offset > cctx.stats.maxOffset ? offset : cctx.stats.maxOffset;
|
|
cctx.stats.offsetHistogram[(U32)intLog2(offset)]++;
|
|
cctx.stats.matchLengthHistogram[
|
|
(U32)intLog2(matchLength + LDM_MIN_MATCH_LENGTH)]++;
|
|
#endif
|
|
|
|
// Move ip to end of block, inserting hashes at each position.
|
|
cctx.nextIp = cctx.ip + cctx.step;
|
|
while (cctx.ip < cctx.anchor + LDM_MIN_MATCH_LENGTH +
|
|
matchLength + literalLength) {
|
|
if (cctx.ip > cctx.lastPosHashed) {
|
|
// TODO: Simplify.
|
|
LDM_updateLastHashFromNextHash(&cctx);
|
|
setNextHash(&cctx);
|
|
}
|
|
cctx.ip++;
|
|
cctx.nextIp++;
|
|
}
|
|
}
|
|
|
|
// Set start of next block to current input pointer.
|
|
cctx.anchor = cctx.ip;
|
|
LDM_updateLastHashFromNextHash(&cctx);
|
|
}
|
|
|
|
/* Encode the last literals (no more matches). */
|
|
{
|
|
const U64 lastRun = cctx.iend - cctx.anchor;
|
|
BYTE *pToken = cctx.op++;
|
|
LDM_encodeLiteralLengthAndLiterals(&cctx, pToken, lastRun);
|
|
}
|
|
|
|
#ifdef COMPUTE_STATS
|
|
LDM_printCompressStats(&cctx.stats);
|
|
HASH_outputTableOccupancy(cctx.hashTable);
|
|
#endif
|
|
|
|
{
|
|
const size_t ret = cctx.op - cctx.obase;
|
|
LDM_destroyCCtx(&cctx);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
void LDM_outputConfiguration(void) {
|
|
printf("=====================\n");
|
|
printf("Configuration\n");
|
|
printf("LDM_WINDOW_SIZE_LOG: %d\n", LDM_WINDOW_SIZE_LOG);
|
|
printf("LDM_MIN_MATCH_LENGTH, LDM_HASH_LENGTH: %d, %d\n",
|
|
LDM_MIN_MATCH_LENGTH, LDM_HASH_LENGTH);
|
|
printf("LDM_MEMORY_USAGE: %d\n", LDM_MEMORY_USAGE);
|
|
printf("HASH_ONLY_EVERY_LOG: %d\n", HASH_ONLY_EVERY_LOG);
|
|
printf("HASH_BUCKET_SIZE_LOG: %d\n", HASH_BUCKET_SIZE_LOG);
|
|
printf("LDM_LAG: %d\n", LDM_LAG);
|
|
printf("USE_CHECKSUM: %d\n", USE_CHECKSUM);
|
|
printf("INSERT_BY_TAG: %d\n", INSERT_BY_TAG);
|
|
printf("HASH_CHAR_OFFSET: %d\n", HASH_CHAR_OFFSET);
|
|
printf("=====================\n");
|
|
}
|
|
|