It's a bug in the test itself, in exceptional circumstances (no more space for additional sequence). There should be enough room for all cases to work fine from now on, and if not, we have an additional `assert()` to catch that situation.
341 lines
14 KiB
C
341 lines
14 KiB
C
/*
|
|
* Copyright (c) Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under both the BSD-style license (found in the
|
|
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
|
* in the COPYING file in the root directory of this source tree).
|
|
* You may select, at your option, one of the above-listed licenses.
|
|
*/
|
|
|
|
/**
|
|
* This fuzz target performs a zstd round-trip test by generating an arbitrary
|
|
* array of sequences, generating the associated source buffer, calling
|
|
* ZSTD_compressSequences(), and then decompresses and compares the result with
|
|
* the original generated source buffer.
|
|
*/
|
|
|
|
#define ZSTD_STATIC_LINKING_ONLY
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include "fuzz_helpers.h"
|
|
#include "zstd_helpers.h"
|
|
#include "fuzz_data_producer.h"
|
|
|
|
static ZSTD_CCtx* cctx = NULL;
|
|
static ZSTD_DCtx* dctx = NULL;
|
|
static void* literalsBuffer = NULL;
|
|
static void* generatedSrc = NULL;
|
|
static ZSTD_Sequence* generatedSequences = NULL;
|
|
|
|
#define ZSTD_FUZZ_GENERATED_SRC_MAXSIZE (1 << 20) /* Allow up to 1MB generated data */
|
|
#define ZSTD_FUZZ_MATCHLENGTH_MAXSIZE (1 << 18) /* Allow up to 256KB matches */
|
|
#define ZSTD_FUZZ_GENERATED_DICT_MAXSIZE (1 << 18) /* Allow up to a 256KB dict */
|
|
#define ZSTD_FUZZ_GENERATED_LITERALS_SIZE (1 << 18) /* Fixed size 256KB literals buffer */
|
|
#define ZSTD_FUZZ_MAX_NBSEQ (1 << 17) /* Maximum of 128K sequences */
|
|
|
|
/* Deterministic random number generator */
|
|
#define FUZZ_RDG_rotl32(x,r) ((x << r) | (x >> (32 - r)))
|
|
static uint32_t FUZZ_RDG_rand(uint32_t* src)
|
|
{
|
|
static const uint32_t prime1 = 2654435761U;
|
|
static const uint32_t prime2 = 2246822519U;
|
|
uint32_t rand32 = *src;
|
|
rand32 *= prime1;
|
|
rand32 ^= prime2;
|
|
rand32 = FUZZ_RDG_rotl32(rand32, 13);
|
|
*src = rand32;
|
|
return rand32 >> 5;
|
|
}
|
|
|
|
/* Make a pseudorandom string - this simple function exists to avoid
|
|
* taking a dependency on datagen.h to have RDG_genBuffer().
|
|
*/
|
|
static char* generatePseudoRandomString(char* str, size_t size) {
|
|
const char charset[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJK1234567890!@#$^&*()_";
|
|
uint32_t seed = 0;
|
|
if (size) {
|
|
for (size_t n = 0; n < size; n++) {
|
|
int key = FUZZ_RDG_rand(&seed) % (int) (sizeof charset - 1);
|
|
str[n] = charset[key];
|
|
}
|
|
}
|
|
return str;
|
|
}
|
|
|
|
/* Returns size of source buffer */
|
|
static size_t decodeSequences(void* dst, size_t nbSequences,
|
|
size_t literalsSize,
|
|
const void* dict, size_t dictSize,
|
|
ZSTD_sequenceFormat_e mode)
|
|
{
|
|
const uint8_t* litPtr = literalsBuffer;
|
|
const uint8_t* const litBegin = literalsBuffer;
|
|
const uint8_t* const litEnd = litBegin + literalsSize;
|
|
const uint8_t* dictPtr = dict;
|
|
uint8_t* op = dst;
|
|
const uint8_t* const oend = (uint8_t*)dst + ZSTD_FUZZ_GENERATED_SRC_MAXSIZE;
|
|
size_t generatedSrcBufferSize = 0;
|
|
size_t bytesWritten = 0;
|
|
|
|
for (size_t i = 0; i < nbSequences; ++i) {
|
|
/* block boundary */
|
|
if (generatedSequences[i].offset == 0)
|
|
FUZZ_ASSERT(generatedSequences[i].matchLength == 0);
|
|
|
|
if (litPtr + generatedSequences[i].litLength > litEnd) {
|
|
litPtr = litBegin;
|
|
}
|
|
memcpy(op, litPtr, generatedSequences[i].litLength);
|
|
bytesWritten += generatedSequences[i].litLength;
|
|
op += generatedSequences[i].litLength;
|
|
litPtr += generatedSequences[i].litLength;
|
|
|
|
/* Copy over the match */
|
|
{ size_t matchLength = generatedSequences[i].matchLength;
|
|
size_t j = 0;
|
|
size_t k = 0;
|
|
if (dictSize != 0) {
|
|
if (generatedSequences[i].offset > bytesWritten) {
|
|
/* Offset goes into the dictionary */
|
|
size_t offsetFromEndOfDict = generatedSequences[i].offset - bytesWritten;
|
|
for (; k < offsetFromEndOfDict && k < matchLength; ++k) {
|
|
op[k] = dictPtr[dictSize - offsetFromEndOfDict + k];
|
|
}
|
|
matchLength -= k;
|
|
op += k;
|
|
}
|
|
}
|
|
for (; j < matchLength; ++j) {
|
|
op[j] = op[j - generatedSequences[i].offset];
|
|
}
|
|
op += j;
|
|
FUZZ_ASSERT(generatedSequences[i].matchLength == j + k);
|
|
bytesWritten += generatedSequences[i].matchLength;
|
|
}
|
|
}
|
|
generatedSrcBufferSize = bytesWritten;
|
|
FUZZ_ASSERT(litPtr <= litEnd);
|
|
if (mode == ZSTD_sf_noBlockDelimiters) {
|
|
const uint32_t lastLLSize = (uint32_t)(litEnd - litPtr);
|
|
if (lastLLSize <= oend - op) {
|
|
memcpy(op, litPtr, lastLLSize);
|
|
generatedSrcBufferSize += lastLLSize;
|
|
} }
|
|
return generatedSrcBufferSize;
|
|
}
|
|
|
|
/* Returns nb sequences generated
|
|
* Note : random sequences are always valid in ZSTD_sf_noBlockDelimiters mode.
|
|
* However, it can fail with ZSTD_sf_explicitBlockDelimiters,
|
|
* due to potential lack of space in
|
|
*/
|
|
static size_t generateRandomSequences(FUZZ_dataProducer_t* producer,
|
|
size_t literalsSizeLimit, size_t dictSize,
|
|
size_t windowLog, ZSTD_sequenceFormat_e mode)
|
|
{
|
|
const uint32_t repCode = 0; /* not used by sequence ingestion api */
|
|
const uint32_t windowSize = 1 << windowLog;
|
|
const uint32_t blockSizeMax = MIN(128 << 10, 1 << windowLog);
|
|
uint32_t matchLengthMax = ZSTD_FUZZ_MATCHLENGTH_MAXSIZE;
|
|
uint32_t bytesGenerated = 0;
|
|
uint32_t nbSeqGenerated = 0;
|
|
uint32_t isFirstSequence = 1;
|
|
uint32_t blockSize = 0;
|
|
|
|
if (mode == ZSTD_sf_explicitBlockDelimiters) {
|
|
/* ensure that no sequence can be larger than one block */
|
|
literalsSizeLimit = MIN(literalsSizeLimit, blockSizeMax/2);
|
|
matchLengthMax = MIN(matchLengthMax, blockSizeMax/2);
|
|
}
|
|
|
|
while ( nbSeqGenerated < ZSTD_FUZZ_MAX_NBSEQ-2 /* extra room for explicit delimiters */
|
|
&& bytesGenerated < ZSTD_FUZZ_GENERATED_SRC_MAXSIZE
|
|
&& !FUZZ_dataProducer_empty(producer)) {
|
|
uint32_t matchLength;
|
|
uint32_t matchBound = matchLengthMax;
|
|
uint32_t offset;
|
|
uint32_t offsetBound;
|
|
const uint32_t minLitLength = (isFirstSequence && (dictSize == 0));
|
|
const uint32_t litLength = FUZZ_dataProducer_uint32Range(producer, minLitLength, (uint32_t)literalsSizeLimit);
|
|
bytesGenerated += litLength;
|
|
if (bytesGenerated > ZSTD_FUZZ_GENERATED_SRC_MAXSIZE) {
|
|
break;
|
|
}
|
|
offsetBound = (bytesGenerated > windowSize) ? windowSize : bytesGenerated + (uint32_t)dictSize;
|
|
offset = FUZZ_dataProducer_uint32Range(producer, 1, offsetBound);
|
|
if (dictSize > 0 && bytesGenerated <= windowSize) {
|
|
/* Prevent match length from being such that it would be associated with an offset too large
|
|
* from the decoder's perspective. If not possible (match would be too small),
|
|
* then reduce the offset if necessary.
|
|
*/
|
|
const size_t bytesToReachWindowSize = windowSize - bytesGenerated;
|
|
if (bytesToReachWindowSize < ZSTD_MINMATCH_MIN) {
|
|
const uint32_t newOffsetBound = offsetBound > windowSize ? windowSize : offsetBound;
|
|
offset = FUZZ_dataProducer_uint32Range(producer, 1, newOffsetBound);
|
|
} else {
|
|
matchBound = MIN(matchLengthMax, (uint32_t)bytesToReachWindowSize);
|
|
}
|
|
}
|
|
matchLength = FUZZ_dataProducer_uint32Range(producer, ZSTD_MINMATCH_MIN, matchBound);
|
|
bytesGenerated += matchLength;
|
|
if (bytesGenerated > ZSTD_FUZZ_GENERATED_SRC_MAXSIZE) {
|
|
break;
|
|
}
|
|
{ ZSTD_Sequence seq = {offset, litLength, matchLength, repCode};
|
|
const uint32_t lastLits = FUZZ_dataProducer_uint32Range(producer, 0, litLength);
|
|
#define SPLITPROB 6000
|
|
#define SPLITMARK 5234
|
|
const int split = (FUZZ_dataProducer_uint32Range(producer, 0, SPLITPROB) == SPLITMARK);
|
|
if (mode == ZSTD_sf_explicitBlockDelimiters) {
|
|
const size_t seqSize = seq.litLength + seq.matchLength;
|
|
if (blockSize + seqSize > blockSizeMax) { /* reaching limit : must end block now */
|
|
const ZSTD_Sequence endBlock = {0, 0, 0, 0};
|
|
generatedSequences[nbSeqGenerated++] = endBlock;
|
|
blockSize = seqSize;
|
|
}
|
|
if (split) {
|
|
const ZSTD_Sequence endBlock = {0, lastLits, 0, 0};
|
|
generatedSequences[nbSeqGenerated++] = endBlock;
|
|
assert(lastLits <= seq.litLength);
|
|
seq.litLength -= lastLits;
|
|
blockSize = seqSize - lastLits;
|
|
} else {
|
|
blockSize += seqSize;
|
|
}
|
|
}
|
|
generatedSequences[nbSeqGenerated++] = seq;
|
|
isFirstSequence = 0;
|
|
} }
|
|
if (mode == ZSTD_sf_explicitBlockDelimiters) {
|
|
/* always end sequences with a block delimiter */
|
|
const ZSTD_Sequence endBlock = {0, 0, 0, 0};
|
|
assert(nbSeqGenerated < ZSTD_FUZZ_MAX_NBSEQ);
|
|
generatedSequences[nbSeqGenerated++] = endBlock;
|
|
}
|
|
|
|
return nbSeqGenerated;
|
|
}
|
|
|
|
static size_t roundTripTest(void *result, size_t resultCapacity,
|
|
void *compressed, size_t compressedCapacity,
|
|
size_t srcSize,
|
|
const void *dict, size_t dictSize,
|
|
size_t generatedSequencesSize,
|
|
int wLog, int cLevel, unsigned hasDict,
|
|
ZSTD_sequenceFormat_e mode)
|
|
{
|
|
size_t cSize;
|
|
size_t dSize;
|
|
|
|
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 0);
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, cLevel);
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_windowLog, wLog);
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_minMatch, ZSTD_MINMATCH_MIN);
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_validateSequences, 1);
|
|
ZSTD_CCtx_setParameter(cctx, ZSTD_c_blockDelimiters, mode);
|
|
if (hasDict) {
|
|
FUZZ_ZASSERT(ZSTD_CCtx_loadDictionary(cctx, dict, dictSize));
|
|
FUZZ_ZASSERT(ZSTD_DCtx_loadDictionary(dctx, dict, dictSize));
|
|
}
|
|
|
|
cSize = ZSTD_compressSequences(cctx, compressed, compressedCapacity,
|
|
generatedSequences, generatedSequencesSize,
|
|
generatedSrc, srcSize);
|
|
FUZZ_ZASSERT(cSize);
|
|
dSize = ZSTD_decompressDCtx(dctx, result, resultCapacity, compressed, cSize);
|
|
FUZZ_ZASSERT(dSize);
|
|
|
|
return dSize;
|
|
}
|
|
|
|
int LLVMFuzzerTestOneInput(const uint8_t* src, size_t size)
|
|
{
|
|
void* rBuf;
|
|
size_t rBufSize;
|
|
void* cBuf;
|
|
size_t cBufSize;
|
|
size_t generatedSrcSize;
|
|
size_t nbSequences;
|
|
void* dictBuffer = NULL;
|
|
size_t dictSize = 0;
|
|
unsigned hasDict;
|
|
unsigned wLog;
|
|
int cLevel;
|
|
ZSTD_sequenceFormat_e mode;
|
|
|
|
FUZZ_dataProducer_t* const producer = FUZZ_dataProducer_create(src, size);
|
|
FUZZ_ASSERT(producer);
|
|
if (literalsBuffer == NULL) {
|
|
literalsBuffer = FUZZ_malloc(ZSTD_FUZZ_GENERATED_LITERALS_SIZE);
|
|
FUZZ_ASSERT(literalsBuffer);
|
|
literalsBuffer = generatePseudoRandomString(literalsBuffer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE);
|
|
}
|
|
|
|
hasDict = FUZZ_dataProducer_uint32Range(producer, 0, 1);
|
|
if (hasDict) {
|
|
dictSize = FUZZ_dataProducer_uint32Range(producer, 1, ZSTD_FUZZ_GENERATED_DICT_MAXSIZE);
|
|
dictBuffer = FUZZ_malloc(dictSize);
|
|
FUZZ_ASSERT(dictBuffer);
|
|
dictBuffer = generatePseudoRandomString(dictBuffer, dictSize);
|
|
}
|
|
/* Generate window log first so we dont generate offsets too large */
|
|
wLog = FUZZ_dataProducer_uint32Range(producer, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX_32);
|
|
cLevel = FUZZ_dataProducer_int32Range(producer, -3, 22);
|
|
mode = (ZSTD_sequenceFormat_e)FUZZ_dataProducer_int32Range(producer, 0, 1);
|
|
|
|
if (!generatedSequences) {
|
|
generatedSequences = FUZZ_malloc(sizeof(ZSTD_Sequence)*ZSTD_FUZZ_MAX_NBSEQ);
|
|
}
|
|
if (!generatedSrc) {
|
|
generatedSrc = FUZZ_malloc(ZSTD_FUZZ_GENERATED_SRC_MAXSIZE);
|
|
}
|
|
nbSequences = generateRandomSequences(producer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictSize, wLog, mode);
|
|
generatedSrcSize = decodeSequences(generatedSrc, nbSequences, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictBuffer, dictSize, mode);
|
|
cBufSize = ZSTD_compressBound(generatedSrcSize);
|
|
cBuf = FUZZ_malloc(cBufSize);
|
|
|
|
rBufSize = generatedSrcSize;
|
|
rBuf = FUZZ_malloc(rBufSize);
|
|
|
|
if (!cctx) {
|
|
cctx = ZSTD_createCCtx();
|
|
FUZZ_ASSERT(cctx);
|
|
}
|
|
if (!dctx) {
|
|
dctx = ZSTD_createDCtx();
|
|
FUZZ_ASSERT(dctx);
|
|
}
|
|
|
|
{ const size_t result = roundTripTest(rBuf, rBufSize,
|
|
cBuf, cBufSize,
|
|
generatedSrcSize,
|
|
dictBuffer, dictSize,
|
|
nbSequences,
|
|
(int)wLog, cLevel, hasDict, mode);
|
|
FUZZ_ZASSERT(result);
|
|
FUZZ_ASSERT_MSG(result == generatedSrcSize, "Incorrect regenerated size");
|
|
}
|
|
FUZZ_ASSERT_MSG(!FUZZ_memcmp(generatedSrc, rBuf, generatedSrcSize), "Corruption!");
|
|
|
|
free(rBuf);
|
|
free(cBuf);
|
|
FUZZ_dataProducer_free(producer);
|
|
if (hasDict) {
|
|
free(dictBuffer);
|
|
}
|
|
#ifndef STATEFUL_FUZZING
|
|
ZSTD_freeCCtx(cctx); cctx = NULL;
|
|
ZSTD_freeDCtx(dctx); dctx = NULL;
|
|
free(generatedSequences); generatedSequences = NULL;
|
|
free(generatedSrc); generatedSrc = NULL;
|
|
free(literalsBuffer); literalsBuffer = NULL;
|
|
#endif
|
|
return 0;
|
|
}
|