zstd/programs/paramgrill.c

1182 lines
39 KiB
C

/*
paramgrill.c - parameter tester for zstd_hc
Copyright (C) Yann Collet 2015
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/**************************************
* Compiler Options
**************************************/
/* Disable some Visual warning messages */
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE /* VS2005 */
/* Unix Large Files support (>4GB) */
#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
# define _LARGEFILE_SOURCE
# define _FILE_OFFSET_BITS 64
#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
# define _LARGEFILE64_SOURCE
#endif
/* S_ISREG & gettimeofday() are not supported by MSVC */
#if defined(_MSC_VER) || defined(_WIN32)
# define BMK_LEGACY_TIMER 1
#endif
#if defined(_MSC_VER)
# define snprintf _snprintf /* snprintf unsupported by Visual <= 2012 */
#endif
/**************************************
* Includes
**************************************/
#include <stdlib.h> /* malloc */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <sys/types.h> /* stat64 */
#include <sys/stat.h> /* stat64 */
#include <string.h> /* strcmp */
#include <math.h> /* log */
/* Use ftime() if gettimeofday() is not available on your target */
#if defined(BMK_LEGACY_TIMER)
# include <sys/timeb.h> /* timeb, ftime */
#else
# include <sys/time.h> /* gettimeofday */
#endif
#include "mem.h"
#include "zstd_static.h"
#include "datagen.h"
#include "xxhash.h"
/**************************************
* Compiler Options
**************************************/
/* S_ISREG & gettimeofday() are not supported by MSVC */
#if !defined(S_ISREG)
# define S_ISREG(x) (((x) & S_IFMT) == S_IFREG)
#endif
/**************************************
* Constants
**************************************/
#define PROGRAM_DESCRIPTION "ZSTD_HC parameters tester"
#ifndef ZSTD_VERSION
# define ZSTD_VERSION ""
#endif
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %s %i-bits, by %s (%s) ***\n", PROGRAM_DESCRIPTION, ZSTD_VERSION, (int)(sizeof(void*)*8), AUTHOR, __DATE__
#define KB *(1<<10)
#define MB *(1<<20)
#define GB *(1ULL<<30)
#define NBLOOPS 2
#define TIMELOOP 2000
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));
#define DEFAULT_CHUNKSIZE (4<<20)
#define COMPRESSIBILITY_DEFAULT 0.50
static const size_t sampleSize = 10000000;
static const int g_grillDuration = 50000000; /* about 13 hours */
static const int g_maxParamTime = 15000; /* 15 sec */
static const int g_maxVariationTime = 60000; /* 60 sec */
static const int g_maxNbVariations = 64;
/**************************************
* Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
/**************************************
* Benchmark Parameters
**************************************/
static U32 g_nbIterations = NBLOOPS;
static double g_compressibility = COMPRESSIBILITY_DEFAULT;
static U32 g_blockSize = 0;
static U32 g_rand = 1;
static U32 g_singleRun = 0;
static U32 g_target = 0;
static U32 g_noSeed = 0;
static ZSTD_parameters g_params = { 0, 0, 0, 0, 0, 0, ZSTD_greedy };
void BMK_SetNbIterations(int nbLoops)
{
g_nbIterations = nbLoops;
DISPLAY("- %u iterations -\n", g_nbIterations);
}
/*********************************************************
* Private functions
*********************************************************/
#if defined(BMK_LEGACY_TIMER)
static int BMK_GetMilliStart(void)
{
/* Based on Legacy ftime()
* Rolls over every ~ 12.1 days (0x100000/24/60/60)
* Use GetMilliSpan to correct for rollover */
struct timeb tb;
int nCount;
ftime( &tb );
nCount = (int) (tb.millitm + (tb.time & 0xfffff) * 1000);
return nCount;
}
#else
static int BMK_GetMilliStart(void)
{
/* Based on newer gettimeofday()
* Use GetMilliSpan to correct for rollover */
struct timeval tv;
int nCount;
gettimeofday(&tv, NULL);
nCount = (int) (tv.tv_usec/1000 + (tv.tv_sec & 0xfffff) * 1000);
return nCount;
}
#endif
static int BMK_GetMilliSpan( int nTimeStart )
{
int nSpan = BMK_GetMilliStart() - nTimeStart;
if ( nSpan < 0 )
nSpan += 0x100000 * 1000;
return nSpan;
}
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t step = 64 MB;
BYTE* testmem=NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
if (requiredMem > maxMemory) requiredMem = maxMemory;
requiredMem += 2*step;
while (!testmem)
{
requiredMem -= step;
testmem = (BYTE*) malloc ((size_t)requiredMem);
}
free (testmem);
return (size_t) (requiredMem - step);
}
static U64 BMK_GetFileSize(char* infilename)
{
int r;
#if defined(_MSC_VER)
struct _stat64 statbuf;
r = _stat64(infilename, &statbuf);
#else
struct stat statbuf;
r = stat(infilename, &statbuf);
#endif
if (r || !S_ISREG(statbuf.st_mode)) return 0; /* No good... */
return (U64)statbuf.st_size;
}
# define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r)))
U32 FUZ_rand(U32* src)
{
const U32 prime1 = 2654435761U;
const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
/*********************************************************
* Bench functions
*********************************************************/
typedef struct {
size_t cSize;
U32 cSpeed;
U32 dSpeed;
} BMK_result_t;
typedef struct
{
const char* srcPtr;
size_t srcSize;
char* cPtr;
size_t cRoom;
size_t cSize;
char* resPtr;
size_t resSize;
} blockParam_t;
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
static size_t BMK_benchParam(BMK_result_t* resultPtr,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx,
const ZSTD_parameters params)
{
const size_t blockSize = g_blockSize ? g_blockSize : srcSize;
const U32 nbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize);
blockParam_t* const blockTable = (blockParam_t*) malloc(nbBlocks * sizeof(blockParam_t));
const size_t maxCompressedSize = (size_t)nbBlocks * ZSTD_compressBound(blockSize);
void* const compressedBuffer = malloc(maxCompressedSize);
void* const resultBuffer = malloc(srcSize);
U32 Wlog = params.windowLog;
U32 Clog = params.contentLog;
U32 Hlog = params.hashLog;
U32 Slog = params.searchLog;
U32 Slength = params.searchLength;
ZSTD_strategy strat = params.strategy;
char name[30] = { 0 };
U64 crcOrig;
/* Memory allocation & restrictions */
snprintf(name, 30, "Sw%02uc%02uh%02us%02ul%1ut%1u", Wlog, Clog, Hlog, Slog, Slength, strat);
if (!compressedBuffer || !resultBuffer || !blockTable)
{
DISPLAY("\nError: not enough memory!\n");
free(compressedBuffer);
free(resultBuffer);
free(blockTable);
return 12;
}
/* Calculating input Checksum */
crcOrig = XXH64(srcBuffer, srcSize, 0);
/* Init blockTable data */
{
U32 i;
size_t remaining = srcSize;
const char* srcPtr = (const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
char* resPtr = (char*)resultBuffer;
for (i=0; i<nbBlocks; i++)
{
size_t thisBlockSize = MIN(remaining, blockSize);
blockTable[i].srcPtr = srcPtr;
blockTable[i].cPtr = cPtr;
blockTable[i].resPtr = resPtr;
blockTable[i].srcSize = thisBlockSize;
blockTable[i].cRoom = ZSTD_compressBound(thisBlockSize);
srcPtr += thisBlockSize;
cPtr += blockTable[i].cRoom;
resPtr += thisBlockSize;
remaining -= thisBlockSize;
}
}
/* warmimg up memory */
RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.10, 1);
/* Bench */
{
U32 loopNb;
size_t cSize = 0;
double fastestC = 100000000., fastestD = 100000000.;
double ratio = 0.;
U64 crcCheck = 0;
const int startTime =BMK_GetMilliStart();
DISPLAY("\r%79s\r", "");
for (loopNb = 1; loopNb <= g_nbIterations; loopNb++)
{
int nbLoops;
int milliTime;
U32 blockNb;
const int totalTime = BMK_GetMilliSpan(startTime);
/* early break (slow params) */
if (totalTime > g_maxParamTime) break;
/* Compression */
DISPLAY("\r%1u-%s : %9u ->", loopNb, name, (U32)srcSize);
memset(compressedBuffer, 0xE5, maxCompressedSize);
nbLoops = 0;
milliTime = BMK_GetMilliStart();
while (BMK_GetMilliStart() == milliTime);
milliTime = BMK_GetMilliStart();
while (BMK_GetMilliSpan(milliTime) < TIMELOOP)
{
for (blockNb=0; blockNb<nbBlocks; blockNb++)
blockTable[blockNb].cSize = ZSTD_compress_advanced(ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr, blockTable[blockNb].srcSize,
params);
nbLoops++;
}
milliTime = BMK_GetMilliSpan(milliTime);
cSize = 0;
for (blockNb=0; blockNb<nbBlocks; blockNb++)
cSize += blockTable[blockNb].cSize;
if ((double)milliTime < fastestC*nbLoops) fastestC = (double)milliTime / nbLoops;
ratio = (double)srcSize / (double)cSize;
DISPLAY("\r");
DISPLAY("%1u-%s : %9u ->", loopNb, name, (U32)srcSize);
DISPLAY(" %9u (%4.3f),%7.1f MB/s", (U32)cSize, ratio, (double)srcSize / fastestC / 1000.);
resultPtr->cSize = cSize;
resultPtr->cSpeed = (U32)((double)srcSize / fastestC);
#if 1
/* Decompression */
memset(resultBuffer, 0xD6, srcSize);
nbLoops = 0;
milliTime = BMK_GetMilliStart();
while (BMK_GetMilliStart() == milliTime);
milliTime = BMK_GetMilliStart();
for ( ; BMK_GetMilliSpan(milliTime) < TIMELOOP; nbLoops++)
{
for (blockNb=0; blockNb<nbBlocks; blockNb++)
blockTable[blockNb].resSize = ZSTD_decompress(blockTable[blockNb].resPtr, blockTable[blockNb].srcSize,
blockTable[blockNb].cPtr, blockTable[blockNb].cSize);
}
milliTime = BMK_GetMilliSpan(milliTime);
if ((double)milliTime < fastestD*nbLoops) fastestD = (double)milliTime / nbLoops;
DISPLAY("\r");
DISPLAY("%1u-%s : %9u -> ", loopNb, name, (U32)srcSize);
DISPLAY("%9u (%4.3f),%7.1f MB/s, ", (U32)cSize, ratio, (double)srcSize / fastestC / 1000.);
DISPLAY("%7.1f MB/s", (double)srcSize / fastestD / 1000.);
resultPtr->dSpeed = (U32)((double)srcSize / fastestD);
/* CRC Checking */
crcCheck = XXH64(resultBuffer, srcSize, 0);
if (crcOrig!=crcCheck)
{
unsigned u;
unsigned eBlockSize = (unsigned)(MIN(65536*2, blockSize));
DISPLAY("\n!!! WARNING !!! Invalid Checksum : %x != %x\n", (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++)
{
if (((const BYTE*)srcBuffer)[u] != ((BYTE*)resultBuffer)[u])
{
printf("Decoding error at pos %u (block %u, pos %u) \n", u, u / eBlockSize, u % eBlockSize);
break;
}
}
break;
}
#endif
}
}
/* End cleaning */
DISPLAY("\r");
free(compressedBuffer);
free(resultBuffer);
return 0;
}
const char* g_stratName[] = { "ZSTD_fast ",
"ZSTD_greedy ",
"ZSTD_lazy ",
"ZSTD_lazy2 ",
"ZSTD_btlazy2" };
static void BMK_printWinner(FILE* f, U32 cLevel, BMK_result_t result, ZSTD_parameters params, size_t srcSize)
{
DISPLAY("\r%79s\r", "");
fprintf(f," {%3u,%3u,%3u,%3u,%3u,%3u, %s }, ",
0, params.windowLog, params.contentLog, params.hashLog, params.searchLog, params.searchLength,
g_stratName[(U32)(params.strategy)]);
fprintf(f,
"/* level %2u */ /* R:%5.3f at %5.1f MB/s - %5.1f MB/s */\n",
cLevel, (double)srcSize / result.cSize, (double)result.cSpeed / 1000., (double)result.dSpeed / 1000.);
}
static U32 g_cSpeedTarget[ZSTD_MAX_CLEVEL+1] = { 0 };
typedef struct {
BMK_result_t result;
ZSTD_parameters params;
} winnerInfo_t;
static void BMK_printWinners2(FILE* f, const winnerInfo_t* winners, size_t srcSize)
{
int cLevel;
fprintf(f, "\n /* Proposed configurations : */ \n");
fprintf(f, "#define ZSTD_MAX_CLEVEL %2u \n", ZSTD_MAX_CLEVEL);
fprintf(f, "static const ZSTD_parameters ZSTD_defaultParameters[ZSTD_MAX_CLEVEL+1] = {\n");
fprintf(f, " /* l, W, C, H, S, L, strat */ \n");
for (cLevel=0; cLevel <= ZSTD_MAX_CLEVEL; cLevel++)
BMK_printWinner(f, cLevel, winners[cLevel].result, winners[cLevel].params, srcSize);
}
static void BMK_printWinners(FILE* f, const winnerInfo_t* winners, size_t srcSize)
{
fseek(f, 0, SEEK_SET);
BMK_printWinners2(f, winners, srcSize);
fflush(f);
BMK_printWinners2(stdout, winners, srcSize);
}
static int BMK_seed(winnerInfo_t* winners, const ZSTD_parameters params,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx)
{
BMK_result_t testResult;
int better = 0;
int cLevel;
BMK_benchParam(&testResult, srcBuffer, srcSize, ctx, params);
for (cLevel = 1; cLevel <= ZSTD_MAX_CLEVEL; cLevel++)
{
if (testResult.cSpeed < g_cSpeedTarget[cLevel])
continue; /* not fast enough for this level */
if (winners[cLevel].result.cSize==0)
{
/* first solution for this cLevel */
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_printWinner(stdout, cLevel, testResult, params, srcSize);
better = 1;
continue;
}
if ((double)testResult.cSize <= ((double)winners[cLevel].result.cSize * (1. + (0.02 / cLevel))) )
{
/* Validate solution is "good enough" */
double W_ratio = (double)srcSize / testResult.cSize;
double O_ratio = (double)srcSize / winners[cLevel].result.cSize;
double W_ratioNote = log (W_ratio);
double O_ratioNote = log (O_ratio);
size_t W_DMemUsed = (1 << params.windowLog) + (16 KB);
size_t O_DMemUsed = (1 << winners[cLevel].params.windowLog) + (16 KB);
double W_DMemUsed_note = W_ratioNote * ( 40 + 9*cLevel) - log((double)W_DMemUsed);
double O_DMemUsed_note = O_ratioNote * ( 40 + 9*cLevel) - log((double)O_DMemUsed);
size_t W_CMemUsed = (1 << params.windowLog) + 4 * (1 << params.hashLog) +
((params.strategy==ZSTD_fast) ? 0 : 4 * (1 << params.contentLog));
size_t O_CMemUsed = (1 << winners[cLevel].params.windowLog) + 4 * (1 << winners[cLevel].params.hashLog) +
((winners[cLevel].params.strategy==ZSTD_fast) ? 0 : 4 * (1 << winners[cLevel].params.contentLog));
double W_CMemUsed_note = W_ratioNote * ( 50 + 13*cLevel) - log((double)W_CMemUsed);
double O_CMemUsed_note = O_ratioNote * ( 50 + 13*cLevel) - log((double)O_CMemUsed);
double W_CSpeed_note = W_ratioNote * ( 30 + 10*cLevel) + log((double)testResult.cSpeed);
double O_CSpeed_note = O_ratioNote * ( 30 + 10*cLevel) + log((double)winners[cLevel].result.cSpeed);
double W_DSpeed_note = W_ratioNote * ( 20 + 2*cLevel) + log((double)testResult.dSpeed);
double O_DSpeed_note = O_ratioNote * ( 20 + 2*cLevel) + log((double)winners[cLevel].result.dSpeed);
if (W_DMemUsed_note < O_DMemUsed_note)
{
/* uses too much Decompression memory for too little benefit */
if (W_ratio > O_ratio)
DISPLAY ("Decompression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_DMemUsed) / 1024 / 1024,
O_ratio, (double)(O_DMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CMemUsed_note < O_CMemUsed_note)
{
/* uses too much memory for compression for too little benefit */
if (W_ratio > O_ratio)
DISPLAY ("Compression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_CMemUsed) / 1024 / 1024,
O_ratio, (double)(O_CMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CSpeed_note < O_CSpeed_note )
{
/* too large compression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAY ("Compression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, (double)(testResult.cSpeed) / 1000.,
O_ratio, (double)(winners[cLevel].result.cSpeed) / 1000., cLevel);
continue;
}
if (W_DSpeed_note < O_DSpeed_note )
{
/* too large decompression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAY ("Decompression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, (double)(testResult.dSpeed) / 1000.,
O_ratio, (double)(winners[cLevel].result.dSpeed) / 1000., cLevel);
continue;
}
if (W_ratio < O_ratio)
DISPLAY("Solution %4.3f selected over %4.3f at level %i, due to better secondary statistics \n", W_ratio, O_ratio, cLevel);
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_printWinner(stdout, cLevel, testResult, params, srcSize);
better = 1;
}
}
return better;
}
/* nullified useless params, to ensure count stats */
static ZSTD_parameters* sanitizeParams(ZSTD_parameters params)
{
g_params = params;
if (params.strategy == ZSTD_fast)
{
g_params.contentLog = 0;
g_params.searchLog = 0;
}
return &g_params;
}
static void paramVariation(ZSTD_parameters* p)
{
U32 nbChanges = (FUZ_rand(&g_rand) & 3) + 1;
for (; nbChanges; nbChanges--)
{
const U32 changeID = FUZ_rand(&g_rand) % 12;
switch(changeID)
{
case 0:
p->contentLog++; break;
case 1:
p->contentLog--; break;
case 2:
p->hashLog++; break;
case 3:
p->hashLog--; break;
case 4:
p->searchLog++; break;
case 5:
p->searchLog--; break;
case 6:
p->windowLog++; break;
case 7:
p->windowLog--; break;
case 8:
p->searchLength++; break;
case 9:
p->searchLength--; break;
case 10:
p->strategy = (ZSTD_strategy)(((U32)p->strategy)+1); break;
case 11:
p->strategy = (ZSTD_strategy)(((U32)p->strategy)-1); break;
}
}
ZSTD_validateParams(p);
}
#define PARAMTABLELOG 25
#define PARAMTABLESIZE (1<<PARAMTABLELOG)
#define PARAMTABLEMASK (PARAMTABLESIZE-1)
static BYTE g_alreadyTested[PARAMTABLESIZE] = {0}; /* init to zero */
#define NB_TESTS_PLAYED(p) \
g_alreadyTested[(XXH64(sanitizeParams(p), sizeof(p), 0) >> 3) & PARAMTABLEMASK]
#define MAX(a,b) ( (a) > (b) ? (a) : (b) )
static void playAround(FILE* f, winnerInfo_t* winners,
ZSTD_parameters params,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx)
{
int nbVariations = 0;
const int startTime = BMK_GetMilliStart();
while (BMK_GetMilliSpan(startTime) < g_maxVariationTime)
{
ZSTD_parameters p = params;
if (nbVariations++ > g_maxNbVariations) break;
paramVariation(&p);
/* exclude faster if already played params */
if (FUZ_rand(&g_rand) & ((1 << NB_TESTS_PLAYED(p))-1))
continue;
/* test */
NB_TESTS_PLAYED(p)++;
if (!BMK_seed(winners, p, srcBuffer, srcSize, ctx)) continue;
/* improvement found => search more */
BMK_printWinners(f, winners, srcSize);
playAround(f, winners, p, srcBuffer, srcSize, ctx);
}
}
static void potentialRandomParams(ZSTD_parameters* p, U32 inverseChance)
{
U32 chance = (FUZ_rand(&g_rand) % (inverseChance+1));
if (!chance)
{
/* totally random entry */
p->contentLog = FUZ_rand(&g_rand) % (ZSTD_CONTENTLOG_MAX+1 - ZSTD_CONTENTLOG_MIN) + ZSTD_CONTENTLOG_MIN;
p->hashLog = FUZ_rand(&g_rand) % (ZSTD_HASHLOG_MAX+1 - ZSTD_HASHLOG_MIN) + ZSTD_HASHLOG_MIN;
p->searchLog = FUZ_rand(&g_rand) % (ZSTD_SEARCHLOG_MAX+1 - ZSTD_SEARCHLOG_MIN) + ZSTD_SEARCHLOG_MIN;
p->windowLog = FUZ_rand(&g_rand) % (ZSTD_WINDOWLOG_MAX+1 - ZSTD_WINDOWLOG_MIN) + ZSTD_WINDOWLOG_MIN;
p->searchLength=FUZ_rand(&g_rand) % (ZSTD_SEARCHLENGTH_MAX+1 - ZSTD_SEARCHLENGTH_MIN) + ZSTD_SEARCHLENGTH_MIN;
p->strategy = (ZSTD_strategy) (FUZ_rand(&g_rand) % (ZSTD_btlazy2+1));
ZSTD_validateParams(p);
}
}
static void BMK_selectRandomStart(
FILE* f, winnerInfo_t* winners,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx)
{
U32 id = (FUZ_rand(&g_rand) % (ZSTD_MAX_CLEVEL+1));
if ((id==0) || (winners[id].params.windowLog==0))
{
/* totally random entry */
ZSTD_parameters p;
potentialRandomParams(&p, 1);
p.srcSize = srcSize;
ZSTD_validateParams(&p);
playAround(f, winners, p, srcBuffer, srcSize, ctx);
}
else
playAround(f, winners, winners[id].params, srcBuffer, srcSize, ctx);
}
static void BMK_benchMem(void* srcBuffer, size_t srcSize)
{
ZSTD_CCtx* ctx = ZSTD_createCCtx();
ZSTD_parameters params;
winnerInfo_t winners[ZSTD_MAX_CLEVEL+1];
int i;
const char* rfName = "grillResults.txt";
FILE* f;
const size_t blockSize = g_blockSize ? g_blockSize : srcSize;
if (g_singleRun)
{
BMK_result_t testResult;
g_params.srcSize = blockSize;
ZSTD_validateParams(&g_params);
BMK_benchParam(&testResult, srcBuffer, srcSize, ctx, g_params);
DISPLAY("\n");
return;
}
/* init */
memset(winners, 0, sizeof(winners));
f = fopen(rfName, "w");
if (f==NULL) { DISPLAY("error opening %s \n", rfName); exit(1); }
if (g_target)
g_cSpeedTarget[1] = g_target * 1000;
else
{
/* baseline config for level 1 */
BMK_result_t testResult;
params = ZSTD_getParams(1, blockSize);
BMK_benchParam(&testResult, srcBuffer, srcSize, ctx, params);
g_cSpeedTarget[1] = (testResult.cSpeed * 31) >> 5;
}
/* establish speed objectives (relative to level 1) */
for (i=2; i<=ZSTD_MAX_CLEVEL; i++)
g_cSpeedTarget[i] = (g_cSpeedTarget[i-1] * 25) >> 5;
/* populate initial solution */
{
const int maxSeeds = g_noSeed ? 1 : ZSTD_MAX_CLEVEL;
for (i=1; i<=maxSeeds; i++)
{
params = ZSTD_getParams(i, blockSize);
ZSTD_validateParams(&params);
BMK_seed(winners, params, srcBuffer, srcSize, ctx);
}
}
BMK_printWinners(f, winners, srcSize);
/* start tests */
{
const int milliStart = BMK_GetMilliStart();
do
{
BMK_selectRandomStart(f, winners, srcBuffer, srcSize, ctx);
} while (BMK_GetMilliSpan(milliStart) < g_grillDuration);
}
/* end summary */
BMK_printWinners(f, winners, srcSize);
DISPLAY("grillParams operations completed \n");
/* clean up*/
fclose(f);
ZSTD_freeCCtx(ctx);
}
static int benchSample(void)
{
char* origBuff;
size_t benchedSize = sampleSize;
const char* name = "Sample 10MiB";
/* Allocation */
origBuff = (char*) malloc((size_t)benchedSize);
if(!origBuff)
{
DISPLAY("\nError: not enough memory!\n");
return 12;
}
/* Fill buffer */
RDG_genBuffer(origBuff, benchedSize, g_compressibility, 0.0, 0);
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s %i%%: \n", name, (int)(g_compressibility*100));
BMK_benchMem(origBuff, benchedSize);
free(origBuff);
return 0;
}
int benchFiles(char** fileNamesTable, int nbFiles)
{
int fileIdx=0;
/* Loop for each file */
while (fileIdx<nbFiles)
{
FILE* inFile;
char* inFileName;
U64 inFileSize;
size_t benchedSize;
size_t readSize;
char* origBuff;
/* Check file existence */
inFileName = fileNamesTable[fileIdx++];
inFile = fopen( inFileName, "rb" );
if (inFile==NULL)
{
DISPLAY( "Pb opening %s\n", inFileName);
return 11;
}
/* Memory allocation & restrictions */
inFileSize = BMK_GetFileSize(inFileName);
benchedSize = (size_t) BMK_findMaxMem(inFileSize*3) / 3;
if ((U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize;
if (benchedSize < inFileSize)
{
DISPLAY("Not enough memory for '%s' full size; testing %i MB only...\n", inFileName, (int)(benchedSize>>20));
}
/* Alloc */
origBuff = (char*) malloc((size_t)benchedSize);
if(!origBuff)
{
DISPLAY("\nError: not enough memory!\n");
fclose(inFile);
return 12;
}
/* Fill input buffer */
DISPLAY("Loading %s... \r", inFileName);
readSize = fread(origBuff, 1, benchedSize, inFile);
fclose(inFile);
if(readSize != benchedSize)
{
DISPLAY("\nError: problem reading file '%s' !! \n", inFileName);
free(origBuff);
return 13;
}
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s : \n", inFileName);
BMK_benchMem(origBuff, benchedSize);
}
return 0;
}
int optimizeForSize(char* inFileName)
{
FILE* inFile;
U64 inFileSize;
size_t benchedSize;
size_t readSize;
char* origBuff;
/* Check file existence */
inFile = fopen( inFileName, "rb" );
if (inFile==NULL)
{
DISPLAY( "Pb opening %s\n", inFileName);
return 11;
}
/* Memory allocation & restrictions */
inFileSize = BMK_GetFileSize(inFileName);
benchedSize = (size_t) BMK_findMaxMem(inFileSize*3) / 3;
if ((U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize;
if (benchedSize < inFileSize)
{
DISPLAY("Not enough memory for '%s' full size; testing %i MB only...\n", inFileName, (int)(benchedSize>>20));
}
/* Alloc */
origBuff = (char*) malloc((size_t)benchedSize);
if(!origBuff)
{
DISPLAY("\nError: not enough memory!\n");
fclose(inFile);
return 12;
}
/* Fill input buffer */
DISPLAY("Loading %s... \r", inFileName);
readSize = fread(origBuff, 1, benchedSize, inFile);
fclose(inFile);
if(readSize != benchedSize)
{
DISPLAY("\nError: problem reading file '%s' !! \n", inFileName);
free(origBuff);
return 13;
}
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("optimizing for %s : \n", inFileName);
{
ZSTD_CCtx* ctx = ZSTD_createCCtx();
ZSTD_parameters params;
winnerInfo_t winner;
BMK_result_t candidate;
const size_t blockSize = g_blockSize ? g_blockSize : benchedSize;
int i;
/* init */
memset(&winner, 0, sizeof(winner));
winner.result.cSize = (size_t)(-1);
/* find best solution from default params */
{
const int maxSeeds = g_noSeed ? 1 : ZSTD_MAX_CLEVEL;
for (i=1; i<=maxSeeds; i++)
{
params = ZSTD_getParams(i, blockSize);
BMK_benchParam(&candidate, origBuff, benchedSize, ctx, params);
if ( (candidate.cSize < winner.result.cSize)
||((candidate.cSize == winner.result.cSize) && (candidate.cSpeed > winner.result.cSpeed)) )
{
winner.params = params;
winner.result = candidate;
BMK_printWinner(stdout, i, winner.result, winner.params, benchedSize);
}
}
}
BMK_printWinner(stdout, 99, winner.result, winner.params, benchedSize);
/* start tests */
{
const int milliStart = BMK_GetMilliStart();
do
{
params = winner.params;
paramVariation(&params);
potentialRandomParams(&params, 16);
/* exclude faster if already played set of params */
if (FUZ_rand(&g_rand) & ((1 << NB_TESTS_PLAYED(params))-1)) continue;
/* test */
NB_TESTS_PLAYED(params)++;
BMK_benchParam(&candidate, origBuff, benchedSize, ctx, params);
/* improvement found => new winner */
if ( (candidate.cSize < winner.result.cSize)
||((candidate.cSize == winner.result.cSize) && (candidate.cSpeed > winner.result.cSpeed)) )
{
winner.params = params;
winner.result = candidate;
BMK_printWinner(stdout, 99, winner.result, winner.params, benchedSize);
}
} while (BMK_GetMilliSpan(milliStart) < g_grillDuration);
}
/* end summary */
BMK_printWinner(stdout, 99, winner.result, winner.params, benchedSize);
DISPLAY("grillParams size - optimizer completed \n");
/* clean up*/
ZSTD_freeCCtx(ctx);
}
return 0;
}
int usage(char* exename)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [arg] file\n", exename);
DISPLAY( "Arguments :\n");
DISPLAY( " file : path to the file used as reference (if none, generates a compressible sample)\n");
DISPLAY( " -H/-h : Help (this text + advanced options)\n");
return 0;
}
int usage_advanced(void)
{
DISPLAY( "\nAdvanced options :\n");
DISPLAY( " -i# : iteration loops [1-9](default : %i)\n", NBLOOPS);
DISPLAY( " -B# : cut input into blocks of size # (default : single block)\n");
DISPLAY( " -P# : generated sample compressibility (default : %.1f%%)\n", COMPRESSIBILITY_DEFAULT * 100);
return 0;
}
int badusage(char* exename)
{
DISPLAY("Wrong parameters\n");
usage(exename);
return 1;
}
int main(int argc, char** argv)
{
int i,
filenamesStart=0,
result;
char* exename=argv[0];
char* input_filename=0;
U32 optimizer = 0;
U32 main_pause = 0;
/* Welcome message */
DISPLAY(WELCOME_MESSAGE);
if (argc<1) { badusage(exename); return 1; }
for(i=1; i<argc; i++)
{
char* argument = argv[i];
if(!argument) continue; /* Protection if argument empty */
if(!strcmp(argument,"--no-seed")) { g_noSeed = 1; continue; }
/* Decode command (note : aggregated commands are allowed) */
if (argument[0]=='-')
{
argument++;
while (argument[0]!=0)
{
switch(argument[0])
{
/* Display help on usage */
case 'h' :
case 'H': usage(exename); usage_advanced(); return 0;
/* Pause at the end (hidden option) */
case 'p': main_pause = 1; argument++; break;
/* Modify Nb Iterations */
case 'i':
argument++;
if ((argument[0] >='0') && (argument[0] <='9'))
g_nbIterations = *argument++ - '0';
break;
/* Sample compressibility (when no file provided) */
case 'P':
argument++;
{
U32 proba32 = 0;
while ((argument[0]>= '0') && (argument[0]<= '9'))
{
proba32 *= 10;
proba32 += argument[0] - '0';
argument++;
}
g_compressibility = (double)proba32 / 100.;
}
break;
case 'O':
argument++;
optimizer=1;
break;
/* Run Single conf */
case 'S':
g_singleRun = 1;
argument++;
g_params = ZSTD_getParams(2, g_blockSize);
for ( ; ; )
{
switch(*argument)
{
case 'w':
g_params.windowLog = 0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
g_params.windowLog *= 10, g_params.windowLog += *argument++ - '0';
continue;
case 'c':
g_params.contentLog = 0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
g_params.contentLog *= 10, g_params.contentLog += *argument++ - '0';
continue;
case 'h':
g_params.hashLog = 0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
g_params.hashLog *= 10, g_params.hashLog += *argument++ - '0';
continue;
case 's':
g_params.searchLog = 0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
g_params.searchLog *= 10, g_params.searchLog += *argument++ - '0';
continue;
case 'l': /* search length */
g_params.searchLength = 0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
g_params.searchLength *= 10, g_params.searchLength += *argument++ - '0';
continue;
case 't': /* strategy */
g_params.strategy = (ZSTD_strategy)0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
{
g_params.strategy = (ZSTD_strategy)((U32)g_params.strategy *10);
g_params.strategy = (ZSTD_strategy)((U32)g_params.strategy + *argument++ - '0');
}
continue;
case 'L':
{
int cLevel = 0;
argument++;
while ((*argument>= '0') && (*argument<='9'))
cLevel *= 10, cLevel += *argument++ - '0';
g_params = ZSTD_getParams(cLevel, g_blockSize);
continue;
}
default : ;
}
break;
}
break;
/* target level1 speed objective, in MB/s */
case 'T':
argument++;
g_target = 0;
while ((*argument >= '0') && (*argument <= '9'))
{
g_target *= 10;
g_target += *argument - '0';
argument++;
}
break;
/* cut input into blocks */
case 'B':
{
g_blockSize = 0;
argument++;
while ((*argument >='0') && (*argument <='9'))
g_blockSize *= 10, g_blockSize += *argument++ - '0';
if (*argument=='K') g_blockSize<<=10, argument++; /* allows using KB notation */
if (*argument=='M') g_blockSize<<=20, argument++;
if (*argument=='B') argument++;
DISPLAY("using %u KB block size \n", g_blockSize>>10);
}
break;
/* Unknown command */
default : return badusage(exename);
}
}
continue;
}
/* first provided filename is input */
if (!input_filename) { input_filename=argument; filenamesStart=i; continue; }
}
if (filenamesStart==0)
result = benchSample();
else
{
if (optimizer)
result = optimizeForSize(input_filename);
else
result = benchFiles(argv+filenamesStart, argc-filenamesStart);
}
if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; }
return result;
}