zstd/lib/fse.c

2302 lines
76 KiB
C

/* ******************************************************************
FSE : Finite State Entropy coder
Copyright (C) 2013-2015, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
- Public forum : https://groups.google.com/forum/#!forum/lz4c
****************************************************************** */
#ifndef FSE_COMMONDEFS_ONLY
/****************************************************************
* Tuning parameters
****************************************************************/
/* MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#define FSE_MAX_MEMORY_USAGE 14
#define FSE_DEFAULT_MEMORY_USAGE 13
/* FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#define FSE_MAX_SYMBOL_VALUE 255
/****************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
/****************************************************************
* Byte symbol type
****************************************************************/
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
#endif /* !FSE_COMMONDEFS_ONLY */
/****************************************************************
* Compiler specifics
****************************************************************/
#ifdef _MSC_VER /* Visual Studio */
# define FORCE_INLINE static __forceinline
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
#else
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
#endif
/****************************************************************
* Includes
****************************************************************/
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memcpy, memset */
#include <stdio.h> /* printf (debug) */
#include "fse_static.h"
#ifndef MEM_ACCESS_MODULE
#define MEM_ACCESS_MODULE
/****************************************************************
* Basic Types
*****************************************************************/
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef signed short S16;
typedef unsigned int U32;
typedef signed int S32;
typedef unsigned long long U64;
typedef signed long long S64;
#endif
#endif /* MEM_ACCESS_MODULE */
/****************************************************************
* Memory I/O
*****************************************************************/
static unsigned FSE_32bits(void)
{
return sizeof(void*)==4;
}
static unsigned FSE_isLittleEndian(void)
{
const union { U32 i; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
}
static U16 FSE_read16(const void* memPtr)
{
U16 val;
memcpy(&val, memPtr, sizeof(val));
return val;
}
static U16 FSE_readLE16(const void* memPtr)
{
if (FSE_isLittleEndian())
return FSE_read16(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
static void FSE_writeLE16(void* memPtr, U16 val)
{
if (FSE_isLittleEndian())
{
memcpy(memPtr, &val, sizeof(val));
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
static U32 FSE_read32(const void* memPtr)
{
U32 val32;
memcpy(&val32, memPtr, 4);
return val32;
}
static U32 FSE_readLE32(const void* memPtr)
{
if (FSE_isLittleEndian())
return FSE_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
}
static void FSE_writeLE32(void* memPtr, U32 val32)
{
if (FSE_isLittleEndian())
{
memcpy(memPtr, &val32, 4);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val32;
p[1] = (BYTE)(val32>>8);
p[2] = (BYTE)(val32>>16);
p[3] = (BYTE)(val32>>24);
}
}
static U64 FSE_read64(const void* memPtr)
{
U64 val64;
memcpy(&val64, memPtr, 8);
return val64;
}
static U64 FSE_readLE64(const void* memPtr)
{
if (FSE_isLittleEndian())
return FSE_read64(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
}
}
static void FSE_writeLE64(void* memPtr, U64 val64)
{
if (FSE_isLittleEndian())
{
memcpy(memPtr, &val64, 8);
}
else
{
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val64;
p[1] = (BYTE)(val64>>8);
p[2] = (BYTE)(val64>>16);
p[3] = (BYTE)(val64>>24);
p[4] = (BYTE)(val64>>32);
p[5] = (BYTE)(val64>>40);
p[6] = (BYTE)(val64>>48);
p[7] = (BYTE)(val64>>56);
}
}
static size_t FSE_readLEST(const void* memPtr)
{
if (FSE_32bits())
return (size_t)FSE_readLE32(memPtr);
else
return (size_t)FSE_readLE64(memPtr);
}
static void FSE_writeLEST(void* memPtr, size_t val)
{
if (FSE_32bits())
FSE_writeLE32(memPtr, (U32)val);
else
FSE_writeLE64(memPtr, (U64)val);
}
/****************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
/****************************************************************
* Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
/****************************************************************
* Complex types
****************************************************************/
typedef struct
{
int deltaFindState;
U16 maxState;
BYTE minBitsOut;
/* one byte padding ; total 8 bytes */
} FSE_symbolCompressionTransform;
typedef U32 CTable_max_t[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)];
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
/****************************************************************
* Internal functions
****************************************************************/
FORCE_INLINE unsigned FSE_highbit32 (register U32 val)
{
# if defined(_MSC_VER) /* Visual */
unsigned long r;
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (GCC_VERSION >= 304) /* GCC Intrinsic */
return 31 - __builtin_clz (val);
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
unsigned r;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
return r;
# endif
}
/****************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
size_t FSE_FUNCTION_NAME(FSE_count_generic, FSE_FUNCTION_EXTENSION)
(unsigned* count, unsigned* maxSymbolValuePtr, const FSE_FUNCTION_TYPE* source, size_t sourceSize, unsigned safe)
{
const FSE_FUNCTION_TYPE* ip = source;
const FSE_FUNCTION_TYPE* const iend = ip+sourceSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned max=0;
int s;
U32 Counting1[FSE_MAX_SYMBOL_VALUE+1] = { 0 };
U32 Counting2[FSE_MAX_SYMBOL_VALUE+1] = { 0 };
U32 Counting3[FSE_MAX_SYMBOL_VALUE+1] = { 0 };
U32 Counting4[FSE_MAX_SYMBOL_VALUE+1] = { 0 };
/* safety checks */
if (!sourceSize)
{
memset(count, 0, (maxSymbolValue + 1) * sizeof(FSE_FUNCTION_TYPE));
*maxSymbolValuePtr = 0;
return 0;
}
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return (size_t)-FSE_ERROR_GENERIC; /* maxSymbolValue too large : unsupported */
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE; /* 0 == default */
if ((safe) || (sizeof(FSE_FUNCTION_TYPE)>1))
{
/* check input values, to avoid count table overflow */
while (ip < iend-3)
{
if (*ip>maxSymbolValue) return (size_t)-FSE_ERROR_GENERIC; Counting1[*ip++]++;
if (*ip>maxSymbolValue) return (size_t)-FSE_ERROR_GENERIC; Counting2[*ip++]++;
if (*ip>maxSymbolValue) return (size_t)-FSE_ERROR_GENERIC; Counting3[*ip++]++;
if (*ip>maxSymbolValue) return (size_t)-FSE_ERROR_GENERIC; Counting4[*ip++]++;
}
}
else
{
U32 cached = FSE_read32(ip); ip += 4;
while (ip < iend-15)
{
U32 c = cached; cached = FSE_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = FSE_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = FSE_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = FSE_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
}
ip-=4;
}
/* finish last symbols */
while (ip<iend) { if ((safe) && (*ip>maxSymbolValue)) return (size_t)-FSE_ERROR_GENERIC; Counting1[*ip++]++; }
for (s=0; s<=(int)maxSymbolValue; s++)
{
count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
if (count[s] > max) max = count[s];
}
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
return (size_t)max;
}
/* hidden fast variant (unsafe) */
size_t FSE_FUNCTION_NAME(FSE_countFast, FSE_FUNCTION_EXTENSION)
(unsigned* count, unsigned* maxSymbolValuePtr, const FSE_FUNCTION_TYPE* source, size_t sourceSize)
{
return FSE_FUNCTION_NAME(FSE_count_generic, FSE_FUNCTION_EXTENSION) (count, maxSymbolValuePtr, source, sourceSize, 0);
}
size_t FSE_FUNCTION_NAME(FSE_count, FSE_FUNCTION_EXTENSION)
(unsigned* count, unsigned* maxSymbolValuePtr, const FSE_FUNCTION_TYPE* source, size_t sourceSize)
{
if ((sizeof(FSE_FUNCTION_TYPE)==1) && (*maxSymbolValuePtr >= 255))
{
*maxSymbolValuePtr = 255;
return FSE_FUNCTION_NAME(FSE_count_generic, FSE_FUNCTION_EXTENSION) (count, maxSymbolValuePtr, source, sourceSize, 0);
}
return FSE_FUNCTION_NAME(FSE_count_generic, FSE_FUNCTION_EXTENSION) (count, maxSymbolValuePtr, source, sourceSize, 1);
}
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
size_t FSE_FUNCTION_NAME(FSE_buildCTable, FSE_FUNCTION_EXTENSION)
(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
const unsigned tableSize = 1 << tableLog;
const unsigned tableMask = tableSize - 1;
U16* tableU16 = ( (U16*) ct) + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) (((U32*)ct) + 1 + (tableLog ? tableSize>>1 : 1) );
const unsigned step = FSE_tableStep(tableSize);
unsigned cumul[FSE_MAX_SYMBOL_VALUE+2];
U32 position = 0;
FSE_FUNCTION_TYPE tableSymbol[FSE_MAX_TABLESIZE]; /* init not necessary, but analyzer complain about it */
U32 highThreshold = tableSize-1;
unsigned symbol;
unsigned i;
/* header */
tableU16[-2] = (U16) tableLog;
tableU16[-1] = (U16) maxSymbolValue;
/* For explanations on how to distribute symbol values over the table :
* http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
/* symbol start positions */
cumul[0] = 0;
for (i=1; i<=maxSymbolValue+1; i++)
{
if (normalizedCounter[i-1]==-1) /* Low prob symbol */
{
cumul[i] = cumul[i-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(i-1);
}
else
cumul[i] = cumul[i-1] + normalizedCounter[i-1];
}
cumul[maxSymbolValue+1] = tableSize+1;
/* Spread symbols */
for (symbol=0; symbol<=maxSymbolValue; symbol++)
{
int nbOccurences;
for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++)
{
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* Lowprob area */
}
}
if (position!=0) return (size_t)-FSE_ERROR_GENERIC; /* Must have gone through all positions */
/* Build table */
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE s = tableSymbol[i]; /* static analyzer doesn't understand tableSymbol is properly initialized */
tableU16[cumul[s]++] = (U16) (tableSize+i); /* Table U16 : sorted by symbol order; gives next state value */
}
/* Build Symbol Transformation Table */
{
unsigned s;
unsigned total = 0;
for (s=0; s<=maxSymbolValue; s++)
{
switch (normalizedCounter[s])
{
case 0:
break;
case -1:
case 1:
symbolTT[s].minBitsOut = (BYTE)tableLog;
symbolTT[s].deltaFindState = total - 1;
total ++;
symbolTT[s].maxState = (U16)( (tableSize*2) - 1); /* ensures state <= maxState */
break;
default :
symbolTT[s].minBitsOut = (BYTE)( (tableLog-1) - FSE_highbit32 (normalizedCounter[s]-1) );
symbolTT[s].deltaFindState = total - normalizedCounter[s];
total += normalizedCounter[s];
symbolTT[s].maxState = (U16)( (normalizedCounter[s] << (symbolTT[s].minBitsOut+1)) - 1);
}
}
}
return 0;
}
#define FSE_DECODE_TYPE FSE_TYPE_NAME(FSE_decode_t, FSE_FUNCTION_EXTENSION)
FSE_DTable* FSE_FUNCTION_NAME(FSE_createDTable, FSE_FUNCTION_EXTENSION) (unsigned tableLog)
{
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}
void FSE_FUNCTION_NAME(FSE_freeDTable, FSE_FUNCTION_EXTENSION) (FSE_DTable* dt)
{
free(dt);
}
size_t FSE_FUNCTION_NAME(FSE_buildDTable, FSE_FUNCTION_EXTENSION)
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
U32* const base32 = (U32*)dt;
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (base32+1);
const U32 tableSize = 1 << tableLog;
const U32 tableMask = tableSize-1;
const U32 step = FSE_tableStep(tableSize);
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
U32 position = 0;
U32 highThreshold = tableSize-1;
const S16 largeLimit= (S16)(1 << (tableLog-1));
U32 noLarge = 1;
U32 s;
/* Sanity Checks */
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return (size_t)-FSE_ERROR_maxSymbolValue_tooLarge;
if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_tableLog_tooLarge;
/* Init, lay down lowprob symbols */
base32[0] = tableLog;
for (s=0; s<=maxSymbolValue; s++)
{
if (normalizedCounter[s]==-1)
{
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
}
else
{
if (normalizedCounter[s] >= largeLimit) noLarge=0;
symbolNext[s] = normalizedCounter[s];
}
}
/* Spread symbols */
for (s=0; s<=maxSymbolValue; s++)
{
int i;
for (i=0; i<normalizedCounter[s]; i++)
{
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
}
}
if (position!=0) return (size_t)-FSE_ERROR_GENERIC; /* position must reach all cells once, otherwise normalizedCounter is incorrect */
/* Build Decoding table */
{
U32 i;
for (i=0; i<tableSize; i++)
{
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
U16 nextState = symbolNext[symbol]++;
tableDecode[i].nbBits = (BYTE) (tableLog - FSE_highbit32 ((U32)nextState) );
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
}
}
return noLarge;
}
/******************************************
* FSE byte symbol
******************************************/
#ifndef FSE_COMMONDEFS_ONLY
unsigned FSE_isError(size_t code) { return (code > (size_t)(-FSE_ERROR_maxCode)); }
#define FSE_GENERATE_STRING(STRING) #STRING,
static const char* FSE_errorStrings[] = { FSE_LIST_ERRORS(FSE_GENERATE_STRING) };
const char* FSE_getErrorName(size_t code)
{
static const char* codeError = "Unspecified error code";
if (FSE_isError(code)) return FSE_errorStrings[-(int)(code)];
return codeError;
}
static short FSE_abs(short a)
{
return a<0? -a : a;
}
/****************************************************************
* Header bitstream management
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
size_t maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 1;
return maxSymbolValue ? maxHeaderSize : FSE_MAX_HEADERSIZE;
}
static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
unsigned safeWrite)
{
BYTE* const ostart = (BYTE*) header;
BYTE* out = ostart;
BYTE* const oend = ostart + headerBufferSize;
int nbBits;
const int tableSize = 1 << tableLog;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
bitStream = 0;
bitCount = 0;
/* Table Size */
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
bitCount += 4;
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
nbBits = tableLog+1;
while (remaining>1) /* stops at 1 */
{
if (previous0)
{
unsigned start = charnum;
while (!normalizedCounter[charnum]) charnum++;
while (charnum >= start+24)
{
start+=24;
bitStream += 0xFFFFU << bitCount;
if ((!safeWrite) && (out > oend-2)) return (size_t)-FSE_ERROR_GENERIC; /* Buffer overflow */
out[0] = (BYTE) bitStream;
out[1] = (BYTE)(bitStream>>8);
out+=2;
bitStream>>=16;
}
while (charnum >= start+3)
{
start+=3;
bitStream += 3 << bitCount;
bitCount += 2;
}
bitStream += (charnum-start) << bitCount;
bitCount += 2;
if (bitCount>16)
{
if ((!safeWrite) && (out > oend - 2)) return (size_t)-FSE_ERROR_GENERIC; /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
}
}
{
short count = normalizedCounter[charnum++];
const short max = (short)((2*threshold-1)-remaining);
remaining -= FSE_abs(count);
if (remaining<1) return (size_t)-FSE_ERROR_GENERIC;
count++; /* +1 for extra accuracy */
if (count>=threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
bitStream += count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previous0 = (count==1);
while (remaining<threshold) nbBits--, threshold>>=1;
}
if (bitCount>16)
{
if ((!safeWrite) && (out > oend - 2)) return (size_t)-FSE_ERROR_GENERIC; /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
}
}
/* flush remaining bitStream */
if ((!safeWrite) && (out > oend - 2)) return (size_t)-FSE_ERROR_GENERIC; /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
if (charnum > maxSymbolValue + 1) return (size_t)-FSE_ERROR_GENERIC;
return (out-ostart);
}
size_t FSE_writeNCount (void* header, size_t headerBufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_GENERIC; /* Unsupported */
if (tableLog < FSE_MIN_TABLELOG) return (size_t)-FSE_ERROR_GENERIC; /* Unsupported */
if (headerBufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
return FSE_writeNCount_generic(header, headerBufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
return FSE_writeNCount_generic(header, headerBufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
}
size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
int previous0 = 0;
if (hbSize < 4) return (size_t)-FSE_ERROR_srcSize_wrong;
bitStream = FSE_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return (size_t)-FSE_ERROR_tableLog_tooLarge;
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
while ((remaining>1) && (charnum<=*maxSVPtr))
{
if (previous0)
{
unsigned n0 = charnum;
while ((bitStream & 0xFFFF) == 0xFFFF)
{
n0+=24;
ip+=2;
bitStream = FSE_readLE32(ip) >> bitCount;
}
while ((bitStream & 3) == 3)
{
n0+=3;
bitStream>>=2;
bitCount+=2;
}
n0 += bitStream & 3;
bitCount += 2;
if (n0 > *maxSVPtr) return (size_t)-FSE_ERROR_maxSymbolValue_tooSmall;
while (charnum < n0) normalizedCounter[charnum++] = 0;
ip += bitCount>>3;
bitCount &= 7;
bitStream = FSE_readLE32(ip) >> bitCount;
}
{
const short max = (short)((2*threshold-1)-remaining);
short count;
if ((bitStream & (threshold-1)) < (U32)max)
{
count = (short)(bitStream & (threshold-1));
bitCount += nbBits-1;
}
else
{
count = (short)(bitStream & (2*threshold-1));
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
remaining -= FSE_abs(count);
normalizedCounter[charnum++] = count;
previous0 = !count;
while (remaining < threshold)
{
nbBits--;
threshold >>= 1;
}
{
const BYTE* itarget = ip + (bitCount>>3);
if (itarget > iend - 4)
{
ip = iend - 4;
bitCount -= (int)(8 * (iend - 4 - ip));
}
else
{
ip = itarget;
bitCount &= 7;
}
bitStream = FSE_readLE32(ip) >> (bitCount & 31);
}
}
}
if (remaining != 1) return (size_t)-FSE_ERROR_GENERIC;
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
if ((size_t)(ip-istart) > hbSize) return (size_t)-FSE_ERROR_srcSize_wrong;
return ip-istart;
}
/****************************************************************
* FSE Compression Code
****************************************************************/
/*
FSE_CTable[0] is a variable size structure which contains :
U16 tableLog;
U16 maxSymbolValue;
U16 nextStateNumber[1 << tableLog]; // This size is variable
FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1]; // This size is variable
Allocation is manual, since C standard does not support variable-size structures.
*/
size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
{
size_t size;
FSE_STATIC_ASSERT((size_t)FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)*4 >= sizeof(CTable_max_t)); /* A compilation error here means FSE_CTABLE_SIZE_U32 is not large enough */
if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_GENERIC;
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
return size;
}
FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog)
{
size_t size;
if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
return (FSE_CTable*)malloc(size);
}
void FSE_freeCTable (FSE_CTable* ct)
{
free(ct);
}
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
U32 tableLog = maxTableLog;
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if ((FSE_highbit32((U32)(srcSize - 1)) - 2) < tableLog) tableLog = FSE_highbit32((U32)(srcSize - 1)) - 2; /* Accuracy can be reduced */
if ((FSE_highbit32(maxSymbolValue)+2) > tableLog) tableLog = FSE_highbit32(maxSymbolValue)+2; /* Need a minimum to safely represent all symbol values */
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
return tableLog;
}
typedef struct
{
U32 id;
U32 count;
} rank_t;
int FSE_compareRankT(const void* r1, const void* r2)
{
const rank_t* R1 = (const rank_t*)r1;
const rank_t* R2 = (const rank_t*)r2;
return 2 * (R1->count < R2->count) - 1;
}
#if 0
static size_t FSE_adjustNormSlow(short* norm, int pointsToRemove, const unsigned* count, U32 maxSymbolValue)
{
rank_t rank[FSE_MAX_SYMBOL_VALUE+2];
U32 s;
/* Init */
for (s=0; s<=maxSymbolValue; s++)
{
rank[s].id = s;
rank[s].count = count[s];
if (norm[s] <= 1) rank[s].count = 0;
}
rank[maxSymbolValue+1].id = 0;
rank[maxSymbolValue+1].count = 0; /* ensures comparison ends here in worst case */
/* Sort according to count */
qsort(rank, maxSymbolValue+1, sizeof(rank_t), FSE_compareRankT);
while(pointsToRemove)
{
int newRank = 1;
rank_t savedR;
if (norm[rank[0].id] == 1)
return (size_t)-FSE_ERROR_GENERIC;
norm[rank[0].id]--;
pointsToRemove--;
rank[0].count -= (rank[0].count + 6) >> 3;
if (norm[rank[0].id] == 1)
rank[0].count=0;
savedR = rank[0];
while (rank[newRank].count > savedR.count)
{
rank[newRank-1] = rank[newRank];
newRank++;
}
rank[newRank-1] = savedR;
}
return 0;
}
#else
/* Secondary normalization method.
To be used when primary method fails. */
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
{
U32 s;
U32 distributed = 0;
U32 ToDistribute;
/* Init */
U32 lowThreshold = (U32)(total >> tableLog);
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
for (s=0; s<=maxSymbolValue; s++)
{
if (count[s] == 0)
{
norm[s]=0;
continue;
}
if (count[s] <= lowThreshold)
{
norm[s] = -1;
distributed++;
total -= count[s];
continue;
}
if (count[s] <= lowOne)
{
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
norm[s]=-2;
}
ToDistribute = (1 << tableLog) - distributed;
if ((total / ToDistribute) > lowOne)
{
/* risk of rounding to zero */
lowOne = (U32)((total * 3) / (ToDistribute * 2));
for (s=0; s<=maxSymbolValue; s++)
{
if ((norm[s] == -2) && (count[s] <= lowOne))
{
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
}
ToDistribute = (1 << tableLog) - distributed;
}
if (distributed == maxSymbolValue+1)
{
/* all values are pretty poor;
probably incompressible data (should have already been detected);
find max, then give all remaining points to max */
U32 maxV = 0, maxC =0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) maxV=s, maxC=count[s];
norm[maxV] += (short)ToDistribute;
return 0;
}
{
U64 const vStepLog = 62 - tableLog;
U64 const mid = (1ULL << (vStepLog-1)) - 1;
U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total; /* scale on remaining */
U64 tmpTotal = mid;
for (s=0; s<=maxSymbolValue; s++)
{
if (norm[s]==-2)
{
U64 end = tmpTotal + (count[s] * rStep);
U32 sStart = (U32)(tmpTotal >> vStepLog);
U32 sEnd = (U32)(end >> vStepLog);
U32 weight = sEnd - sStart;
if (weight < 1)
return (size_t)-FSE_ERROR_GENERIC;
norm[s] = (short)weight;
tmpTotal = end;
}
}
}
return 0;
}
#endif
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t total,
unsigned maxSymbolValue)
{
/* Sanity checks */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (tableLog < FSE_MIN_TABLELOG) return (size_t)-FSE_ERROR_GENERIC; /* Unsupported size */
if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_GENERIC; /* Unsupported size */
if ((1U<<tableLog) <= maxSymbolValue) return (size_t)-FSE_ERROR_GENERIC; /* Too small tableLog, compression potentially impossible */
{
U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
U64 const scale = 62 - tableLog;
U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */
U64 const vStep = 1ULL<<(scale-20);
int stillToDistribute = 1<<tableLog;
unsigned s;
unsigned largest=0;
short largestP=0;
U32 lowThreshold = (U32)(total >> tableLog);
for (s=0; s<=maxSymbolValue; s++)
{
if (count[s] == total) return 0;
if (count[s] == 0)
{
normalizedCounter[s]=0;
continue;
}
if (count[s] <= lowThreshold)
{
normalizedCounter[s] = -1;
stillToDistribute--;
}
else
{
short proba = (short)((count[s]*step) >> scale);
if (proba<8)
{
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP)
{
largestP=proba;
largest=s;
}
normalizedCounter[s] = proba;
stillToDistribute -= proba;
}
}
if (-stillToDistribute >= (normalizedCounter[largest] >> 1))
{
/* corner case, need another normalization method */
size_t errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
if (FSE_isError(errorCode)) return errorCode;
}
else normalizedCounter[largest] += (short)stillToDistribute;
}
#if 0
{ /* Print Table (debug) */
U32 s;
U32 nTotal = 0;
for (s=0; s<=maxSymbolValue; s++)
printf("%3i: %4i \n", s, normalizedCounter[s]);
for (s=0; s<=maxSymbolValue; s++)
nTotal += abs(normalizedCounter[s]);
if (nTotal != (1U<<tableLog))
printf("Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
getchar();
}
#endif
return tableLog;
}
/* fake FSE_CTable, for raw (uncompressed) input */
size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
{
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
U16* tableU16 = ( (U16*) ct) + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) ((((U32*)ct)+1) + (tableSize>>1));
unsigned s;
/* Sanity checks */
if (nbBits < 1) return (size_t)-FSE_ERROR_GENERIC; /* min size */
/* header */
tableU16[-2] = (U16) nbBits;
tableU16[-1] = (U16) maxSymbolValue;
/* Build table */
for (s=0; s<tableSize; s++)
tableU16[s] = (U16)(tableSize + s);
/* Build Symbol Transformation Table */
for (s=0; s<=maxSymbolValue; s++)
{
symbolTT[s].minBitsOut = (BYTE)nbBits;
symbolTT[s].deltaFindState = s-1;
symbolTT[s].maxState = (U16)( (tableSize*2) - 1); /* ensures state <= maxState */
}
return 0;
}
/* fake FSE_CTable, for rle (100% always same symbol) input */
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
{
const unsigned tableSize = 1;
U16* tableU16 = ( (U16*) ct) + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) ((U32*)ct + 2);
/* header */
tableU16[-2] = (U16) 0;
tableU16[-1] = (U16) symbolValue;
/* Build table */
tableU16[0] = 0;
tableU16[1] = 0; /* just in case */
/* Build Symbol Transformation Table */
{
symbolTT[symbolValue].minBitsOut = 0;
symbolTT[symbolValue].deltaFindState = 0;
symbolTT[symbolValue].maxState = (U16)(2*tableSize-1); /* ensures state <= maxState */
}
return 0;
}
void FSE_initCStream(FSE_CStream_t* bitC, void* start)
{
bitC->bitContainer = 0;
bitC->bitPos = 0; /* reserved for unusedBits */
bitC->startPtr = (char*)start;
bitC->ptr = bitC->startPtr;
}
void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
{
const U32 tableLog = ( (const U16*) ct) [0];
statePtr->value = (ptrdiff_t)1<<tableLog;
statePtr->stateTable = ((const U16*) ct) + 2;
statePtr->symbolTT = (const FSE_symbolCompressionTransform*)((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
statePtr->stateLog = tableLog;
}
void FSE_addBitsFast(FSE_CStream_t* bitC, size_t value, unsigned nbBits) /* only use if upper bits are clean 0 */
{
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
void FSE_addBits(FSE_CStream_t* bitC, size_t value, unsigned nbBits)
{
static const unsigned mask[] = { 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF, 0x1FFFFFF }; /* up to 25 bits */
bitC->bitContainer |= (value & mask[nbBits]) << bitC->bitPos;
bitC->bitPos += nbBits;
}
void FSE_encodeSymbol(FSE_CStream_t* bitC, FSE_CState_t* statePtr, BYTE symbol)
{
const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
int nbBitsOut = symbolTT.minBitsOut;
nbBitsOut -= (int)((symbolTT.maxState - statePtr->value) >> 31);
FSE_addBits(bitC, statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
void FSE_flushBits(FSE_CStream_t* bitC)
{
size_t nbBytes = bitC->bitPos >> 3;
FSE_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->bitPos &= 7;
bitC->ptr += nbBytes;
bitC->bitContainer >>= nbBytes*8;
}
void FSE_flushCState(FSE_CStream_t* bitC, const FSE_CState_t* statePtr)
{
FSE_addBits(bitC, statePtr->value, statePtr->stateLog);
FSE_flushBits(bitC);
}
size_t FSE_closeCStream(FSE_CStream_t* bitC)
{
char* endPtr;
FSE_addBits(bitC, 1, 1);
FSE_flushBits(bitC);
endPtr = bitC->ptr;
endPtr += bitC->bitPos > 0;
return (endPtr - bitC->startPtr);
}
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* ip;
const BYTE* const iend = istart + srcSize;
FSE_CStream_t bitC;
FSE_CState_t CState1, CState2;
/* init */
(void)dstSize; /* objective : ensure it fits into dstBuffer (Todo) */
FSE_initCStream(&bitC, dst);
FSE_initCState(&CState1, ct);
CState2 = CState1;
ip=iend;
/* join to even */
if (srcSize & 1)
{
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_flushBits(&bitC);
}
/* join to mod 4 */
if ((sizeof(size_t)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) /* test bit 2 */
{
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_flushBits(&bitC);
}
/* 2 or 4 encoding per loop */
while (ip>istart)
{
FSE_encodeSymbol(&bitC, &CState2, *--ip);
if (sizeof(size_t)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
FSE_flushBits(&bitC);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
if (sizeof(size_t)*8 > FSE_MAX_TABLELOG*4+7 ) /* this test must be static */
{
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
}
FSE_flushBits(&bitC);
}
FSE_flushCState(&bitC, &CState2);
FSE_flushCState(&bitC, &CState1);
return FSE_closeCStream(&bitC);
}
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* ip = istart;
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
U32 count[FSE_MAX_SYMBOL_VALUE+1];
S16 norm[FSE_MAX_SYMBOL_VALUE+1];
CTable_max_t ct;
size_t errorCode;
/* early out */
if (dstSize < FSE_compressBound(srcSize)) return (size_t)-FSE_ERROR_dstSize_tooSmall;
if (srcSize <= 1) return srcSize; /* Uncompressed or RLE */
if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
/* Scan input and build symbol stats */
errorCode = FSE_count (count, &maxSymbolValue, ip, srcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode == srcSize) return 1;
if (errorCode < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
errorCode = FSE_normalizeCount (norm, tableLog, count, srcSize, maxSymbolValue);
if (FSE_isError(errorCode)) return errorCode;
/* Write table description header */
errorCode = FSE_writeNCount (op, FSE_MAX_HEADERSIZE, norm, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
op += errorCode;
/* Compress */
errorCode = FSE_buildCTable (ct, norm, maxSymbolValue, tableLog);
if (FSE_isError(errorCode)) return errorCode;
op += FSE_compress_usingCTable(op, oend - op, ip, srcSize, ct);
/* check compressibility */
if ( (size_t)(op-ostart) >= srcSize-1 )
return 0;
return op-ostart;
}
size_t FSE_compress (void* dst, size_t dstSize, const void* src, size_t srcSize)
{
return FSE_compress2(dst, dstSize, src, (U32)srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG);
}
/*********************************************************
* Decompression (Byte symbols)
*********************************************************/
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
U32* const base32 = (U32*)dt;
FSE_decode_t* const cell = (FSE_decode_t*)(base32 + 1);
base32[0] = 0;
cell->newState = 0;
cell->symbol = symbolValue;
cell->nbBits = 0;
return 0;
}
size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
U32* const base32 = (U32*)dt;
FSE_decode_t* dinfo = (FSE_decode_t*)(base32 + 1);
const unsigned tableSize = 1 << nbBits;
const unsigned tableMask = tableSize - 1;
const unsigned maxSymbolValue = tableMask;
unsigned s;
/* Sanity checks */
if (nbBits < 1) return (size_t)-FSE_ERROR_GENERIC; /* min size */
/* Build Decoding Table */
base32[0] = nbBits;
for (s=0; s<=maxSymbolValue; s++)
{
dinfo[s].newState = 0;
dinfo[s].symbol = (BYTE)s;
dinfo[s].nbBits = (BYTE)nbBits;
}
return 0;
}
/* FSE_initDStream
* Initialize a FSE_DStream_t.
* srcBuffer must point at the beginning of an FSE block.
* The function result is the size of the FSE_block (== srcSize).
* If srcSize is too small, the function will return an errorCode;
*/
size_t FSE_initDStream(FSE_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) return (size_t)-FSE_ERROR_srcSize_wrong;
if (srcSize >= sizeof(size_t))
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
bitD->bitContainer = FSE_readLEST(bitD->ptr);
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */
bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
}
else
{
U32 contain32;
bitD->start = (const char*)srcBuffer;
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
default:;
}
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */
bitD->bitsConsumed = 8 - FSE_highbit32(contain32);
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
}
return srcSize;
}
/* FSE_lookBits
* Provides next n bits from the bitContainer.
* bitContainer is not modified (bits are still present for next read/look)
* On 32-bits, maxNbBits==25
* On 64-bits, maxNbBits==57
* return : value extracted.
*/
static size_t FSE_lookBits(FSE_DStream_t* bitD, U32 nbBits)
{
return ((bitD->bitContainer << (bitD->bitsConsumed & ((sizeof(bitD->bitContainer)*8)-1))) >> 1) >> (((sizeof(bitD->bitContainer)*8)-1)-nbBits);
}
static size_t FSE_lookBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */
{
return (bitD->bitContainer << bitD->bitsConsumed) >> ((sizeof(bitD->bitContainer)*8)-nbBits);
}
static void FSE_skipBits(FSE_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/* FSE_readBits
* Read next n bits from the bitContainer.
* On 32-bits, don't read more than maxNbBits==25
* On 64-bits, don't read more than maxNbBits==57
* Use the fast variant *only* if n >= 1.
* return : value extracted.
*/
size_t FSE_readBits(FSE_DStream_t* bitD, U32 nbBits)
{
size_t value = FSE_lookBits(bitD, nbBits);
FSE_skipBits(bitD, nbBits);
return value;
}
size_t FSE_readBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */
{
size_t value = FSE_lookBitsFast(bitD, nbBits);
FSE_skipBits(bitD, nbBits);
return value;
}
unsigned FSE_reloadDStream(FSE_DStream_t* bitD)
{
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
{
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = FSE_readLEST(bitD->ptr);
return FSE_DStream_unfinished;
}
if (bitD->ptr == bitD->start)
{
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return FSE_DStream_partiallyFilled;
if (bitD->bitsConsumed == sizeof(bitD->bitContainer)*8) return FSE_DStream_completed;
return FSE_DStream_tooFar;
}
{
U32 nbBytes = bitD->bitsConsumed >> 3;
U32 result = FSE_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start)
{
nbBytes = (U32)(bitD->ptr - bitD->start); /* note : necessarily ptr > start */
result = FSE_DStream_partiallyFilled;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = FSE_readLEST(bitD->ptr); /* note : necessarily srcSize > sizeof(bitD) */
return result;
}
}
void FSE_initDState(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD, const FSE_DTable* dt)
{
const U32* const base32 = (const U32*)dt;
DStatePtr->state = FSE_readBits(bitD, base32[0]);
FSE_reloadDStream(bitD);
DStatePtr->table = base32 + 1;
}
BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = FSE_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD)
{
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
const U32 nbBits = DInfo.nbBits;
BYTE symbol = DInfo.symbol;
size_t lowBits = FSE_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/* FSE_endOfDStream
Tells if bitD has reached end of bitStream or not */
unsigned FSE_endOfDStream(const FSE_DStream_t* bitD)
{
return ((bitD->ptr == bitD->start) && (bitD->bitsConsumed == sizeof(bitD->bitContainer)*8));
}
unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
FSE_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
size_t errorCode;
/* Init */
errorCode = FSE_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
if (FSE_isError(errorCode)) return errorCode;
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
/* 2 symbols per loop */
while ((FSE_reloadDStream(&bitD)==FSE_DStream_unfinished) && (op<olimit))
{
*op++ = fast ? FSE_decodeSymbolFast(&state1, &bitD) : FSE_decodeSymbol(&state1, &bitD);
if (FSE_MAX_TABLELOG*2+7 > sizeof(size_t)*8) /* This test must be static */
FSE_reloadDStream(&bitD);
*op++ = fast ? FSE_decodeSymbolFast(&state2, &bitD) : FSE_decodeSymbol(&state2, &bitD);
if (FSE_MAX_TABLELOG*4+7 < sizeof(size_t)*8) /* This test must be static */
{
*op++ = fast ? FSE_decodeSymbolFast(&state1, &bitD) : FSE_decodeSymbol(&state1, &bitD);
*op++ = fast ? FSE_decodeSymbolFast(&state2, &bitD) : FSE_decodeSymbol(&state2, &bitD);
}
}
/* tail */
/* note : FSE_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly FSE_DStream_completed */
while (1)
{
if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
break;
*op++ = fast ? FSE_decodeSymbolFast(&state1, &bitD) : FSE_decodeSymbol(&state1, &bitD);
if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
break;
*op++ = fast ? FSE_decodeSymbolFast(&state2, &bitD) : FSE_decodeSymbol(&state2, &bitD);
}
/* end ? */
if (FSE_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2) )
return op-ostart;
if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
}
size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, size_t fastMode)
{
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}
size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
short counting[FSE_MAX_SYMBOL_VALUE+1];
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
size_t errorCode, fastMode;
if (cSrcSize<2) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */
/* normal FSE decoding mode */
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */
ip += errorCode;
cSrcSize -= errorCode;
fastMode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
if (FSE_isError(fastMode)) return fastMode;
/* always return, even if it is an error code */
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt, fastMode);
}
/*********************************************************
* Huff0 : Huffman block compression
*********************************************************/
#define HUF_MAX_SYMBOL_VALUE 255
#define HUF_DEFAULT_TABLELOG 12 /* used by default, when not specified */
#define HUF_MAX_TABLELOG 12 /* max possible tableLog; for allocation purpose; can be modified */
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code is unsupported */
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
# error "HUF_MAX_TABLELOG is too large !"
#endif
typedef struct HUF_CElt_s {
U16 val;
BYTE nbBits;
} HUF_CElt ;
typedef struct nodeElt_s {
U32 count;
U16 parent;
BYTE byte;
BYTE nbBits;
} nodeElt;
#define HUF_HEADERLOG 8
size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* tree, U32 maxSymbolValue, U32 huffLog)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 n;
BYTE* op = (BYTE*)dst;
size_t size;
// check conditions
if (maxSymbolValue > HUF_MAX_SYMBOL_VALUE + 1)
return (size_t)-FSE_ERROR_GENERIC;
for (n=0; n<maxSymbolValue; n++)
huffWeight[n] = tree[n].nbBits ? (BYTE)(huffLog + 1 - tree[n].nbBits) : 0;
size = FSE_compress(op+1, maxDstSize-1, huffWeight, maxSymbolValue); // don't need last symbol stat : implied
if (FSE_isError(size)) return size;
if (size >= 128) return (size_t)-FSE_ERROR_GENERIC;
if (size <= 1) return (size_t)-FSE_ERROR_GENERIC; // special case, not implemented
op[0] = (BYTE)size;
return size+1;
}
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
{
int totalCost = 0;
const U32 largestBits = huffNode[lastNonNull].nbBits;
// early exit : all is fine
if (largestBits <= maxNbBits) return largestBits;
// now we have a few too large elements (at least >= 2)
{
const U32 baseCost = 1 << (largestBits - maxNbBits);
U32 n = lastNonNull;
while (huffNode[n].nbBits > maxNbBits)
{
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
huffNode[n].nbBits = (BYTE)maxNbBits;
n --;
}
/* renorm totalCost */
totalCost >>= (largestBits - maxNbBits); /* note : totalCost necessarily multiple of baseCost */
// repay cost
while (huffNode[n].nbBits == maxNbBits) n--; // n at last of rank (maxNbBits-1)
{
const U32 noOne = 0xF0F0F0F0;
// Get pos of last (smallest) symbol per rank
U32 rankLast[HUF_MAX_TABLELOG];
U32 currentNbBits = maxNbBits;
int pos;
memset(rankLast, 0xF0, sizeof(rankLast));
for (pos=n ; pos >= 0; pos--)
{
if (huffNode[pos].nbBits >= currentNbBits) continue;
currentNbBits = huffNode[pos].nbBits;
rankLast[maxNbBits-currentNbBits] = pos;
}
while (totalCost > 0)
{
U32 nBitsToDecrease = FSE_highbit32(totalCost) + 1;
for ( ; nBitsToDecrease > 1; nBitsToDecrease--)
{
U32 highPos = rankLast[nBitsToDecrease];
U32 lowPos = rankLast[nBitsToDecrease-1];
if (highPos == noOne) continue;
if (lowPos == noOne) break;
{
U32 highTotal = huffNode[highPos].count;
U32 lowTotal = 2 * huffNode[lowPos].count;
if (highTotal <= lowTotal) break;
}
}
while (rankLast[nBitsToDecrease] == noOne)
nBitsToDecrease ++; // In some rare cases, no more rank 1 left => overshoot to closest
totalCost -= 1 << (nBitsToDecrease-1);
if (rankLast[nBitsToDecrease-1] == noOne)
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; // now there is one elt
huffNode[rankLast[nBitsToDecrease]].nbBits ++;
rankLast[nBitsToDecrease]--;
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
rankLast[nBitsToDecrease] = noOne; // rank list emptied
}
while (totalCost < 0) // Sometimes, cost correction overshoot
{
if (rankLast[1] == noOne) /* special case, no weight 1, let's find it back at n */
{
while (huffNode[n].nbBits == maxNbBits) n--;
huffNode[n+1].nbBits--;
rankLast[1] = n+1;
totalCost++;
continue;
}
huffNode[ rankLast[1] + 1 ].nbBits--;
rankLast[1]++;
totalCost ++;
}
}
}
return maxNbBits;
}
typedef struct {
U32 base;
U32 current;
} rankPos;
static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
{
rankPos rank[32];
U32 n;
memset(rank, 0, sizeof(rank));
for (n=0; n<=maxSymbolValue; n++)
{
U32 r = FSE_highbit32(count[n] + 1);
rank[r].base ++;
}
for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
for (n=0; n<32; n++) rank[n].current = rank[n].base;
for (n=0; n<=maxSymbolValue; n++)
{
U32 c = count[n];
U32 r = FSE_highbit32(c+1) + 1;
U32 pos = rank[r].current++;
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
huffNode[pos].count = c;
huffNode[pos].byte = (BYTE)n;
}
}
#define STARTNODE (HUF_MAX_SYMBOL_VALUE+1)
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
{
nodeElt huffNode0[2*HUF_MAX_SYMBOL_VALUE+1 +1];
nodeElt* huffNode = huffNode0 + 1;
U32 n, nonNullRank;
int lowS, lowN;
U16 nodeNb = STARTNODE;
U32 nodeRoot;
// check
if (maxSymbolValue > 255) return (size_t)-FSE_ERROR_GENERIC;
memset(huffNode0, 0, sizeof(huffNode0));
// sort, decreasing order
HUF_sort(huffNode, count, maxSymbolValue);
// init for parents
nonNullRank = maxSymbolValue;
while(huffNode[nonNullRank].count == 0) nonNullRank--;
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
nodeNb++; lowS-=2;
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
huffNode0[0].count = (U32)(1U<<31);
// create parents
while (nodeNb <= nodeRoot)
{
U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
huffNode[n1].parent = huffNode[n2].parent = nodeNb;
nodeNb++;
}
// distribute weights (unlimited tree height)
huffNode[nodeRoot].nbBits = 0;
for (n=nodeRoot-1; n>=STARTNODE; n--)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
for (n=0; n<=nonNullRank; n++)
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
// enforce maxTableLog
maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
// fill result into tree (val, nbBits)
{
U16 nbPerRank[HUF_ABSOLUTEMAX_TABLELOG+1] = {0};
U16 valPerRank[HUF_ABSOLUTEMAX_TABLELOG+1];
if (maxNbBits > HUF_ABSOLUTEMAX_TABLELOG) return (size_t)-FSE_ERROR_GENERIC; // check
for (n=0; n<=nonNullRank; n++)
nbPerRank[huffNode[n].nbBits]++;
{
// determine stating value per rank
U16 min = 0;
for (n=maxNbBits; n>0; n--)
{
valPerRank[n] = min; // get starting value within each rank
min += nbPerRank[n];
min >>= 1;
}
}
for (n=0; n<=maxSymbolValue; n++)
tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; // push nbBits per symbol, symbol order
for (n=0; n<=maxSymbolValue; n++)
tree[n].val = valPerRank[tree[n].nbBits]++; // assign value within rank, symbol order
}
return maxNbBits;
}
static size_t HUF_compress_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, HUF_CElt* CTable)
{
const BYTE* ip = (const BYTE*) src;
BYTE* const ostart = (BYTE*)dst;
BYTE* op = (BYTE*) ostart;
U16* jumpTable = (U16*) dst;
size_t n, streamSize;
FSE_CStream_t bitC;
/* init */
(void)dstSize; /* objective : ensure it fits into dstBuffer (Todo) */
op += 6; /* jump Table -- could be optimized by delta / deviation */
FSE_initCStream(&bitC, op);
#define FSE_FLUSHBITS_32(stream) \
if (FSE_32bits()) FSE_flushBits(stream)
n = srcSize & ~15; // mod 16
switch (srcSize & 15)
{
case 15: FSE_addBitsFast(&bitC, CTable[ip[n+14]].val, CTable[ip[n+14]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 14: FSE_addBitsFast(&bitC, CTable[ip[n+13]].val, CTable[ip[n+13]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 13: FSE_addBitsFast(&bitC, CTable[ip[n+12]].val, CTable[ip[n+12]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 12: FSE_addBitsFast(&bitC, CTable[ip[n+11]].val, CTable[ip[n+11]].nbBits);
FSE_flushBits(&bitC);
case 11: FSE_addBitsFast(&bitC, CTable[ip[n+10]].val, CTable[ip[n+10]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 10: FSE_addBitsFast(&bitC, CTable[ip[n+9]].val, CTable[ip[n+9]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 9 : FSE_addBitsFast(&bitC, CTable[ip[n+8]].val, CTable[ip[n+8]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 8 : FSE_addBitsFast(&bitC, CTable[ip[n+7]].val, CTable[ip[n+7]].nbBits);
FSE_flushBits(&bitC);
case 7 : FSE_addBitsFast(&bitC, CTable[ip[n+6]].val, CTable[ip[n+6]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 6 : FSE_addBitsFast(&bitC, CTable[ip[n+5]].val, CTable[ip[n+5]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 5 : FSE_addBitsFast(&bitC, CTable[ip[n+4]].val, CTable[ip[n+4]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 4 : FSE_addBitsFast(&bitC, CTable[ip[n+3]].val, CTable[ip[n+3]].nbBits);
FSE_flushBits(&bitC);
case 3 : FSE_addBitsFast(&bitC, CTable[ip[n+2]].val, CTable[ip[n+2]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 2 : FSE_addBitsFast(&bitC, CTable[ip[n+1]].val, CTable[ip[n+1]].nbBits);
FSE_FLUSHBITS_32(&bitC);
case 1 : FSE_addBitsFast(&bitC, CTable[ip[n+0]].val, CTable[ip[n+0]].nbBits);
FSE_flushBits(&bitC);
case 0 :
default: ;
}
for (; n>0; n-=16)
{
FSE_addBitsFast(&bitC, CTable[ip[n- 4]].val, CTable[ip[n- 4]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n- 8]].val, CTable[ip[n- 8]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-12]].val, CTable[ip[n-12]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-16]].val, CTable[ip[n-16]].nbBits);
FSE_flushBits(&bitC);
}
streamSize = FSE_closeCStream(&bitC);
FSE_writeLE16(jumpTable, (U16)streamSize);
op += streamSize;
FSE_initCStream(&bitC, op);
n = srcSize & ~15; // mod 16
for (; n>0; n-=16)
{
FSE_addBitsFast(&bitC, CTable[ip[n- 3]].val, CTable[ip[n- 3]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n- 7]].val, CTable[ip[n- 7]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-11]].val, CTable[ip[n-11]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-15]].val, CTable[ip[n-15]].nbBits);
FSE_flushBits(&bitC);
}
streamSize = FSE_closeCStream(&bitC);
FSE_writeLE16(jumpTable+1, (U16)streamSize);
op += streamSize;
FSE_initCStream(&bitC, op);
n = srcSize & ~15; // mod 16
for (; n>0; n-=16)
{
FSE_addBitsFast(&bitC, CTable[ip[n- 2]].val, CTable[ip[n- 2]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n- 6]].val, CTable[ip[n- 6]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-10]].val, CTable[ip[n-10]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-14]].val, CTable[ip[n-14]].nbBits);
FSE_flushBits(&bitC);
}
streamSize = FSE_closeCStream(&bitC);
FSE_writeLE16(jumpTable+2, (U16)streamSize);
op += streamSize;
FSE_initCStream(&bitC, op);
n = srcSize & ~15; // mod 16
for (; n>0; n-=16)
{
FSE_addBitsFast(&bitC, CTable[ip[n- 1]].val, CTable[ip[n- 1]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n- 5]].val, CTable[ip[n- 5]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n- 9]].val, CTable[ip[n- 9]].nbBits);
FSE_FLUSHBITS_32(&bitC);
FSE_addBitsFast(&bitC, CTable[ip[n-13]].val, CTable[ip[n-13]].nbBits);
FSE_flushBits(&bitC);
}
streamSize = FSE_closeCStream(&bitC);
op += streamSize;
return op-ostart;
}
size_t HUF_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned huffLog)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
BYTE* const oend = ostart + dstSize;
U32 count[HUF_MAX_SYMBOL_VALUE+1];
HUF_CElt CTable[HUF_MAX_SYMBOL_VALUE+1];
size_t errorCode;
/* early out */
if (dstSize < FSE_compressBound(srcSize)) return (size_t)-FSE_ERROR_dstSize_tooSmall;
if (srcSize <= 1) return srcSize; /* Uncompressed or RLE */
if (!maxSymbolValue) maxSymbolValue = HUF_MAX_SYMBOL_VALUE;
if (!huffLog) huffLog = HUF_DEFAULT_TABLELOG;
/* Scan input and build symbol stats */
errorCode = FSE_count (count, &maxSymbolValue, (const BYTE*)src, srcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode == srcSize) return 1;
if (errorCode < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
/* Build Huffman Tree */
errorCode = HUF_buildCTable (CTable, count, maxSymbolValue, huffLog);
if (FSE_isError(errorCode)) return errorCode;
huffLog = (U32)errorCode;
/* Write table description header */
errorCode = HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog); /* don't write last symbol, implied */
if (FSE_isError(errorCode)) return errorCode;
op += errorCode;
/* Compress */
op += HUF_compress_usingCTable(op, oend - op, src, srcSize, CTable);
/* check compressibility */
if ((size_t)(op-ostart) >= srcSize-1)
return 0;
return op-ostart;
}
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
{
return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_DEFAULT_TABLELOG);
}
/*********************************************************
* Huff0 : Huffman block decompression
*********************************************************/
typedef struct {
BYTE byte;
BYTE nbBits;
} HUF_DElt;
size_t HUF_readDTable (U16* DTable, const void* src, size_t srcSize)
{
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1] = {0};
U32 weightTotal = 0;
U32 maxBits;
const BYTE* ip = (const BYTE*) src;
size_t iSize = ip[0];
size_t oSize;
U32 n;
U32 nextRankStart;
HUF_DElt* const dt = (HUF_DElt*)(DTable + 1);
FSE_STATIC_ASSERT(sizeof(HUF_DElt) == sizeof(U16)); // if compilation fails here, assertion is false
if (iSize >= 128) return (size_t)-FSE_ERROR_GENERIC; // special case, not implemented
if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
oSize = FSE_decompress(huffWeight, HUF_MAX_SYMBOL_VALUE, ip+1, iSize); // max 255 values stored, last is implied
if (FSE_isError(oSize)) return oSize;
// stats on weights
for (n=0; n<oSize; n++)
{
rankVal[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
}
// get last symbol weight(implied)
maxBits = FSE_highbit32(weightTotal) + 1;
if (maxBits > DTable[0]) return (size_t)-FSE_ERROR_GENERIC; // DTable is too small
DTable[0] = (U16)maxBits;
{
U32 total = 1 << maxBits;
U32 rest = total - weightTotal;
U32 verif = 1 << FSE_highbit32(rest);
if (verif != rest) return (size_t)-FSE_ERROR_GENERIC; // last value must be a clean power of 2
huffWeight[oSize] = (BYTE)(FSE_highbit32(rest) + 1);
rankVal[huffWeight[oSize]]++;
}
// Prepare ranks
nextRankStart = 0;
for (n=1; n<=maxBits; n++)
{
U32 current = nextRankStart;
nextRankStart += (rankVal[n] << (n-1));
rankVal[n] = current;
}
// fill table
for (n=0; n<=oSize; n++)
{
U32 i;
const U32 w = huffWeight[n];
const U32 length = (1 << w) >> 1;
HUF_DElt D;
D.byte = (BYTE)n; D.nbBits = (BYTE)(maxBits + 1 - w);
for (i = rankVal[w]; i < rankVal[w] + length; i++)
dt[i] = D;
rankVal[w] += length;
}
return iSize+1;
}
/*
#define HUF_DECODE_SYMBOL(n, Dstream) \
val = FSE_lookBitsFast(&Dstream, dtLog); \
c = dt[val].byte; \
FSE_skipBits(&Dstream, dt[val].nbBits); \
op[n] = c;
*/
static void HUF_decodeSymbol(BYTE* ptr, FSE_DStream_t* Dstream, const HUF_DElt* dt, U32 dtLog)
{
size_t val = FSE_lookBitsFast(Dstream, dtLog);
BYTE c = dt[val].byte;
FSE_skipBits(Dstream, dt[val].nbBits);
*ptr = c;
}
static size_t HUF_decompress_usingDTable(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-15;
const HUF_DElt* const dt = (const HUF_DElt*)(DTable+1);
const U32 dtLog = DTable[0];
size_t errorCode;
U32 reloadStatus;
/* Init */
const U16* jumpTable = (const U16*)cSrc;
const size_t length1 = FSE_readLE16(jumpTable);
const size_t length2 = FSE_readLE16(jumpTable+1);
const size_t length3 = FSE_readLE16(jumpTable+2);
const size_t length4 = cSrcSize - 6 - length1 - length2 - length3; // check coherency !!
const char* const start1 = (const char*)(cSrc) + 6;
const char* const start2 = start1 + length1;
const char* const start3 = start2 + length2;
const char* const start4 = start3 + length3;
FSE_DStream_t bitD1, bitD2, bitD3, bitD4;
errorCode = FSE_initDStream(&bitD1, start1, length1);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD2, start2, length2);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD3, start3, length3);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD4, start4, length4);
if (FSE_isError(errorCode)) return errorCode;
reloadStatus=FSE_reloadDStream(&bitD2);
/* 16 symbols per loop */
for ( ; (reloadStatus<FSE_DStream_completed) && (op<olimit); /* D2-3-4 are supposed to be synchronized and finish together */
op+=16, reloadStatus = FSE_reloadDStream(&bitD2) | FSE_reloadDStream(&bitD3) | FSE_reloadDStream(&bitD4), FSE_reloadDStream(&bitD1))
{
#define HUF_DECODE_SYMBOL_0(n, Dstream) \
HUF_decodeSymbol(op+n, &Dstream, dt, dtLog);
#define HUF_DECODE_SYMBOL_1(n, Dstream) \
HUF_decodeSymbol(op+n, &Dstream, dt, dtLog); \
if (FSE_32bits() && (HUF_MAX_TABLELOG>12)) FSE_reloadDStream(&Dstream)
#define HUF_DECODE_SYMBOL_2(n, Dstream) \
HUF_decodeSymbol(op+n, &Dstream, dt, dtLog); \
if (FSE_32bits()) FSE_reloadDStream(&Dstream)
HUF_DECODE_SYMBOL_1( 0, bitD1);
HUF_DECODE_SYMBOL_1( 1, bitD2);
HUF_DECODE_SYMBOL_1( 2, bitD3);
HUF_DECODE_SYMBOL_1( 3, bitD4);
HUF_DECODE_SYMBOL_2( 4, bitD1);
HUF_DECODE_SYMBOL_2( 5, bitD2);
HUF_DECODE_SYMBOL_2( 6, bitD3);
HUF_DECODE_SYMBOL_2( 7, bitD4);
HUF_DECODE_SYMBOL_1( 8, bitD1);
HUF_DECODE_SYMBOL_1( 9, bitD2);
HUF_DECODE_SYMBOL_1(10, bitD3);
HUF_DECODE_SYMBOL_1(11, bitD4);
HUF_DECODE_SYMBOL_0(12, bitD1);
HUF_DECODE_SYMBOL_0(13, bitD2);
HUF_DECODE_SYMBOL_0(14, bitD3);
HUF_DECODE_SYMBOL_0(15, bitD4);
}
if (reloadStatus!=FSE_DStream_completed) /* not complete : some bitStream might be 0 (unfinished) */
return (size_t)-FSE_ERROR_corruptionDetected;
/* tail */
{
// bitTail = bitD1; // *much* slower : -20% !??!
FSE_DStream_t bitTail;
bitTail.ptr = bitD1.ptr;
bitTail.bitsConsumed = bitD1.bitsConsumed;
bitTail.bitContainer = bitD1.bitContainer; // required in case FSE_DStream_partiallyFilled
bitTail.start = start1;
for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op<omax) ; op++)
{
HUF_DECODE_SYMBOL_0(0, bitTail);
}
if (FSE_endOfDStream(&bitTail))
return op-ostart;
}
if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
}
size_t HUF_decompress (void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
{
HUF_CREATE_STATIC_DTABLE(DTable, HUF_MAX_TABLELOG);
const BYTE* ip = (const BYTE*) cSrc;
size_t errorCode;
errorCode = HUF_readDTable (DTable, cSrc, cSrcSize);
if (FSE_isError(errorCode)) return errorCode;
if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
ip += errorCode;
cSrcSize -= errorCode;
return HUF_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, DTable);
}
#endif /* FSE_COMMONDEFS_ONLY */