Compress the input twice in the `simple_round_trip` and
`dictionary_round_trip` fuzzers with exactly the same parameters, but
reusing the context. Then ensure that the compressed output is
identical.
Call `ZSTD_enforceMaxDist()` before each block with the beginning of the
block. This ensures that `lowLimit` is updated to `dictLimit` whenever
the ext-dict is out of range, so we can use prefix mode for speed.
This can cause non-determinism because prefix mode and ext-dict mode
match finders can return different results. It can also hurt speed
because ext-dict match finders are slower.
The scenario is:
1. Compress large data with a dictionary.
2. The dictionary goes out of bounds, so we invalidate it.
3. However, we still have `lowLimit < dictLimit`, since it is
never updated.
4. We will call the ext-dict match finder instead of the prefix one.
The repcode checks disallowed repcodes that are equal to `windowLow`.
This is slightly inefficient, but isn't a problem on its own. Together
with the next commit, it cause non-determinism.
`ZSTD_insertBt1()` has a speed optimization that skips the prefix of
very long matches.
40def70387/lib/compress/zstd_opt.c (L476)
This optimization is based off the length longest match found. However,
when indices are reset, we only ensure that we can reference the whole
window starting from `ip`. If the previous block ended with a long match
then `nextToUpdate` could be much less than `ip`. It might be far enough
back that `nextToUpdate < maxDist`, so it doesn't have a full window of
data to reference. This can cause non-determinism bugs, because we may
find a match that is beyond `ip - maxDist`, and may sometimes be
un-referencable, and that match triggers the speed optimization.
The fix is to base the `windowLow` off of the `target` of
`ZSTD_updateTree_internal()`, because anything below that value will be
obsolete by the time `ZSTD_updateTree_internal()` completes.
With small enough input files, the inferred value of fileWindowLog could
be smaller than ZSTD_WINDOWLOG_MIN.
This can be reproduced like so:
$ echo abc > small
$ echo abcdef > small2
$ zstd --patch-from small small2 -o patch
previously, this would fail with the error "zstd: error 11 : Parameter is out of bound"
and restored limit to 256 when in 64-bit mode
(it was reduced to 200 to give more room for 32-bit).
This should fix test instability issues
using lot of threads in 32-bit environments.
When running armv6 userspace on armv8 hardware with a 64 bit Linux kernel,
the mode 2 caused SIGBUS (unaligned memory access).
Running all our arm builds in the build farm
only on armv8 simplifies administration a lot.
Depending on compiler and environment, this change might slow down
memory accesses (did not benchmark it). The original analysis is 6 years old.
Fixes#2632
the new alignment setting is better for gcc-9 and gcc-10
by about ~+5%.
Unfortunately, it's worse for essentially all other compilers.
Make the new alignment setting conditional to gcc-9+.
changed strategy,
now unconditionally prefetch the first 2 cache lines,
instead of cache lines corresponding to the first and last bytes of the match.
This better corresponds to cpu expectation,
which should auto-prefetch following cachelines on detecting the sequential nature of the read.
This is globally positive, by +5%,
though exact gains depend on compiler (from -2% to +15%).
The only negative counter-example is gcc-9.
Linearly back off the frequency of overflow correction based on the
number of times the `ZSTD_window_t` has been overflow corrected. This
will still allow the fuzzer to quickly find overflow correction bugs,
while also keeping good speed for larger inputs.
Additionally, the `nbOverflowCorrections` variable can be useful for
debugging coredumps, since we can inspect the `ZSTD_CCtx` to see if
overflow correction has happened yet.
I've verified this fixes the timeouts in OSS-Fuzz (176 seconds -> 6
seconds). I've also verified that fuzzers and `fuzzer` and `zstreamtest`
still catch the row-hash overflow correction bug.