* Move all ZSTDMT parameter setting code to ZSTD_CCtxParams_*Parameter().
ZSTDMT now calls these functions, so we can keep all the logic in the
same place.
* Clean up `ZSTD_CCtx_setParameter()` to only add extra checks where needed.
* Clean up `ZSTDMT_initJobCCtxParams()` by copying all parameters by default,
and then zeroing the ones that need to be zeroed. We've missed adding several
parameters here, and it makes more sense to only have to update it if you
change something in ZSTDMT.
* Add `ZSTDMT_cParam_clampBounds()` to clamp a parameter into its valid
range. Use this to keep backwards compatibility when setting ZSTDMT parameters,
which clamp into the valid range.
tells in a non-blocking way if there is something ready to flush right now.
only works with multi-threading for the time being.
Useful to know if flush speed will be limited by lack of production.
[zstdmt] Fix jobsize bugs
* `ZSTDMT_serialState_reset()` should use `targetSectionSize`, not `jobSize` when sizing the seqstore.
Add an assert that checks that we sized the seqstore using the right job size.
* `ZSTDMT_compressionJob()` should check if `rawSeqStore.seq == NULL`.
* `ZSTDMT_initCStream_internal()` should not adjust `mtctx->params.jobSize` (clamping to MIN/MAX is okay).
It's not necessary to ensure that no job is ongoing.
The pool is only expanded, existing threads are preserved.
In case of error, the only option is to return NULL and terminate the thread pool anyway.
In the new advanced API, adjust the parameters even if they are explicitly
set. This mainly applies to the `windowLog`, and accordingly the `hashLog`
and `chainLog`, when the source size is known.
There were 2 competing set of debug functions
within zstd_internal.h and bitstream.h.
They were mostly duplicate, and required care to avoid messing with each other.
There is now a single implementation, shared by both.
Significant change :
The macro variable ZSTD_DEBUG does no longer exist,
it has been replaced by DEBUGLEVEL,
which required modifying several source files.
in this version, literal compression is always disabled for ZSTD_fast strategy.
Performance parity between ZSTD_compress_advanced() and ZSTD_compress_generic()
Zstdmt uses prefixes to load the overlap between segments. Loading extra
positions makes compression non-deterministic, depending on the previous
job the context was used for. Since loading extra position takes extra
time as well, only do it when creating a `ZSTD_CDict`.
Fixes#1077.
The `avgJobSize` must not be lower than 256 KB for single-pass mode.
In `zstd.h` we say the minimum value for `ZSTD_p_jobSize` is 1 MB,
so ensure that we always pick a size >= 1 MB.
Found by libFuzzer fuzzer tests with large input limits.
Integrate ldm into zstdmt by running it in serial and in order in the first
step of each job, in the same place as the hash gets updated. The input
buffer is sized to fit the whole LDM window and 2 full buffers of slack.
Input buffers cannot be reused until the LDM step is done with them.
After the LDM step is finished, the jobs don't actually have access to the
full window, only the overlap.
Tested on a few different multi-GB files with and without sanitizers,
and with different numbers of threads.