The COVER and FASTCOVER dictionary builders can deadlock when
dictionary construction errors, likely because there are too few
samples, or too few distinct dmers. The deadlock only occurs when
there are errors.
Fixes#1746.
* The algorithm would bail as soon as it found one epoch that
contained no new segments. Change it so it now has to fail
>= 10 times in a row (10 for fastcover, 10-100 for cover).
* The algorithm uses the `maxDict` size to decide the epoch size.
When this size is absurdly large, it causes tiny epochs. Lower
bound the epoch size at 10x the segment size, and warn the user
that their training set is too small.
Fixes#1554
as suggested in #1441.
generally U32 and unsigned are the same thing,
except when they are not ...
case : 32-bit compilation for MIPS (uint32_t == unsigned long)
A vast majority of transformation consists in transforming U32 into unsigned.
In rare cases, it's the other way around (typically for internal code, such as seeds).
Among a few issues this patches solves :
- some parameters were declared with type `unsigned` in *.h,
but with type `U32` in their implementation *.c .
- some parameters have type unsigned*,
but the caller user a pointer to U32 instead.
These fixes are useful.
However, the bulk of changes is about %u formating,
which requires unsigned type,
but generally receives U32 values instead,
often just for brevity (U32 is shorter than unsigned).
These changes are generally minor, or even annoying.
As a consequence, the amount of code changed is larger than I would expect for such a patch.
Testing is also a pain :
it requires manually modifying `mem.h`,
in order to lie about `U32`
and force it to be an `unsigned long` typically.
On a 64-bit system, this will break the equivalence unsigned == U32.
Unfortunately, it will also break a few static_assert(), controlling structure sizes.
So it also requires modifying `debug.h` to make `static_assert()` a noop.
And then reverting these changes.
So it's inconvenient, and as a consequence,
this property is currently not checked during CI tests.
Therefore, these problems can emerge again in the future.
I wonder if it is worth ensuring proper distinction of U32 != unsigned in CI tests.
It's another restriction for coding, adding more frustration during merge tests,
since most platforms don't need this distinction (hence contributor will not see it),
and while this can matter in theory, the number of platforms impacted seems minimal.
Thoughts ?
note : for some reason,
scan-build version on my laptop found problems within fastcover.c
that scan-build on travisCI does not flag.
They are, as usual, false positive :
the analyzer does not understand that a table (`offset`) is correctly filled before usage.
* Minor fix
* Run non-optimize FASTCOVER 5 times in benchmark
* Merge fastCover into dictBuilder
* Fix mixed declaration issue
* Add fastcover to symbol.c
* Add fastCover.c and cover.h to build
* Change fastCover.c to fastcover.c
* Update benchmark to run FASTCOVER in dictBuilder
* Undo spliting fastcover_param into cover_param and f
* Remove convert param functions
* Assign f to parameter
* Add zdict.h to Makefile in lib
* Add cover.h to BUCK
* Cast 1 to U64 before shifting
* Remove trimming of zero freq head and tail in selectSegment and rebenchmark
* Remove f as a separate parameter of tryParam
* Read 8 bytes when d is 6
* Add trimming off zero frequency head and tail
* Use best functions from COVER and remove trimming part(which leads to worse compression ratio after previous bugs were fixed)
* Add finalize= argument to FASTCOVER to specify percentage of training samples passed to ZDICT_finalizeDictionary
* Change nbDmer to always read 8 bytes even when d=6
* Add skip=# argument to allow skipping dmers in computeFrequency in FASTCOVER
* Update comments and benchmarking result
* Change default method of ZDICT_trainFromBuffer to ZDICT_optimizeTrainFromBuffer_fastCover
* Add dictType enum and fix bug about passing zParam when converting to coverParam
* Combine finalize and skip into a single parameter
* Update acceleration parameters and benchmark on 3 sample sets
* Change default splitPoint of FASTCOVER to 0.75 and benchmark first 3 sample sets
* Initialize variables outside of for loop in benchmark.c
* Update benchmark result for hg-manifest
* Remove cover.h from install-includes
* Add explanation of f
* Set default compression level for trainFromBuffer to 3
* Add assertion of fastCoverParams in DiB_trainFromFiles
* Add checkTotalCompressedSize function + some minor fixes
* Add test for multithreading fastCovr
* Initialize segmentFreqs in every FASTCOVER_selectSegment and move mutex_unnlock to end of COVER_best_finish
* Free segmentFreqs
* Initialize segmentFreqs before calling FASTCOVER_buildDictionary instead of in FASTCOVER_selectSegment
* Add FASTCOVER_MEMMULT
* Minor fix
* Update benchmarking result
There were 2 competing set of debug functions
within zstd_internal.h and bitstream.h.
They were mostly duplicate, and required care to avoid messing with each other.
There is now a single implementation, shared by both.
Significant change :
The macro variable ZSTD_DEBUG does no longer exist,
it has been replaced by DEBUGLEVEL,
which required modifying several source files.
The cover algorithm selects one segment per epoch, and it selects the epoch
size such that `epochs * segmentSize ~= dictSize`. Selecting less epochs
gives the algorithm more candidates to choose from for each segment it
selects, and then it will loop back to the first epoch when it hits the
last one.
The trade off is that now it takes longer to select each segment, since it
has to look at more data before making a choice.
I benchmarked on the following data sets using this command:
```sh
$ZSTD -T0 -3 --train-cover=d=8,steps=256 $DIR -r -o dict && $ZSTD -3 -D dict -rc $DIR | wc -c
```
| Data set | k (approx) | Before | After | % difference |
|--------------|------------|----------|----------|--------------|
| GitHub | ~1000 | 738138 | 746610 | +1.14% |
| hg-changelog | ~90 | 4295156 | 4285336 | -0.23% |
| hg-commands | ~500 | 1095580 | 1079814 | -1.44% |
| hg-manifest | ~400 | 16559892 | 16504346 | -0.34% |
There is some noise in the measurements, since small changes to `k` can
have large differences, which is why I'm using `steps=256`, to try to
minimize the noise. However, the GitHub data set still has some noise.
If I run the GitHub data set on my Mac, which presumably lists directory
entries in a different order, so the dictionary builder sees the files in
a different order, or I use `steps=1024` I see these results.
| Run | Before | After | % difference |
|------------|--------|--------|--------------|
| steps=1024 | 738138 | 734470 | -0.50% |
| MacBook | 738451 | 737132 | -0.18% |
Question: Should we expose this as a parameter? I don't think it is
necessary. Someone might want to turn it up to exchange a much longer
dictionary building time in exchange for a slightly better dictionary.
I tested `2`, `4`, and `16`, and `4` got most of the benefit of `16`
with a faster running time.
Pathological samples may result in literal section being incompressible.
This case is now detected,
and literal distribution is replaced by one that can be written into the dictionary.