PR #2784 introduced a bug in the decompressor that caused some valid
inputs to fail to decompress. The bitstream isn't reloaded after the 4X*
loop if the number of elements remaining is small enough, causing us to
read more bits than are available in the bitcontainer.
This was caught by the MSAN fuzzer in OSS-Fuzz because the assembly
implementation isn't used in the MSAN build.
Credit to OSS-Fuzz.
Commit d7ef97a013b5
("[build] Fix oss-fuzz build with the dataflow sanitizer") broke
build inside Linux-kernel after 'import', as it no longer can
conditionally remove ZSTD_MEMORY_SANITIZER definition from
the #if DEF_A || DEF_B block. This emits -Wundef warning which
can be treated as error.
Split this preprocessor condition into two separate conditions
to fix this.
Fixes: d7ef97a013b5 ("[build] Fix oss-fuzz build with the dataflow sanitizer")
Signed-off-by: Alexander Lobakin <alobakin@pm.me>
* Switch to yearless copyright per FB policy
* Fix up SPDX-License-Identifier lines in `contrib/linux-kernel` sources
* Add zstd copyright/license header to the `contrib/linux-kernel` sources
* Update the `tests/test-license.py` to check for yearless copyright
* Improvements to `tests/test-license.py`
* Check `contrib/linux-kernel` in `tests/test-license.py`
* Move `counting` to a struct in `FSE_decompress_wksp_body()`
* Fix error code in `FSE_decompress_wksp_body()`
* Rename a variable in `HUF_ReadDTableX2_Workspace`
The unused function definitions are hidden behind a
`#ifndef ZSTD_NO_UNUSED_FUNCTIONS` check.
Initially hiding all functions which are unused and take up more than
2KB of stack space, because these will show up as warnings in the
Linux Kernel build system.
* All copyright lines now have -2020 instead of -present
* All copyright lines include "Facebook, Inc"
* All licenses are now standardized
The copyright in `threading.{h,c}` is not changed because it comes from
zstdmt.
The copyright and license of `divsufsort.{h,c}` is not changed.
This has no measurable impact on large files but improves small file
decompression by ~1-2% for 10kB, benchmarked with:
head -c 10000 silesia.tar > /tmp/test
make CC=/usr/local/bin/clang-9 BUILD_STATIC=1 && ./lzbench -ezstd -t1,5 /tmp/test
corresponding to the removal of workspace
which is needed while building huffman table
and is now either present in DCtx,
or temporarily borrowed from available FSE table space.
There were 2 competing set of debug functions
within zstd_internal.h and bitstream.h.
They were mostly duplicate, and required care to avoid messing with each other.
There is now a single implementation, shared by both.
Significant change :
The macro variable ZSTD_DEBUG does no longer exist,
it has been replaced by DEBUGLEVEL,
which required modifying several source files.
for FSE symbols.
While it seems to work, the gains are negligible compared to rough maxNbBits evaluation.
There are even a few losses sometimes, that still need to be explained.
Furthermode, there are still cases where btlazy2 does a better job than btopt,
which seems rather strange too.
which was not done properly by gcc 4.8
resulting in major performance difference.
ex :
zstd -b1 silesia.tar
before : dec 680 MB/s
after : dec 710 MB/s (without bmi2)
after : dec 770 MB/s (with DYNAMIC_BMI2)
Update code documentation, and properly names a few "magic constants".
Also, HUF_compress_internal() gets a cleaner way
to determine size of tables inside workspace.
This makes it easier to edit for maintenance and evolutions
(I plan to experiment modifications in huffman decompression functions).
The methology followed seems broadly applicable to other BMI2 modules.
Performance was tracked rigorously at each step,
there is no noticeable loss (nor win) of performance compared to `#include` version.
Note however that 4X decoder variants tend to be extremely sensitive to code alignment.
This source code resulted in pretty good performance for gcc 7.2 and 7.3,
but future changes (even in other parts of the code) might trigger the issue again.