Educational decoder polish updates

This commit is contained in:
Sean Purcell 2017-03-23 14:33:38 -07:00
parent 27983507e5
commit 7f67f8dce6

View File

@ -27,16 +27,19 @@ size_t ZSTD_decompress_with_dict(void *const dst, const size_t dst_len,
/// Get the decompressed size of an input stream so memory can be allocated in /// Get the decompressed size of an input stream so memory can be allocated in
/// advance /// advance
/// Returns -1 if the size can't be determined
size_t ZSTD_get_decompressed_size(const void *const src, const size_t src_len); size_t ZSTD_get_decompressed_size(const void *const src, const size_t src_len);
/******* UTILITY MACROS AND TYPES *********************************************/ /******* UTILITY MACROS AND TYPES *********************************************/
// Max block size decompressed size is 128 KB and literal blocks must be smaller // Max block size decompressed size is 128 KB and literal blocks can't be
// than that // larger than their block
#define MAX_LITERALS_SIZE ((size_t)128 * 1024) #define MAX_LITERALS_SIZE ((size_t)128 * 1024)
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MIN(a, b) ((a) < (b) ? (a) : (b))
/// This decoder calls exit(1) when it encounters an error, however a production
/// library should propagate error codes
#define ERROR(s) \ #define ERROR(s) \
do { \ do { \
fprintf(stderr, "Error: %s\n", s); \ fprintf(stderr, "Error: %s\n", s); \
@ -67,20 +70,22 @@ typedef int64_t i64;
/// decompression functions. /// decompression functions.
/*** IO STREAM OPERATIONS *************/ /*** IO STREAM OPERATIONS *************/
/// These structs are the interface for IO, and do bounds checking on all
/// operations. They should be used opaquely to ensure safety.
/// Output is always done byte-by-byte /// ostream_t/istream_t are used to wrap the pointers/length data passed into
/// ZSTD_decompress, so that all IO operations are safely bounds checked
/// They are written/read forward, and reads are treated as little-endian
/// They should be used opaquely to ensure safety
typedef struct { typedef struct {
u8 *ptr; u8 *ptr;
size_t len; size_t len;
} ostream_t; } ostream_t;
/// Input often reads a few bits at a time, so maintain an internal offset
typedef struct { typedef struct {
const u8 *ptr; const u8 *ptr;
int bit_offset;
size_t len; size_t len;
// Input often reads a few bits at a time, so maintain an internal offset
int bit_offset;
} istream_t; } istream_t;
/// The following two functions are the only ones that allow the istream to be /// The following two functions are the only ones that allow the istream to be
@ -88,7 +93,7 @@ typedef struct {
/// Reads `num` bits from a bitstream, and updates the internal offset /// Reads `num` bits from a bitstream, and updates the internal offset
static inline u64 IO_read_bits(istream_t *const in, const int num_bits); static inline u64 IO_read_bits(istream_t *const in, const int num_bits);
/// Rewinds the stream by `num` bits /// Backs-up the stream by `num` bits so they can be read again
static inline void IO_rewind_bits(istream_t *const in, const int num_bits); static inline void IO_rewind_bits(istream_t *const in, const int num_bits);
/// If the remaining bits in a byte will be unused, advance to the end of the /// If the remaining bits in a byte will be unused, advance to the end of the
/// byte /// byte
@ -101,29 +106,30 @@ static inline void IO_write_byte(ostream_t *const out, u8 symb);
/// be byte aligned. /// be byte aligned.
static inline size_t IO_istream_len(const istream_t *const in); static inline size_t IO_istream_len(const istream_t *const in);
/// Returns a pointer where `len` bytes can be read, and advances the internal /// Advances the stream by `len` bytes, and returns a pointer to the chunk that
/// state. The stream must be byte aligned. /// was skipped. The stream must be byte aligned.
static inline const u8 *IO_read_bytes(istream_t *const in, size_t len); static inline const u8 *IO_read_bytes(istream_t *const in, size_t len);
/// Returns a pointer where `len` bytes can be written, and advances the internal /// Advances the stream by `len` bytes, and returns a pointer to the chunk that
/// state. The stream must be byte aligned. /// was skipped so it can be written to.
static inline u8 *IO_write_bytes(ostream_t *const out, size_t len); static inline u8 *IO_write_bytes(ostream_t *const out, size_t len);
/// Advance the inner state by `len` bytes. The stream must be byte aligned. /// Advance the inner state by `len` bytes. The stream must be byte aligned.
static inline void IO_advance_input(istream_t *const in, size_t len); static inline void IO_advance_input(istream_t *const in, size_t len);
/// Returns an `ostream_t` constructed from the given pointer and length /// Returns an `ostream_t` constructed from the given pointer and length.
static inline ostream_t IO_make_ostream(u8 *out, size_t len); static inline ostream_t IO_make_ostream(u8 *out, size_t len);
/// Returns an `istream_t` constructed from the given pointer and length /// Returns an `istream_t` constructed from the given pointer and length.
static inline istream_t IO_make_istream(const u8 *in, size_t len); static inline istream_t IO_make_istream(const u8 *in, size_t len);
/// Returns an `istream_t` with the same base as `in`, and length `len` /// Returns an `istream_t` with the same base as `in`, and length `len`.
/// Then, advance `in` to account for the consumed bytes /// Then, advance `in` to account for the consumed bytes.
/// `in` must be byte aligned /// `in` must be byte aligned.
static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len); static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len);
/*** END IO STREAM OPERATIONS *********/ /*** END IO STREAM OPERATIONS *********/
/*** BITSTREAM OPERATIONS *************/ /*** BITSTREAM OPERATIONS *************/
/// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits /// Read `num` bits (up to 64) from `src + offset`, where `offset` is in bits,
/// and return them interpreted as a little-endian unsigned integer.
static inline u64 read_bits_LE(const u8 *src, const int num_bits, static inline u64 read_bits_LE(const u8 *src, const int num_bits,
const size_t offset); const size_t offset);
@ -383,8 +389,8 @@ size_t ZSTD_decompress_with_dict(void *const dst, const size_t dst_len,
parse_dictionary(&parsed_dict, (const u8 *)dict, dict_len); parse_dictionary(&parsed_dict, (const u8 *)dict, dict_len);
} }
istream_t in = {(const u8 *)src, 0, src_len}; istream_t in = IO_make_istream(src, src_len);
ostream_t out = {(u8 *)dst, dst_len}; ostream_t out = IO_make_ostream(dst, dst_len);
// "A content compressed by Zstandard is transformed into a Zstandard frame. // "A content compressed by Zstandard is transformed into a Zstandard frame.
// Multiple frames can be appended into a single file or stream. A frame is // Multiple frames can be appended into a single file or stream. A frame is
@ -632,6 +638,7 @@ static void frame_context_apply_dict(frame_context_t *const ctx,
FSE_copy_dtable(&ctx->of_dtable, &dict->of_dtable); FSE_copy_dtable(&ctx->of_dtable, &dict->of_dtable);
FSE_copy_dtable(&ctx->ml_dtable, &dict->ml_dtable); FSE_copy_dtable(&ctx->ml_dtable, &dict->ml_dtable);
// Copy the repeated offsets
memcpy(ctx->previous_offsets, dict->previous_offsets, memcpy(ctx->previous_offsets, dict->previous_offsets,
sizeof(ctx->previous_offsets)); sizeof(ctx->previous_offsets));
} }
@ -667,7 +674,7 @@ static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
// number of bytes to read and copy." // number of bytes to read and copy."
const u8 *const read_ptr = IO_read_bytes(in, block_len); const u8 *const read_ptr = IO_read_bytes(in, block_len);
u8 *const write_ptr = IO_write_bytes(out, block_len); u8 *const write_ptr = IO_write_bytes(out, block_len);
//
// Copy the raw data into the output // Copy the raw data into the output
memcpy(write_ptr, read_ptr, block_len); memcpy(write_ptr, read_ptr, block_len);
@ -681,7 +688,7 @@ static void decompress_data(frame_context_t *const ctx, ostream_t *const out,
const u8 *const read_ptr = IO_read_bytes(in, 1); const u8 *const read_ptr = IO_read_bytes(in, 1);
u8 *const write_ptr = IO_write_bytes(out, block_len); u8 *const write_ptr = IO_write_bytes(out, block_len);
// Copy `block_len` copies of `streams->src[0]` to the output // Copy `block_len` copies of `read_ptr[0]` to the output
memset(write_ptr, read_ptr[0], block_len); memset(write_ptr, read_ptr[0], block_len);
ctx->current_total_output += block_len; ctx->current_total_output += block_len;
@ -750,7 +757,7 @@ static size_t decode_literals_compressed(frame_context_t *const ctx,
u8 **const literals, u8 **const literals,
const int block_type, const int block_type,
const int size_format); const int size_format);
static void decode_huf_table(istream_t *const in, HUF_dtable *const dtable); static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in);
static void fse_decode_hufweights(ostream_t *weights, istream_t *const in, static void fse_decode_hufweights(ostream_t *weights, istream_t *const in,
int *const num_symbs); int *const num_symbs);
@ -893,12 +900,12 @@ static size_t decode_literals_compressed(frame_context_t *const ctx,
istream_t huf_stream = IO_make_sub_istream(in, compressed_size); istream_t huf_stream = IO_make_sub_istream(in, compressed_size);
if (block_type == 2) { if (block_type == 2) {
// Decode provided Huffman table // Decode the provided Huffman table
// "This section is only present when Literals_Block_Type type is // "This section is only present when Literals_Block_Type type is
// Compressed_Literals_Block (2)." // Compressed_Literals_Block (2)."
HUF_free_dtable(&ctx->literals_dtable); HUF_free_dtable(&ctx->literals_dtable);
decode_huf_table(&huf_stream, &ctx->literals_dtable); decode_huf_table(&ctx->literals_dtable, &huf_stream);
} else { } else {
// If the previous Huffman table is being repeated, ensure it exists // If the previous Huffman table is being repeated, ensure it exists
if (!ctx->literals_dtable.symbols) { if (!ctx->literals_dtable.symbols) {
@ -921,13 +928,13 @@ static size_t decode_literals_compressed(frame_context_t *const ctx,
} }
// Decode the Huffman table description // Decode the Huffman table description
static void decode_huf_table(istream_t *const in, HUF_dtable *const dtable) { static void decode_huf_table(HUF_dtable *const dtable, istream_t *const in) {
const u8 header = IO_read_bits(in, 8);
// "All literal values from zero (included) to last present one (excluded) // "All literal values from zero (included) to last present one (excluded)
// are represented by Weight with values from 0 to Max_Number_of_Bits." // are represented by Weight with values from 0 to Max_Number_of_Bits."
// "This is a single byte value (0-255), which describes how to decode the list of weights." // "This is a single byte value (0-255), which describes how to decode the list of weights."
const u8 header = IO_read_bits(in, 8);
u8 weights[HUF_MAX_SYMBS]; u8 weights[HUF_MAX_SYMBS];
memset(weights, 0, sizeof(weights)); memset(weights, 0, sizeof(weights));
@ -996,7 +1003,7 @@ typedef struct {
u16 ll_state; u16 ll_state;
u16 of_state; u16 of_state;
u16 ml_state; u16 ml_state;
} sequence_state_t; } sequence_states_t;
/// Different modes to signal to decode_seq_tables what to do /// Different modes to signal to decode_seq_tables what to do
typedef enum { typedef enum {
@ -1051,10 +1058,10 @@ static void decompress_sequences(frame_context_t *const ctx,
istream_t *const in, istream_t *const in,
sequence_command_t *const sequences, sequence_command_t *const sequences,
const size_t num_sequences); const size_t num_sequences);
static sequence_command_t decode_sequence(sequence_state_t *const state, static sequence_command_t decode_sequence(sequence_states_t *const state,
const u8 *const src, const u8 *const src,
i64 *const offset); i64 *const offset);
static void decode_seq_table(istream_t *const in, FSE_dtable *const table, static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
const seq_part_t type, const seq_mode_t mode); const seq_part_t type, const seq_mode_t mode);
static size_t decode_sequences(frame_context_t *const ctx, istream_t *in, static size_t decode_sequences(frame_context_t *const ctx, istream_t *in,
@ -1130,34 +1137,33 @@ static void decompress_sequences(frame_context_t *const ctx, istream_t *in,
// Offsets // Offsets
// Match Lengths" // Match Lengths"
// Update the tables we have stored in the context // Update the tables we have stored in the context
decode_seq_table(in, &ctx->ll_dtable, seq_literal_length, decode_seq_table(&ctx->ll_dtable, in, seq_literal_length,
(compression_modes >> 6) & 3); (compression_modes >> 6) & 3);
decode_seq_table(in, &ctx->of_dtable, seq_offset, decode_seq_table(&ctx->of_dtable, in, seq_offset,
(compression_modes >> 4) & 3); (compression_modes >> 4) & 3);
decode_seq_table(in, &ctx->ml_dtable, seq_match_length, decode_seq_table(&ctx->ml_dtable, in, seq_match_length,
(compression_modes >> 2) & 3); (compression_modes >> 2) & 3);
// Check to make sure none of the tables are uninitialized
if (!ctx->ll_dtable.symbols || !ctx->of_dtable.symbols || sequence_states_t states;
!ctx->ml_dtable.symbols) {
CORRUPTION(); // Initialize the decoding tables
{
states.ll_table = ctx->ll_dtable;
states.of_table = ctx->of_dtable;
states.ml_table = ctx->ml_dtable;
} }
sequence_state_t state; const size_t len = IO_istream_len(in);
// Copy the context's tables into the local state
memcpy(&state.ll_table, &ctx->ll_dtable, sizeof(FSE_dtable));
memcpy(&state.of_table, &ctx->of_dtable, sizeof(FSE_dtable));
memcpy(&state.ml_table, &ctx->ml_dtable, sizeof(FSE_dtable));
size_t len = IO_istream_len(in);
const u8 *const src = IO_read_bytes(in, len); const u8 *const src = IO_read_bytes(in, len);
// "After writing the last bit containing information, the compressor writes // "After writing the last bit containing information, the compressor writes
// a single 1-bit and then fills the byte with 0-7 0 bits of padding." // a single 1-bit and then fills the byte with 0-7 0 bits of padding."
const int padding = 8 - highest_set_bit(src[len - 1]); const int padding = 8 - highest_set_bit(src[len - 1]);
i64 offset = len * 8 - padding; // The offset starts at the end because FSE streams are read backwards
i64 bit_offset = len * 8 - padding;
// "The bitstream starts with initial state values, each using the required // "The bitstream starts with initial state values, each using the required
// number of bits in their respective accuracy, decoded previously from // number of bits in their respective accuracy, decoded previously from
@ -1165,24 +1171,22 @@ static void decompress_sequences(frame_context_t *const ctx, istream_t *in,
// //
// It starts by Literals_Length_State, followed by Offset_State, and finally // It starts by Literals_Length_State, followed by Offset_State, and finally
// Match_Length_State." // Match_Length_State."
FSE_init_state(&state.ll_table, &state.ll_state, src, &offset); FSE_init_state(&states.ll_table, &states.ll_state, src, &bit_offset);
FSE_init_state(&state.of_table, &state.of_state, src, &offset); FSE_init_state(&states.of_table, &states.of_state, src, &bit_offset);
FSE_init_state(&state.ml_table, &state.ml_state, src, &offset); FSE_init_state(&states.ml_table, &states.ml_state, src, &bit_offset);
for (size_t i = 0; i < num_sequences; i++) { for (size_t i = 0; i < num_sequences; i++) {
// Decode sequences one by one // Decode sequences one by one
sequences[i] = decode_sequence(&state, src, &offset); sequences[i] = decode_sequence(&states, src, &bit_offset);
} }
if (offset != 0) { if (bit_offset != 0) {
CORRUPTION(); CORRUPTION();
} }
// Don't free tables so they can be used in the next block
} }
// Decode a single sequence and update the state // Decode a single sequence and update the state
static sequence_command_t decode_sequence(sequence_state_t *const state, static sequence_command_t decode_sequence(sequence_states_t *const states,
const u8 *const src, const u8 *const src,
i64 *const offset) { i64 *const offset) {
// "Each symbol is a code in its own context, which specifies Baseline and // "Each symbol is a code in its own context, which specifies Baseline and
@ -1190,9 +1194,9 @@ static sequence_command_t decode_sequence(sequence_state_t *const state,
// additional bits in the same bitstream." // additional bits in the same bitstream."
// Decode symbols, but don't update states // Decode symbols, but don't update states
const u8 of_code = FSE_peek_symbol(&state->of_table, state->of_state); const u8 of_code = FSE_peek_symbol(&states->of_table, states->of_state);
const u8 ll_code = FSE_peek_symbol(&state->ll_table, state->ll_state); const u8 ll_code = FSE_peek_symbol(&states->ll_table, states->ll_state);
const u8 ml_code = FSE_peek_symbol(&state->ml_table, state->ml_state); const u8 ml_code = FSE_peek_symbol(&states->ml_table, states->ml_state);
// Offset doesn't need a max value as it's not decoded using a table // Offset doesn't need a max value as it's not decoded using a table
if (ll_code > SEQ_MAX_CODES[seq_literal_length] || if (ll_code > SEQ_MAX_CODES[seq_literal_length] ||
@ -1220,17 +1224,18 @@ static sequence_command_t decode_sequence(sequence_state_t *const state,
// then Offset_State." // then Offset_State."
// If the stream is complete don't read bits to update state // If the stream is complete don't read bits to update state
if (*offset != 0) { if (*offset != 0) {
FSE_update_state(&state->ll_table, &state->ll_state, src, offset); FSE_update_state(&states->ll_table, &states->ll_state, src, offset);
FSE_update_state(&state->ml_table, &state->ml_state, src, offset); FSE_update_state(&states->ml_table, &states->ml_state, src, offset);
FSE_update_state(&state->of_table, &state->of_state, src, offset); FSE_update_state(&states->of_table, &states->of_state, src, offset);
} }
return seq; return seq;
} }
/// Given a sequence part and table mode, decode the FSE distribution /// Given a sequence part and table mode, decode the FSE distribution
static void decode_seq_table(istream_t *const in, FSE_dtable *const table, /// Errors if the mode is `seq_repeat` without a pre-existing table in `table`
const seq_part_t type, const seq_mode_t mode) { static void decode_seq_table(FSE_dtable *const table, istream_t *const in,
const seq_part_t type, const seq_mode_t mode) {
// Constant arrays indexed by seq_part_t // Constant arrays indexed by seq_part_t
const i16 *const default_distributions[] = {SEQ_LITERAL_LENGTH_DEFAULT_DIST, const i16 *const default_distributions[] = {SEQ_LITERAL_LENGTH_DEFAULT_DIST,
SEQ_OFFSET_DEFAULT_DIST, SEQ_OFFSET_DEFAULT_DIST,
@ -1271,12 +1276,17 @@ static void decode_seq_table(istream_t *const in, FSE_dtable *const table,
// "Repeat_Mode : re-use distribution table from previous compressed // "Repeat_Mode : re-use distribution table from previous compressed
// block." // block."
// Nothing to do here, table will be unchanged // Nothing to do here, table will be unchanged
if (!table->symbols) {
// This mode is invalid if we don't already have a table
CORRUPTION();
}
break; break;
default: default:
// Impossible, as mode is from 0-3 // Impossible, as mode is from 0-3
IMPOSSIBLE(); IMPOSSIBLE();
break; break;
} }
} }
/******* END SEQUENCE DECODING ************************************************/ /******* END SEQUENCE DECODING ************************************************/
@ -1295,6 +1305,8 @@ static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
const sequence_command_t seq = sequences[i]; const sequence_command_t seq = sequences[i];
{ {
// If the sequence asks for more literals than are left, the
// sequence must be corrupted
if (seq.literal_length > IO_istream_len(&litstream)) { if (seq.literal_length > IO_istream_len(&litstream)) {
CORRUPTION(); CORRUPTION();
} }
@ -1335,7 +1347,8 @@ static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
// as per the exception listed above // as per the exception listed above
offset = idx < 3 ? offset_hist[idx] : offset_hist[0] - 1; offset = idx < 3 ? offset_hist[idx] : offset_hist[0] - 1;
// If idx == 1 we don't need to modify offset_hist[2] // If idx == 1 we don't need to modify offset_hist[2], since
// we're using the second-most recent code
if (idx > 1) { if (idx > 1) {
offset_hist[2] = offset_hist[1]; offset_hist[2] = offset_hist[1];
} }
@ -1343,6 +1356,8 @@ static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
offset_hist[0] = offset; offset_hist[0] = offset;
} }
} else { } else {
// When it's not a repeat offset:
// "if (Offset_Value > 3) offset = Offset_Value - 3;"
offset = seq.offset - 3; offset = seq.offset - 3;
// Shift back history // Shift back history
@ -1390,11 +1405,11 @@ static void execute_sequences(frame_context_t *const ctx, ostream_t *const out,
total_output += seq.match_length; total_output += seq.match_length;
} }
// Copy any leftover literals
{ {
size_t len = IO_istream_len(&litstream); size_t len = IO_istream_len(&litstream);
u8 *const write_ptr = IO_write_bytes(out, len); u8 *const write_ptr = IO_write_bytes(out, len);
const u8 *const read_ptr = IO_read_bytes(&litstream, len); const u8 *const read_ptr = IO_read_bytes(&litstream, len);
// Copy any leftover literals
memcpy(write_ptr, read_ptr, len); memcpy(write_ptr, read_ptr, len);
total_output += len; total_output += len;
@ -1516,10 +1531,10 @@ static void parse_dictionary(dictionary_t *const dict, const u8 *src,
// recent offsets (instead of using {1,4,8}), stored in order, 4-bytes // recent offsets (instead of using {1,4,8}), stored in order, 4-bytes
// little-endian each, for a total of 12 bytes. Each recent offset must have // little-endian each, for a total of 12 bytes. Each recent offset must have
// a value < dictionary size." // a value < dictionary size."
decode_huf_table(&in, &dict->literals_dtable); decode_huf_table(&dict->literals_dtable, &in);
decode_seq_table(&in, &dict->of_dtable, seq_offset, seq_fse); decode_seq_table(&dict->of_dtable, &in, seq_offset, seq_fse);
decode_seq_table(&in, &dict->ml_dtable, seq_match_length, seq_fse); decode_seq_table(&dict->ml_dtable, &in, seq_match_length, seq_fse);
decode_seq_table(&in, &dict->ll_dtable, seq_literal_length, seq_fse); decode_seq_table(&dict->ll_dtable, &in, seq_literal_length, seq_fse);
// Read in the previous offset history // Read in the previous offset history
dict->previous_offsets[0] = IO_read_bits(&in, 32); dict->previous_offsets[0] = IO_read_bits(&in, 32);
@ -1687,25 +1702,18 @@ static inline ostream_t IO_make_ostream(u8 *out, size_t len) {
/// Returns an `istream_t` constructed from the given pointer and length /// Returns an `istream_t` constructed from the given pointer and length
static inline istream_t IO_make_istream(const u8 *in, size_t len) { static inline istream_t IO_make_istream(const u8 *in, size_t len) {
return (istream_t) { in, 0, len }; return (istream_t) { in, len, 0 };
} }
/// Returns an `istream_t` with the same base as `in`, and length `len` /// Returns an `istream_t` with the same base as `in`, and length `len`
/// Then, advance `in` to account for the consumed bytes /// Then, advance `in` to account for the consumed bytes
/// `in` must be byte aligned /// `in` must be byte aligned
static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len) { static inline istream_t IO_make_sub_istream(istream_t *const in, size_t len) {
if (len > in->len) { // Consume `len` bytes of the parent stream
INP_SIZE(); const u8 *const ptr = IO_read_bytes(in, len);
}
if (in->bit_offset != 0) {
UNALIGNED();
}
const istream_t sub = { in->ptr, in->bit_offset, len };
in->ptr += len; // Make a substream using the pointer to those `len` bytes
in->len -= len; return IO_make_istream(ptr, len);
return sub;
} }
/******* END IO STREAM OPERATIONS *********************************************/ /******* END IO STREAM OPERATIONS *********************************************/
@ -1726,7 +1734,7 @@ static inline u64 read_bits_LE(const u8 *src, const int num_bits,
int left = num_bits; int left = num_bits;
while (left > 0) { while (left > 0) {
u64 mask = left >= 8 ? 0xff : (((u64)1 << left) - 1); u64 mask = left >= 8 ? 0xff : (((u64)1 << left) - 1);
// Dead the next byte, shift it to account for the offset, and then mask // Read the next byte, shift it to account for the offset, and then mask
// out the top part if we don't need all the bits // out the top part if we don't need all the bits
res += (((u64)*src++ >> bit_offset) & mask) << shift; res += (((u64)*src++ >> bit_offset) & mask) << shift;
shift += 8 - bit_offset; shift += 8 - bit_offset;
@ -1819,15 +1827,16 @@ static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
// last byte contains between 0 and 7 useful bits." // last byte contains between 0 and 7 useful bits."
const int padding = 8 - highest_set_bit(src[len - 1]); const int padding = 8 - highest_set_bit(src[len - 1]);
i64 offset = len * 8 - padding; // Offset starts at the end because HUF streams are read backwards
i64 bit_offset = len * 8 - padding;
u16 state; u16 state;
HUF_init_state(dtable, &state, src, &offset); HUF_init_state(dtable, &state, src, &bit_offset);
size_t symbols_written = 0; size_t symbols_written = 0;
while (offset > -dtable->max_bits) { while (bit_offset > -dtable->max_bits) {
// Iterate over the stream, decoding one symbol at a time // Iterate over the stream, decoding one symbol at a time
IO_write_byte(out, HUF_decode_symbol(dtable, &state, src, &offset)); IO_write_byte(out, HUF_decode_symbol(dtable, &state, src, &bit_offset));
symbols_written++; symbols_written++;
} }
// "The process continues up to reading the required number of symbols per // "The process continues up to reading the required number of symbols per
@ -1840,7 +1849,7 @@ static size_t HUF_decompress_1stream(const HUF_dtable *const dtable,
// before the start of `src` // before the start of `src`
// Therefore `offset`, the edge to start reading new bits at, should be // Therefore `offset`, the edge to start reading new bits at, should be
// dtable->max_bits before the start of the stream // dtable->max_bits before the start of the stream
if (offset != -dtable->max_bits) { if (bit_offset != -dtable->max_bits) {
CORRUPTION(); CORRUPTION();
} }