As a reference, several fast compression algorithms were tested and compared on a server running Linux Mint Debian Edition (`Linux version 4.8.0-1-amd64`), with a Core i7-6700K CPU @ 4.0GHz, using [lzbench v1.6], an open-source in-memory benchmark by @inikep compiled with GCC 6.3.0, with the [Silesia compression corpus].
Speed vs Compression trade-off is configurable by small increments. Decompression speed is preserved and remains roughly the same at all settings, a property shared by most LZ compression algorithms, such as [zlib] or lzma.
The following tests were run on a Core i7-3930K CPU @ 4.5GHz, using [lzbench], an open-source in-memory benchmark by @inikep compiled with GCC 5.2.1, on the [Silesia compression corpus].
The smaller the amount of data to compress, the more difficult it is to compress. This problem is common to all compression algorithms, and reason is, compression algorithms learn from past data how to compress future data. But at the beginning of a new data set, there is no "past" to build upon.
To solve this situation, Zstd offers a __training mode__, which can be used to tune the algorithm for a selected type of data.
Training Zstandard is achieved by provide it with a few samples (one file per sample). The result of this training is stored in a file called "dictionary", which must be loaded before compression and decompression.
Using this dictionary, the compression ratio achievable on small data improves dramatically.
The following example uses the `github-users` [sample set](https://github.com/facebook/zstd/releases/tag/v1.1.3), created from [github public API](https://developer.github.com/v3/users/#get-all-users).
These compression gains are achieved while simultaneously providing _faster_ compression and decompression speeds.
Training works if there is some correlation in a family of small data samples. The more data-specific a dictionary is, the more efficient it is (there is no _universal dictionary_).
Hence, deploying one dictionary per type of data will provide the greatest benefits.
Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm will gradually use previously decoded content to better compress the rest of the file.
Zstandard is currently deployed within Facebook. It is used daily to compress and decompress very large amounts of data in multiple formats and use cases.