zeroclickinfo-goodies/lib/DDG/Goodie/CalcRoots.pm

165 lines
6.3 KiB
Perl

package DDG::Goodie::CalcRoots;
# ABSTRACT: compute the n-th root of a number
use strict;
use DDG::Goodie;
use Lingua::EN::Numericalize;
primary_example_queries 'square root of 9';
description 'calculate the nth root';
name 'CalcRoots';
code_url 'https://github.com/duckduckgo/zeroclickinfo-goodie/blob/master/lib/DDG/Goodie/CalcRoots.pm';
attribution github => ['https://github.com/duckduckgo', 'duckduckgo'];
category 'calculations';
topics 'math';
triggers any => 'root';
zci is_cached => 1;
zci answer_type => 'root';
handle query => sub {
# The 'root' trigger is very ambigous so this regex provides the specific triggers
return unless m/^((?:.*square|.*cube(?:d|)|.*th|.*rd|.*nd|.*st|.*[0-9]+)) root(?: of|) (?!of)(.*)/i;
# Common phrases that won't be caught by str2nbr()
my %function = (
'square' => 2,
'cubed' => 3,
'cube' => 3,
);
# Seperate the exponent and base courtesy of the above regex
my $exp = $1;
my $base = $2;
my $sign = "";
# Figure out what number the exponent is
if ($exp =~ m/negative\s|minus\s|\A-/i) {
$sign = "-";
$exp = $function{$'} ? $function{$'} : str2nbr($');
}
else {
$exp = $function{$exp} ? $function{$exp} : str2nbr($exp);
}
# You can't take a zeroeth root
return if $exp == 0;
# There are separate cases here.
# 1. Negative base and even exponent (imaginary numbers)
# 2. Negative base and odd exponenet
# 3. Positive base
if ($base =~ m/negative\s|minus\s|\A-/i && $exp % 2 == 0) {
# Figure out what number the base is
$base = $';
$base = str2nbr($base) if $base =~ /[^0-9]/;
# Solve using the absolute value of the base
$base = abs($base);
my $calc = $base ** (1/$exp);
if($sign eq "-"){$calc = -$calc;}
# If the result is a whole number (n), the answer is n*i
if (($calc - int($calc)) == 0) {
return structured($sign . $exp, "-$base","The $sign$exp-root of -$base is $calc i", "$sign<sup>$exp</sup>&radic;-$base = $calc<em>i</em>");
}
# Try and simplify the radical
my $count = int(abs($calc));
while ($count > 1) {
# See if the current number raised to the given exponent is a factor of our base. If it is, the answer is n * i * exponent-root(the other factor)
my $newBase = $base / ($count ** $exp);
if ( ($newBase - int($newBase)) == 0) {
return structured($sign . $exp,"-$base","The $sign$exp-root of -$base is $count * i * the $sign$exp-root of $newBase.", "$sign<sup>$exp</sup>&radic;-$base = $sign$count<em>i</em>&sdot;<sup>$exp</sup>&radic;$newBase");
}
$count--;
}
# Can't be solved or simplified via the above methods
return structured($sign . $exp,"-$base","The $sign$exp-root of -$base is i * the $sign$exp-root of $base", "$sign<sup>$exp</sup>&radic;-$base = $sign<em>i</em>&sdot;<sup>$exp</sup>&radic;$base");
}
elsif ($base =~ m/negative\s|minus\s|\A-/i && $exp % 2 != 0) {
# Solve normally
$base = $';
$base = str2nbr($base) if $base =~ m/[^0-9]/;
$base =~ s/[^0-9\.]//g;
if ($base ne '') {
my $calc = $base ** (1/$exp) * -1;
if($sign eq "-"){$calc = -$calc;}
my $secondsign = "-"; #sign of the calcuated answer
if($calc>0){$secondsign="";}
# Try and simplify the radical if answer is not a whole number
unless(($calc - int($calc))==0){
my $count = int(abs($calc));
while ($count > 1) {
# See if the current number raised to the given exponent is a factor of our base. If it is, we can give them a simplified version of the radical in addition to the answer.
my $newBase = $base / ($count ** $exp);
if ( ($newBase - int($newBase)) == 0) {
return structured($sign . $exp,"-$base","The $sign$exp-root of -$base is $calc ($secondsign$count times the $sign$exp-root of $newBase).", qq|$sign<sup>$exp</sup>&radic;-$base = <a href="javascript:;" onclick="document.x.q.value='$calc';document.x.q.focus();">$calc</a> ($secondsign$count&sdot;<sup>$exp</sup>&radic;$newBase)|);
}
$count--;
}
}
return structured($sign . $exp,"-$base","The $sign$exp-root of -$base is $calc.", qq|$sign<sup>$exp</sup>&radic;-$base = <a href="javascript:;" onclick="document.x.q.value='$calc';document.x.q.focus();">$calc</a>|);
}
}
elsif ($exp =~ m/[0-9]+/) {
# Solve normally
$base = str2nbr($base) if $base =~ m/[^0-9]/;
$base =~ s/[^0-9\.]//g;
if ($base ne '') {
my $calc = $base ** (1/$exp);
if($sign eq "-"){$calc = -$calc;}
#If the answer is not a whole number, try to simplify the radical
unless(($calc - int($calc))==0){
my $count = int(abs($calc));
while ($count > 1) {
# See if the current number raised to the given exponent is a factor of our base. If it is, we can give them a simplified version of the radical in addition to the answer.
my $newBase = $base / ($count ** $exp);
if ( ($newBase - int($newBase)) == 0) {
return structured($sign . $exp,$base,"The $sign$exp-root of $base is $calc ($sign$count times the $exp-root of $newBase).", qq|$sign<sup>$exp</sup>&radic;$base = <a href="javascript:;" onclick="document.x.q.value='$calc';document.x.q.focus();">$calc</a> ($sign$count&sdot;<sup>$exp</sup>&radic;$newBase)|);
}
$count--;
}
}
return structured($sign . $exp,$base,"The $sign$exp-root of $base is $calc.", qq|$sign<sup>$exp</sup>&radic;$base = <a href="javascript:;" onclick="document.x.q.value='$calc';document.x.q.focus();">$calc</a>|);
}
}
return;
};
sub structured{
my($exp,$base,$text, $html) = @_;
return $text,
heading => "Root Calculator",
structured_answer => {
input => ["$exp-root of $base"],
operation => 'Calculate',
result => $html,
};
}
1;