Added Added Boolean algebra Cheat Sheet

master
gautamkrishnar 2015-08-21 19:28:35 +00:00
parent fe5f78cff2
commit 3a6ca7710e
1 changed files with 194 additions and 0 deletions

View File

@ -0,0 +1,194 @@
{
"id": "boolean_algebra_cheat_sheet",
"name": "Boolean Algebra",
"description": "These are a set of operators and expressions used in the boolean algebra.",
"template_type": "reference",
"metadata": {
"sourceName": "Wikipedia",
"sourceUrl": "https://en.wikipedia.org/wiki/Boolean_algebra"
},
"aliases": [
"boolean algebra",
"boolean algebra",
"logic",
"mathematical logic"
],
"section_order": [
"Basic operators",
"Basic Principles",
"Idempotent Law",
"Involution law",
"Law of complementarity",
"Commutative law",
"Assosiative law",
"Distributive law",
"DeMorgans law",
"Duality",
"Theorem for multiplying out and factoring",
"Consensus theorem",
"Simplification Theorems"
],
"sections": {
"Basic operators": [
{
"val": "And",
"key": "∧"
},
{
"val": "Or",
"key": ""
},
{
"val": "Not",
"key": "¬"
}
],
"Basic Principles": [
{
"key": "X+0=X"
},
{
"key": "X+1=1"
},
{
"key": "X•1=X"
},
{
"key": "X•0=0"
}
],
"Idempotent Law": [
{
"key": "X+X=X"
},
{
"key": "X•X=X"
}
],
"Involution law": [
{
"key": "(X)'=X"
}
],
"Law of complementarity": [
{
"key": "X+X'=1"
},
{
"key": "X•X'=0"
}
],
"Commutative law": [
{
"key": "X+Y=Y+X"
},
{
"key": "X•Y=Y•X"
}
],
"Assosiative law": [
{
"key": "(X+Y)+Z=X+(Y+Z)=X+Y+Z"
},
{
"key": "(XY)Z=X(YZ)=XYZ"
}
],
"Distributive law": [
{
"key": "X(Y+Z)=XY+XZ"
},
{
"key": "X+YZ=(X+Y)(X+Z)"
}
],
"DeMorgans law": [
{
"key": "(X+Y+Z+…)'=X'Y'Z'…"
},
{
"key": "(XYZ…)'=X'+Y'+Z'+…"
},
{
"key": "[f( X,X,…X,0,1,+,•)]'=f( X',X', … X', 1, 0, •,+)"
}
],
"Duality": [
{
"key": "(X+Y+Z+…)D=XYZ…"
},
{
"key": "(XYZ…)D=X+Y+Z+…"
},
{
"key": "[f(X1,X2,…XN,0,1,+,•)]D=f(X1,X2,…XN,1,0,•,+)"
}
],
"Theorem for multiplying out and factoring": [
{
"key": "(X+Y)(X'+Z)=XZ+X'Y"
},
{
"key": "XY+X'Z=(X+Z)(X'+Y)"
}
],
"Consensus theorem": [
{
"key": "XY+YZ+X'Z=XY+X'Z"
},
{
"key": "(X+Y)(Y+Z)(X'+Z)=(X+Y)(X'+Z)"
}
],
"Simplification Theorems": [
{
"key": "XY+XY'=X"
},
{
"key": "(X+Y)(X+Y')=X"
},
{
"key": "X+XY=X"
},
{
"key": "X(X+Y)=X"
},
{
"key": "(X+Y')Y=XY"
},
{
"key": "XY'+Y=X+Y"
}
]
}
}