273 lines
8.0 KiB
Lua

-- Buildat: builtin/voxelworld/client_lua/module.lua
-- http://www.apache.org/licenses/LICENSE-2.0
-- Copyright 2014 Perttu Ahola <celeron55@gmail.com>
local log = buildat.Logger("voxelworld")
local magic = require("buildat/extension/urho3d")
local replicate = require("buildat/extension/replicate")
local cereal = require("buildat/extension/cereal")
local dump = buildat.dump
local M = {}
local camera_node = nil
local update_counter = -1
local camera_last_dir = magic.Vector3(0, 0, 0)
local camera_last_p = magic.Vector3(0, 0, 0)
M.chunk_size_voxels = nil
M.section_size_chunks = nil
M.section_size_voxels = nil
--[[
table.binsearch( table, value [, compval [, reversed] ] )
Searches the table through BinarySearch for the given value.
If the value is found:
it returns a table holding all the mathing indices (e.g. { startindice,endindice } )
endindice may be the same as startindice if only one matching indice was found
If compval is given:
then it must be a function that takes one value and returns a second value2,
to be compared with the input value, e.g.:
compvalue = function( value ) return value[1] end
If reversed is set to true:
then the search assumes that the table is sorted in reverse order (largest value at position 1)
note when reversed is given compval must be given as well, it can be nil/_ in this case
Return value:
on success: a table holding matching indices (e.g. { startindice,endindice } )
on failure: nil
]]--
do
-- Avoid heap allocs for performance
local default_fcompval = function( value ) return value end
local fcompf = function( a,b ) return a < b end
local fcompr = function( a,b ) return a > b end
function table_binsearch( t,value,fcompval,reversed )
-- Initialise functions
local fcompval = fcompval or default_fcompval
local fcomp = reversed and fcompr or fcompf
-- Initialise numbers
local iStart,iEnd,iMid = 1,#t,0
-- Binary Search
while iStart <= iEnd do
-- calculate middle
iMid = math.floor( (iStart+iEnd)/2 )
-- get compare value
local value2 = fcompval( t[iMid] )
-- get all values that match
if value == value2 then
local tfound,num = { iMid,iMid },iMid - 1
while value == fcompval( t[num] ) do
tfound[1],num = num,num - 1
end
num = iMid + 1
while value == fcompval( t[num] ) do
tfound[2],num = num,num + 1
end
return tfound
-- keep searching
elseif fcomp( value,value2 ) then
iEnd = iMid - 1
else
iStart = iMid + 1
end
end
end
end
--[[
table.bininsert( table, value [, comp] )
Inserts a given value through BinaryInsert into the table sorted by [, comp].
If 'comp' is given, then it must be a function that receives
two table elements, and returns true when the first is less
than the second, e.g. comp = function(a, b) return a > b end,
will give a sorted table, with the biggest value on position 1.
[, comp] behaves as in table.sort(table, value [, comp])
returns the index where 'value' was inserted
]]--
do
-- Avoid heap allocs for performance
local fcomp_default = function( a,b ) return a < b end
function table_bininsert(t, value, fcomp)
-- Initialise compare function
local fcomp = fcomp or fcomp_default
-- Initialise numbers
local iStart,iEnd,iMid,iState = 1,#t,1,0
-- Get insert position
while iStart <= iEnd do
-- calculate middle
iMid = math.floor( (iStart+iEnd)/2 )
-- compare
if fcomp( value,t[iMid] ) then
iEnd,iState = iMid - 1,0
else
iStart,iState = iMid + 1,1
end
end
table.insert( t,(iMid+iState),value )
return (iMid+iState)
end
end
local function SpatialUpdateQueue()
local self = {
p = magic.Vector3(0, 0, 0),
queue = {},
queue_oldest_p = magic.Vector3(0, 0, 0),
set_p = function(self, p)
self.p = p
-- If went too far, sort queue again
if (p - self.queue_oldest_p):Length() > 16 then
local old_queue = self.queue
self.queue = {}
for _, item in ipairs(old_queue) do
self:put(item.p, item.value)
end
self.queue_oldest_p = p
end
end,
put = function(self, p, value)
local d = (p - self.p):Length()
local function fcomp(a, b)
return a.d > b.d
end
table_bininsert(self.queue, {p=p, d=d, value=value}, fcomp)
--table.insert(self.queue, {p=p, value=value})
end,
get = function(self, p)
-- TODO
local item = table.remove(self.queue)
if not item then return nil end
return item.value
end,
}
return self
end
function M.init()
log:info("voxelworld.init()")
buildat.sub_packet("voxelworld:init", function(data)
local values = cereal.binary_input(data, {"object",
{"chunk_size_voxels", {"object",
{"x", "int32_t"},
{"y", "int32_t"},
{"z", "int32_t"},
}},
{"section_size_chunks", {"object",
{"x", "int32_t"},
{"y", "int32_t"},
{"z", "int32_t"},
}},
})
log:info(dump(values))
M.chunk_size_voxels = buildat.IntVector3(values.chunk_size_voxels)
M.section_size_chunks = buildat.IntVector3(values.section_size_chunks)
M.section_size_voxels =
M.chunk_size_voxels:mul_components(M.section_size_chunks)
end)
local function update_voxel_geometry(node)
local data = node:GetVar("buildat_voxel_data"):GetBuffer()
--local registry_name = node:GetVar("buildat_voxel_registry_name"):GetBuffer()
log:info(dump(node:GetName()).." voxel data size: "..data:GetSize())
buildat.set_voxel_geometry(node, data, registry_name)
end
local function update_voxel_physics(node)
local data = node:GetVar("buildat_voxel_data"):GetBuffer()
--local registry_name = node:GetVar("buildat_voxel_registry_name"):GetBuffer()
log:info(dump(node:GetName()).." voxel data size: "..data:GetSize())
buildat.set_voxel_physics_boxes(node, data, registry_name)
end
local node_update_queue = SpatialUpdateQueue()
magic.SubscribeToEvent("Update", function(event_type, event_data)
update_counter = update_counter + 1
if camera_node and M.section_size_voxels then
-- TODO: How should position information be sent to the server?
local p = camera_node:GetWorldPosition()
if update_counter % 60 == 0 then
local section_p = buildat.IntVector3(p):div_components(
M.section_size_voxels):floor()
--log:info("p: "..p.x..", "..p.y..", "..p.z.." -> section_p: "..
-- section_p.x..", "..section_p.y..", "..section_p.z)
--[[send_get_section(section_p + buildat.IntVector3( 0, 0, 0))
send_get_section(section_p + buildat.IntVector3(-1, 0, 0))
send_get_section(section_p + buildat.IntVector3( 1, 0, 0))
send_get_section(section_p + buildat.IntVector3( 0, 1, 0))
send_get_section(section_p + buildat.IntVector3( 0,-1, 0))
send_get_section(section_p + buildat.IntVector3( 0, 0, 1))
send_get_section(section_p + buildat.IntVector3( 0, 0,-1))]]
end
end
local camera_dir = magic.Vector3(0, 0, 0)
local camera_p = magic.Vector3(0, 0, 0)
if camera_node then
camera_dir = camera_node.direction
camera_p = camera_node:GetWorldPosition()
end
-- Handle one node update per frame
node_update_queue:set_p(camera_p)
local node_update = node_update_queue:get()
if node_update then
if node_update.type == "geometry" then
update_voxel_geometry(node_update.node)
end
if node_update.type == "physics" then
update_voxel_physics(node_update.node)
end
end
if camera_node then
camera_last_dir = camera_dir
camera_last_p = camera_p
end
end)
replicate.sub_sync_node_added({}, function(node)
if not node:GetVar("buildat_voxel_data"):IsEmpty() then
node_update_queue:put(node:GetWorldPosition(), {
type = "geometry",
node = node,
})
node_update_queue:put(node:GetWorldPosition(), {
type = "physics",
node = node,
})
end
local name = node:GetName()
end)
end
function M.set_camera(new_camera_node)
camera_node = new_camera_node
end
function send_get_section(p)
local data = cereal.binary_output({
p = {
x = p.x,
y = p.y,
z = p.z,
},
}, {"object",
{"p", {"object",
{"x", "int32_t"},
{"y", "int32_t"},
{"z", "int32_t"},
}},
})
--log:info(dump(buildat.bytes(data)))
buildat.send_packet("voxelworld:get_section", data)
end
return M
-- vim: set noet ts=4 sw=4: