godot_voxel/terrain/fixed_lod/voxel_box_mover.cpp
2022-08-20 18:25:23 +01:00

353 lines
11 KiB
C++

#include "voxel_box_mover.h"
#include "../../meshers/blocky/voxel_mesher_blocky.h"
#include "../../meshers/cubes/voxel_mesher_cubes.h"
#include "../../util/godot/ref_counted.h"
#include "voxel_terrain.h"
namespace zylann::voxel {
static AABB expand_with_vector(AABB box, Vector3 v) {
if (v.x > 0) {
box.size.x += v.x;
} else if (v.x < 0) {
box.position.x += v.x;
box.size.x -= v.x;
}
if (v.y > 0) {
box.size.y += v.y;
} else if (v.y < 0) {
box.position.y += v.y;
box.size.y -= v.y;
}
if (v.z > 0) {
box.size.z += v.z;
} else if (v.z < 0) {
box.position.z += v.z;
box.size.z -= v.z;
}
return box;
}
static real_t calculate_i_offset(const AABB &box, AABB other, real_t motion, int i, int j, int k) {
const real_t EPSILON = 0.001;
const Vector3 other_end = other.position + other.size;
const Vector3 box_end = box.position + box.size;
if (other_end[k] <= box.position[k] || other.position[k] >= box_end[k]) {
return motion;
}
if (other_end[j] <= box.position[j] || other.position[j] >= box_end[j]) {
return motion;
}
if (motion > 0.0 && other_end[i] <= box.position[i]) {
const real_t off = box.position[i] - other_end[i] - EPSILON;
if (off < motion) {
motion = off;
}
}
if (motion < 0.0 && other.position[i] >= box_end[i]) {
const real_t off = box_end[i] - other.position[i] + EPSILON;
if (off > motion) {
motion = off;
}
}
return motion;
}
// Gets the transformed vector for moving a box and slide.
// This algorithm is free from tunnelling for axis-aligned movement,
// except in some high-speed diagonal cases or huge size differences:
// For example, if a box is fast enough to have a diagonal motion jumping from A to B,
// it will pass through C if that other box is the only other one:
//
// o---o
// | A |
// o---o
// o---o
// | C |
// o---o
// o---o
// | B |
// o---o
//
// TODO one way to fix this would be to try a "hot side" projection instead
//
static Vector3 get_motion(AABB box, Vector3 motion, Span<const AABB> environment_boxes) {
// The bounding box is expanded to include it's estimated version at next update.
// This also makes the algorithm tunnelling-free
const AABB expanded_box = expand_with_vector(box, motion);
std::vector<AABB> colliding_boxes;
for (size_t i = 0; i < environment_boxes.size(); ++i) {
const AABB &other = environment_boxes[i];
if (expanded_box.intersects(other)) {
colliding_boxes.push_back(other);
}
}
if (colliding_boxes.size() == 0) {
return motion;
}
//print("Colliding: ", colliding_boxes.size())
Vector3 new_motion = motion;
for (unsigned int i = 0; i < colliding_boxes.size(); ++i) {
new_motion.y = calculate_i_offset(colliding_boxes[i], box, new_motion.y, 1, 0, 2);
}
box.position.y += new_motion.y;
for (unsigned int i = 0; i < colliding_boxes.size(); ++i) {
new_motion.x = calculate_i_offset(colliding_boxes[i], box, new_motion.x, 0, 1, 2);
}
box.position.x += new_motion.x;
for (unsigned int i = 0; i < colliding_boxes.size(); ++i) {
new_motion.z = calculate_i_offset(colliding_boxes[i], box, new_motion.z, 2, 1, 0);
}
box.position.z += new_motion.z;
return new_motion;
}
// static bool raycast_down(Span<const AABB> aabbs, Vector3 ray_origin, real_t &out_hit_y) {
// if (aabbs.size() == 0) {
// return false;
// }
// bool hit = false;
// real_t max_y = -9999999;
// for (unsigned int i = 0; i < aabbs.size(); ++i) {
// const AABB &aabb = aabbs[i];
// if ( //
// ray_origin.x >= aabb.position.x && //
// ray_origin.z >= aabb.position.z && //
// ray_origin.x < aabb.position.x + aabb.size.x && //
// ray_origin.z < aabb.position.z + aabb.size.z) {
// //
// const real_t box_top = aabb.position.y + aabb.size.y;
// if (hit) {
// max_y = math::max(box_top, max_y);
// } else {
// max_y = box_top;
// }
// hit = true;
// }
// }
// out_hit_y = max_y;
// return hit;
// }
inline Vector2 get_xz(Vector3 v) {
return Vector2(v.x, v.z);
}
static bool boxcast_down(Span<const AABB> aabbs, Vector2 box_pos, Vector2 box_size, real_t &out_hit_y) {
if (aabbs.size() == 0) {
return false;
}
bool hit = false;
real_t max_y = -9999999;
for (unsigned int i = 0; i < aabbs.size(); ++i) {
const AABB &aabb = aabbs[i];
if (Rect2(box_pos, box_size).intersects(Rect2(get_xz(aabb.position), get_xz(aabb.size)))) {
const real_t box_top = aabb.position.y + aabb.size.y;
if (hit) {
max_y = math::max(box_top, max_y);
} else {
max_y = box_top;
}
hit = true;
}
}
out_hit_y = max_y;
return hit;
}
static bool intersects(Span<const AABB> aabbs, const AABB &box) {
for (unsigned int i = 0; i < aabbs.size(); ++i) {
if (aabbs[i].intersects(box)) {
return true;
}
}
return false;
}
static void collect_boxes(
VoxelTerrain &p_terrain, AABB query_box, uint32_t collision_nask, std::vector<AABB> &potential_boxes) {
const VoxelDataMap &voxels = p_terrain.get_storage();
const int min_x = int(Math::floor(query_box.position.x));
const int min_y = int(Math::floor(query_box.position.y));
const int min_z = int(Math::floor(query_box.position.z));
const Vector3 query_box_end = query_box.position + query_box.size;
const int max_x = int(Math::ceil(query_box_end.x));
const int max_y = int(Math::ceil(query_box_end.y));
const int max_z = int(Math::ceil(query_box_end.z));
Vector3i i(min_x, min_y, min_z);
Ref<VoxelMesherBlocky> mesher_blocky;
Ref<VoxelMesherCubes> mesher_cubes;
if (try_get_as(p_terrain.get_mesher(), mesher_blocky)) {
Ref<VoxelBlockyLibrary> library_ref = mesher_blocky->get_library();
ERR_FAIL_COND_MSG(library_ref.is_null(), "VoxelMesherBlocky has no library assigned");
VoxelBlockyLibrary &library = **library_ref;
const int channel = VoxelBufferInternal::CHANNEL_TYPE;
for (i.z = min_z; i.z < max_z; ++i.z) {
for (i.y = min_y; i.y < max_y; ++i.y) {
for (i.x = min_x; i.x < max_x; ++i.x) {
const int type_id = voxels.get_voxel(i, channel);
if (library.has_voxel(type_id)) {
const VoxelBlockyModel &voxel_type = library.get_voxel_const(type_id);
if ((voxel_type.get_collision_mask() & collision_nask) == 0) {
continue;
}
const std::vector<AABB> &local_boxes = voxel_type.get_collision_aabbs();
for (auto it = local_boxes.begin(); it != local_boxes.end(); ++it) {
AABB world_box = *it;
world_box.position += i;
potential_boxes.push_back(world_box);
}
}
}
}
}
} else if (try_get_as(p_terrain.get_mesher(), mesher_cubes)) {
const int channel = VoxelBufferInternal::CHANNEL_COLOR;
for (i.z = min_z; i.z < max_z; ++i.z) {
for (i.y = min_y; i.y < max_y; ++i.y) {
for (i.x = min_x; i.x < max_x; ++i.x) {
const int color_data = voxels.get_voxel(i, channel);
if (color_data != 0) {
potential_boxes.push_back(AABB(i, Vector3(1, 1, 1)));
}
}
}
}
}
}
Vector3 VoxelBoxMover::get_motion(Vector3 p_pos, Vector3 p_motion, AABB p_aabb, VoxelTerrain &p_terrain) {
// The mesher is required to know how collisions should be processed
ERR_FAIL_COND_V(p_terrain.get_mesher().is_null(), Vector3());
// Transform to local in case the volume is transformed
const Transform3D to_world = p_terrain.get_global_transform();
const Transform3D to_local = to_world.affine_inverse();
const Vector3 pos = to_local.xform(p_pos);
const Vector3 motion = to_local.basis.xform(p_motion);
const AABB aabb = Transform3D(to_local.basis, Vector3()).xform(p_aabb);
const AABB box(aabb.position + pos, aabb.size);
const AABB expanded_box = expand_with_vector(box, motion);
static thread_local std::vector<AABB> s_colliding_boxes;
std::vector<AABB> &potential_boxes = s_colliding_boxes;
potential_boxes.clear();
// Collect potential collisions with the terrain (broad phase)
// TODO If motion is really big, we may want something more optimal or reject it
collect_boxes(p_terrain, expanded_box, _collision_mask, potential_boxes);
// Calculate collisions (narrow phase)
Vector3 slided_motion = zylann::voxel::get_motion(box, motion, to_span(potential_boxes));
// Minecraft-style stair climbing:
// If we were moving, changed horizontal direction due to collision, and resulting motion is about horizontal
_has_stepped_up = false;
if (_step_climbing_enabled && Math::abs(slided_motion.y) < 0.001 &&
Vector2(motion.x, motion.z).length_squared() > 0.0001 &&
Vector2(motion.x, motion.z).normalized().dot(Vector2(slided_motion.x, slided_motion.z).normalized()) <
0.99) {
real_t hit_y;
// Find out the height of the step
if (boxcast_down(to_span(potential_boxes), get_xz(expanded_box.position), get_xz(expanded_box.size), hit_y)) {
// If the step is up and not too high
if (hit_y > box.position.y && (hit_y - box.position.y) <= _max_step_height) {
const AABB hyp_box(Vector3(box.position.x + motion.x, hit_y, box.position.z + motion.z), box.size);
potential_boxes.clear();
collect_boxes(p_terrain, hyp_box, _collision_mask, potential_boxes);
// If the box fits on top of the step
if (!intersects(to_span(potential_boxes), hyp_box)) {
// Change motion so that it brings the box on top of the step
slided_motion = hyp_box.position - box.position;
_has_stepped_up = true;
}
}
}
}
// Switch back to world
const Vector3 world_slided_motion = to_world.basis.xform(slided_motion);
return world_slided_motion;
}
void VoxelBoxMover::set_collision_mask(uint32_t mask) {
_collision_mask = mask;
}
void VoxelBoxMover::set_step_climbing_enabled(bool enable) {
_step_climbing_enabled = enable;
}
bool VoxelBoxMover::is_step_climbing_enabled() const {
return _step_climbing_enabled;
}
bool VoxelBoxMover::has_stepped_up() const {
return _has_stepped_up;
}
void VoxelBoxMover::set_max_step_height(float height) {
_max_step_height = height;
}
float VoxelBoxMover::get_max_step_height() const {
return _max_step_height;
}
Vector3 VoxelBoxMover::_b_get_motion(Vector3 pos, Vector3 motion, AABB aabb, Node *terrain_node) {
ERR_FAIL_COND_V(terrain_node == nullptr, Vector3());
VoxelTerrain *terrain = Object::cast_to<VoxelTerrain>(terrain_node);
ERR_FAIL_COND_V(terrain == nullptr, Vector3());
return get_motion(pos, motion, aabb, *terrain);
}
void VoxelBoxMover::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_motion", "pos", "motion", "aabb", "terrain"), &VoxelBoxMover::_b_get_motion);
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &VoxelBoxMover::set_collision_mask);
ClassDB::bind_method(D_METHOD("get_collision_mask"), &VoxelBoxMover::get_collision_mask);
ClassDB::bind_method(D_METHOD("set_step_climbing_enabled", "enabled"), &VoxelBoxMover::set_step_climbing_enabled);
ClassDB::bind_method(D_METHOD("is_step_climbing_enabled"), &VoxelBoxMover::is_step_climbing_enabled);
ClassDB::bind_method(D_METHOD("set_max_step_height", "height"), &VoxelBoxMover::set_max_step_height);
ClassDB::bind_method(D_METHOD("get_max_step_height"), &VoxelBoxMover::get_max_step_height);
ClassDB::bind_method(D_METHOD("has_stepped_up"), &VoxelBoxMover::has_stepped_up);
}
} // namespace zylann::voxel