353 lines
11 KiB
C++
353 lines
11 KiB
C++
#include "voxel_box_mover.h"
|
|
#include "../../meshers/blocky/voxel_mesher_blocky.h"
|
|
#include "../../meshers/cubes/voxel_mesher_cubes.h"
|
|
#include "../../util/godot/ref_counted.h"
|
|
#include "voxel_terrain.h"
|
|
|
|
namespace zylann::voxel {
|
|
|
|
static AABB expand_with_vector(AABB box, Vector3 v) {
|
|
if (v.x > 0) {
|
|
box.size.x += v.x;
|
|
} else if (v.x < 0) {
|
|
box.position.x += v.x;
|
|
box.size.x -= v.x;
|
|
}
|
|
|
|
if (v.y > 0) {
|
|
box.size.y += v.y;
|
|
} else if (v.y < 0) {
|
|
box.position.y += v.y;
|
|
box.size.y -= v.y;
|
|
}
|
|
|
|
if (v.z > 0) {
|
|
box.size.z += v.z;
|
|
} else if (v.z < 0) {
|
|
box.position.z += v.z;
|
|
box.size.z -= v.z;
|
|
}
|
|
|
|
return box;
|
|
}
|
|
|
|
static real_t calculate_i_offset(const AABB &box, AABB other, real_t motion, int i, int j, int k) {
|
|
const real_t EPSILON = 0.001;
|
|
|
|
const Vector3 other_end = other.position + other.size;
|
|
const Vector3 box_end = box.position + box.size;
|
|
|
|
if (other_end[k] <= box.position[k] || other.position[k] >= box_end[k]) {
|
|
return motion;
|
|
}
|
|
|
|
if (other_end[j] <= box.position[j] || other.position[j] >= box_end[j]) {
|
|
return motion;
|
|
}
|
|
|
|
if (motion > 0.0 && other_end[i] <= box.position[i]) {
|
|
const real_t off = box.position[i] - other_end[i] - EPSILON;
|
|
if (off < motion) {
|
|
motion = off;
|
|
}
|
|
}
|
|
|
|
if (motion < 0.0 && other.position[i] >= box_end[i]) {
|
|
const real_t off = box_end[i] - other.position[i] + EPSILON;
|
|
if (off > motion) {
|
|
motion = off;
|
|
}
|
|
}
|
|
|
|
return motion;
|
|
}
|
|
|
|
// Gets the transformed vector for moving a box and slide.
|
|
// This algorithm is free from tunnelling for axis-aligned movement,
|
|
// except in some high-speed diagonal cases or huge size differences:
|
|
// For example, if a box is fast enough to have a diagonal motion jumping from A to B,
|
|
// it will pass through C if that other box is the only other one:
|
|
//
|
|
// o---o
|
|
// | A |
|
|
// o---o
|
|
// o---o
|
|
// | C |
|
|
// o---o
|
|
// o---o
|
|
// | B |
|
|
// o---o
|
|
//
|
|
// TODO one way to fix this would be to try a "hot side" projection instead
|
|
//
|
|
static Vector3 get_motion(AABB box, Vector3 motion, Span<const AABB> environment_boxes) {
|
|
// The bounding box is expanded to include it's estimated version at next update.
|
|
// This also makes the algorithm tunnelling-free
|
|
const AABB expanded_box = expand_with_vector(box, motion);
|
|
|
|
std::vector<AABB> colliding_boxes;
|
|
for (size_t i = 0; i < environment_boxes.size(); ++i) {
|
|
const AABB &other = environment_boxes[i];
|
|
if (expanded_box.intersects(other)) {
|
|
colliding_boxes.push_back(other);
|
|
}
|
|
}
|
|
|
|
if (colliding_boxes.size() == 0) {
|
|
return motion;
|
|
}
|
|
|
|
//print("Colliding: ", colliding_boxes.size())
|
|
|
|
Vector3 new_motion = motion;
|
|
|
|
for (unsigned int i = 0; i < colliding_boxes.size(); ++i) {
|
|
new_motion.y = calculate_i_offset(colliding_boxes[i], box, new_motion.y, 1, 0, 2);
|
|
}
|
|
box.position.y += new_motion.y;
|
|
|
|
for (unsigned int i = 0; i < colliding_boxes.size(); ++i) {
|
|
new_motion.x = calculate_i_offset(colliding_boxes[i], box, new_motion.x, 0, 1, 2);
|
|
}
|
|
box.position.x += new_motion.x;
|
|
|
|
for (unsigned int i = 0; i < colliding_boxes.size(); ++i) {
|
|
new_motion.z = calculate_i_offset(colliding_boxes[i], box, new_motion.z, 2, 1, 0);
|
|
}
|
|
box.position.z += new_motion.z;
|
|
|
|
return new_motion;
|
|
}
|
|
|
|
// static bool raycast_down(Span<const AABB> aabbs, Vector3 ray_origin, real_t &out_hit_y) {
|
|
// if (aabbs.size() == 0) {
|
|
// return false;
|
|
// }
|
|
// bool hit = false;
|
|
// real_t max_y = -9999999;
|
|
// for (unsigned int i = 0; i < aabbs.size(); ++i) {
|
|
// const AABB &aabb = aabbs[i];
|
|
// if ( //
|
|
// ray_origin.x >= aabb.position.x && //
|
|
// ray_origin.z >= aabb.position.z && //
|
|
// ray_origin.x < aabb.position.x + aabb.size.x && //
|
|
// ray_origin.z < aabb.position.z + aabb.size.z) {
|
|
// //
|
|
// const real_t box_top = aabb.position.y + aabb.size.y;
|
|
// if (hit) {
|
|
// max_y = math::max(box_top, max_y);
|
|
// } else {
|
|
// max_y = box_top;
|
|
// }
|
|
// hit = true;
|
|
// }
|
|
// }
|
|
// out_hit_y = max_y;
|
|
// return hit;
|
|
// }
|
|
|
|
inline Vector2 get_xz(Vector3 v) {
|
|
return Vector2(v.x, v.z);
|
|
}
|
|
|
|
static bool boxcast_down(Span<const AABB> aabbs, Vector2 box_pos, Vector2 box_size, real_t &out_hit_y) {
|
|
if (aabbs.size() == 0) {
|
|
return false;
|
|
}
|
|
bool hit = false;
|
|
real_t max_y = -9999999;
|
|
for (unsigned int i = 0; i < aabbs.size(); ++i) {
|
|
const AABB &aabb = aabbs[i];
|
|
if (Rect2(box_pos, box_size).intersects(Rect2(get_xz(aabb.position), get_xz(aabb.size)))) {
|
|
const real_t box_top = aabb.position.y + aabb.size.y;
|
|
if (hit) {
|
|
max_y = math::max(box_top, max_y);
|
|
} else {
|
|
max_y = box_top;
|
|
}
|
|
hit = true;
|
|
}
|
|
}
|
|
out_hit_y = max_y;
|
|
return hit;
|
|
}
|
|
|
|
static bool intersects(Span<const AABB> aabbs, const AABB &box) {
|
|
for (unsigned int i = 0; i < aabbs.size(); ++i) {
|
|
if (aabbs[i].intersects(box)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void collect_boxes(
|
|
VoxelTerrain &p_terrain, AABB query_box, uint32_t collision_nask, std::vector<AABB> &potential_boxes) {
|
|
const VoxelDataMap &voxels = p_terrain.get_storage();
|
|
|
|
const int min_x = int(Math::floor(query_box.position.x));
|
|
const int min_y = int(Math::floor(query_box.position.y));
|
|
const int min_z = int(Math::floor(query_box.position.z));
|
|
|
|
const Vector3 query_box_end = query_box.position + query_box.size;
|
|
const int max_x = int(Math::ceil(query_box_end.x));
|
|
const int max_y = int(Math::ceil(query_box_end.y));
|
|
const int max_z = int(Math::ceil(query_box_end.z));
|
|
|
|
Vector3i i(min_x, min_y, min_z);
|
|
|
|
Ref<VoxelMesherBlocky> mesher_blocky;
|
|
Ref<VoxelMesherCubes> mesher_cubes;
|
|
|
|
if (try_get_as(p_terrain.get_mesher(), mesher_blocky)) {
|
|
Ref<VoxelBlockyLibrary> library_ref = mesher_blocky->get_library();
|
|
ERR_FAIL_COND_MSG(library_ref.is_null(), "VoxelMesherBlocky has no library assigned");
|
|
VoxelBlockyLibrary &library = **library_ref;
|
|
const int channel = VoxelBufferInternal::CHANNEL_TYPE;
|
|
|
|
for (i.z = min_z; i.z < max_z; ++i.z) {
|
|
for (i.y = min_y; i.y < max_y; ++i.y) {
|
|
for (i.x = min_x; i.x < max_x; ++i.x) {
|
|
const int type_id = voxels.get_voxel(i, channel);
|
|
|
|
if (library.has_voxel(type_id)) {
|
|
const VoxelBlockyModel &voxel_type = library.get_voxel_const(type_id);
|
|
|
|
if ((voxel_type.get_collision_mask() & collision_nask) == 0) {
|
|
continue;
|
|
}
|
|
|
|
const std::vector<AABB> &local_boxes = voxel_type.get_collision_aabbs();
|
|
|
|
for (auto it = local_boxes.begin(); it != local_boxes.end(); ++it) {
|
|
AABB world_box = *it;
|
|
world_box.position += i;
|
|
potential_boxes.push_back(world_box);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (try_get_as(p_terrain.get_mesher(), mesher_cubes)) {
|
|
const int channel = VoxelBufferInternal::CHANNEL_COLOR;
|
|
|
|
for (i.z = min_z; i.z < max_z; ++i.z) {
|
|
for (i.y = min_y; i.y < max_y; ++i.y) {
|
|
for (i.x = min_x; i.x < max_x; ++i.x) {
|
|
const int color_data = voxels.get_voxel(i, channel);
|
|
if (color_data != 0) {
|
|
potential_boxes.push_back(AABB(i, Vector3(1, 1, 1)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector3 VoxelBoxMover::get_motion(Vector3 p_pos, Vector3 p_motion, AABB p_aabb, VoxelTerrain &p_terrain) {
|
|
// The mesher is required to know how collisions should be processed
|
|
ERR_FAIL_COND_V(p_terrain.get_mesher().is_null(), Vector3());
|
|
|
|
// Transform to local in case the volume is transformed
|
|
const Transform3D to_world = p_terrain.get_global_transform();
|
|
const Transform3D to_local = to_world.affine_inverse();
|
|
const Vector3 pos = to_local.xform(p_pos);
|
|
const Vector3 motion = to_local.basis.xform(p_motion);
|
|
const AABB aabb = Transform3D(to_local.basis, Vector3()).xform(p_aabb);
|
|
|
|
const AABB box(aabb.position + pos, aabb.size);
|
|
const AABB expanded_box = expand_with_vector(box, motion);
|
|
|
|
static thread_local std::vector<AABB> s_colliding_boxes;
|
|
std::vector<AABB> &potential_boxes = s_colliding_boxes;
|
|
potential_boxes.clear();
|
|
|
|
// Collect potential collisions with the terrain (broad phase)
|
|
// TODO If motion is really big, we may want something more optimal or reject it
|
|
collect_boxes(p_terrain, expanded_box, _collision_mask, potential_boxes);
|
|
|
|
// Calculate collisions (narrow phase)
|
|
Vector3 slided_motion = zylann::voxel::get_motion(box, motion, to_span(potential_boxes));
|
|
|
|
// Minecraft-style stair climbing:
|
|
// If we were moving, changed horizontal direction due to collision, and resulting motion is about horizontal
|
|
_has_stepped_up = false;
|
|
if (_step_climbing_enabled && Math::abs(slided_motion.y) < 0.001 &&
|
|
Vector2(motion.x, motion.z).length_squared() > 0.0001 &&
|
|
Vector2(motion.x, motion.z).normalized().dot(Vector2(slided_motion.x, slided_motion.z).normalized()) <
|
|
0.99) {
|
|
real_t hit_y;
|
|
// Find out the height of the step
|
|
if (boxcast_down(to_span(potential_boxes), get_xz(expanded_box.position), get_xz(expanded_box.size), hit_y)) {
|
|
// If the step is up and not too high
|
|
if (hit_y > box.position.y && (hit_y - box.position.y) <= _max_step_height) {
|
|
const AABB hyp_box(Vector3(box.position.x + motion.x, hit_y, box.position.z + motion.z), box.size);
|
|
|
|
potential_boxes.clear();
|
|
collect_boxes(p_terrain, hyp_box, _collision_mask, potential_boxes);
|
|
|
|
// If the box fits on top of the step
|
|
if (!intersects(to_span(potential_boxes), hyp_box)) {
|
|
// Change motion so that it brings the box on top of the step
|
|
slided_motion = hyp_box.position - box.position;
|
|
_has_stepped_up = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Switch back to world
|
|
const Vector3 world_slided_motion = to_world.basis.xform(slided_motion);
|
|
|
|
return world_slided_motion;
|
|
}
|
|
|
|
void VoxelBoxMover::set_collision_mask(uint32_t mask) {
|
|
_collision_mask = mask;
|
|
}
|
|
|
|
void VoxelBoxMover::set_step_climbing_enabled(bool enable) {
|
|
_step_climbing_enabled = enable;
|
|
}
|
|
|
|
bool VoxelBoxMover::is_step_climbing_enabled() const {
|
|
return _step_climbing_enabled;
|
|
}
|
|
|
|
bool VoxelBoxMover::has_stepped_up() const {
|
|
return _has_stepped_up;
|
|
}
|
|
|
|
void VoxelBoxMover::set_max_step_height(float height) {
|
|
_max_step_height = height;
|
|
}
|
|
|
|
float VoxelBoxMover::get_max_step_height() const {
|
|
return _max_step_height;
|
|
}
|
|
|
|
Vector3 VoxelBoxMover::_b_get_motion(Vector3 pos, Vector3 motion, AABB aabb, Node *terrain_node) {
|
|
ERR_FAIL_COND_V(terrain_node == nullptr, Vector3());
|
|
VoxelTerrain *terrain = Object::cast_to<VoxelTerrain>(terrain_node);
|
|
ERR_FAIL_COND_V(terrain == nullptr, Vector3());
|
|
return get_motion(pos, motion, aabb, *terrain);
|
|
}
|
|
|
|
void VoxelBoxMover::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("get_motion", "pos", "motion", "aabb", "terrain"), &VoxelBoxMover::_b_get_motion);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &VoxelBoxMover::set_collision_mask);
|
|
ClassDB::bind_method(D_METHOD("get_collision_mask"), &VoxelBoxMover::get_collision_mask);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_step_climbing_enabled", "enabled"), &VoxelBoxMover::set_step_climbing_enabled);
|
|
ClassDB::bind_method(D_METHOD("is_step_climbing_enabled"), &VoxelBoxMover::is_step_climbing_enabled);
|
|
|
|
ClassDB::bind_method(D_METHOD("set_max_step_height", "height"), &VoxelBoxMover::set_max_step_height);
|
|
ClassDB::bind_method(D_METHOD("get_max_step_height"), &VoxelBoxMover::get_max_step_height);
|
|
|
|
ClassDB::bind_method(D_METHOD("has_stepped_up"), &VoxelBoxMover::has_stepped_up);
|
|
}
|
|
|
|
} // namespace zylann::voxel
|