godot_voxel/tests/test_octree.cpp
Marc Gilleron f53856f2c3 Made LodOctree update recursively.
If subdivision conditions are fulfilled, it no longer needs to be
updated several times to reach its target shape.
2022-03-22 19:35:52 +00:00

237 lines
7.9 KiB
C++

#include "test_octree.h"
#include "../constants/cube_tables.h"
#include "../terrain/variable_lod/lod_octree.h"
#include "../util/profiling_clock.h"
#include "testing.h"
#include <core/string/print_string.h>
#include <core/templates/map.h>
#include <unordered_map>
#include <unordered_set>
namespace zylann::voxel::tests {
void test_octree_update() {
static const float lod_distance = 80;
const float view_distance = 1024;
static const int lod_count = 6;
static const int block_size = 16;
const Vector3 block_size_v(block_size, block_size, block_size);
Vector3 viewer_pos = Vector3(100, 50, 200);
const int octree_size = block_size << (lod_count - 1);
// Testing as an octree forest, as it is the way they are used in VoxelLodTerrain
Map<Vector3i, LodOctree> octrees;
const Box3i viewer_box_voxels =
Box3i::from_center_extents(Vector3iUtil::from_floored(viewer_pos), Vector3iUtil::create(view_distance));
const Box3i viewer_box_octrees = viewer_box_voxels.downscaled(octree_size);
viewer_box_octrees.for_each_cell([&octrees](Vector3i pos) {
Map<Vector3i, LodOctree>::Element *e = octrees.insert(pos, LodOctree());
LodOctree &octree = e->value();
LodOctree::NoDestroyAction nda;
octree.create(lod_count, nda);
});
struct OctreeActions {
int created_count = 0;
int destroyed_count = 0;
Vector3 viewer_pos_octree_space;
float lod_distance_octree_space;
void create_child(Vector3i node_pos, int lod_index, LodOctree::NodeData &data) {
++created_count;
}
void destroy_child(Vector3i node_pos, int lod_index) {
++destroyed_count;
}
void show_parent(Vector3i node_pos, int lod_index) {}
void hide_parent(Vector3i node_pos, int lod_index) {}
bool can_create_root(int lod_index) {
return true;
}
bool can_split(Vector3i node_pos, int lod_index, LodOctree::NodeData &data) {
return LodOctree::is_below_split_distance(
node_pos, lod_index, viewer_pos_octree_space, lod_distance_octree_space);
}
bool can_join(Vector3i node_pos, int parent_lod_index) {
return !LodOctree::is_below_split_distance(
node_pos, parent_lod_index, viewer_pos_octree_space, lod_distance_octree_space);
}
};
int initial_block_count = 0;
ProfilingClock profiling_clock;
// Initial
for (Map<Vector3i, LodOctree>::Element *e = octrees.front(); e; e = e->next()) {
LodOctree &octree = e->value();
const Vector3i block_pos_maxlod = e->key();
const Vector3i block_offset_lod0 = block_pos_maxlod << (lod_count - 1);
const Vector3 relative_viewer_pos = viewer_pos - block_size_v * Vector3(block_offset_lod0);
OctreeActions actions;
actions.viewer_pos_octree_space = viewer_pos / block_size;
actions.lod_distance_octree_space = lod_distance / block_size;
octree.update(actions);
initial_block_count += actions.created_count;
ZYLANN_TEST_ASSERT(actions.destroyed_count == 0);
}
const int time_init = profiling_clock.restart();
int initial_block_count_rec = 0;
for (Map<Vector3i, LodOctree>::Element *e = octrees.front(); e; e = e->next()) {
const LodOctree &octree = e->value();
initial_block_count_rec += octree.get_node_count();
}
print_line(String("Initial block count: {0}, time: {1} us").format(varray(initial_block_count, time_init)));
ZYLANN_TEST_ASSERT(initial_block_count > 0);
ZYLANN_TEST_ASSERT(initial_block_count == initial_block_count_rec);
// Updates without moving
int created_block_count = 0;
int destroyed_block_count = 0;
for (int i = 0; i < 10; ++i) {
profiling_clock.restart();
created_block_count = 0;
for (Map<Vector3i, LodOctree>::Element *e = octrees.front(); e; e = e->next()) {
LodOctree &octree = e->value();
const Vector3i block_pos_maxlod = e->key();
const Vector3i block_offset_lod0 = block_pos_maxlod << (lod_count - 1);
const Vector3 relative_viewer_pos = viewer_pos - block_size_v * Vector3(block_offset_lod0);
OctreeActions actions;
actions.viewer_pos_octree_space = viewer_pos / block_size;
actions.lod_distance_octree_space = lod_distance / block_size;
octree.update(actions);
created_block_count += actions.created_count;
destroyed_block_count += actions.destroyed_count;
}
const int time_stay = profiling_clock.restart();
// Block count should not change
ZYLANN_TEST_ASSERT(created_block_count == 0);
ZYLANN_TEST_ASSERT(destroyed_block_count == 0);
print_line(String("Stay time: {0} us").format(varray(time_stay)));
}
// Clearing
int block_count = initial_block_count;
for (Map<Vector3i, LodOctree>::Element *e = octrees.front(); e; e = e->next()) {
LodOctree &octree = e->value();
struct DestroyAction {
int destroyed_blocks = 0;
inline void operator()(Vector3i node_pos, int lod) {
++destroyed_blocks;
}
};
DestroyAction da;
octree.clear(da);
block_count -= da.destroyed_blocks;
}
ZYLANN_TEST_ASSERT(block_count == 0);
}
void test_octree_find_in_box() {
const int blocks_across = 32;
const int block_size = 16;
int lods = 0;
{
int diameter = blocks_across;
while (diameter > 0) {
diameter = diameter >> 1;
lods += 1;
}
//print_line(String("Lod count: {0}").format(varray(lods)));
}
// Build a fully populated octree with all its leaves at LOD0
LodOctree octree;
LodOctree::NoDestroyAction nda;
octree.create(lods, nda);
struct SubdivideActions {
bool can_split(Vector3i node_pos, int lod_index, const LodOctree::NodeData &node_data) {
return true;
}
void create_child(Vector3i pos, int lod_index, LodOctree::NodeData &node_data) {
node_data.state = pos.x + pos.y + pos.z;
}
};
SubdivideActions sa;
octree.subdivide(sa);
std::unordered_map<Vector3i, std::unordered_set<Vector3i>> expected_positions;
const Box3i full_box(Vector3i(), Vector3i(blocks_across, blocks_across, blocks_across));
// Build expected result
full_box.for_each_cell([full_box, &expected_positions](Vector3i pos) {
Box3i area_box(pos - Vector3i(1, 1, 1), Vector3i(3, 3, 3));
area_box.clip(full_box);
auto insert_result = expected_positions.insert(std::make_pair(pos, std::unordered_set<Vector3i>()));
ERR_FAIL_COND(insert_result.second == false);
std::unordered_set<Vector3i> &area_positions = insert_result.first->second;
area_box.for_each_cell([&area_positions](Vector3i npos) {
auto it = area_positions.insert(npos);
ZYLANN_TEST_ASSERT(it.second == true);
});
});
// Get octree results
int checksum = 0;
full_box.for_each_cell([&octree, &expected_positions, &checksum](Vector3i pos) {
const Box3i area_box(pos - Vector3i(1, 1, 1), Vector3i(3, 3, 3));
auto it = expected_positions.find(pos);
ZYLANN_TEST_ASSERT(it != expected_positions.end());
const std::unordered_set<Vector3i> &expected_area_positions = it->second;
std::unordered_set<Vector3i> found_positions;
octree.for_leaves_in_box(area_box,
[&found_positions, &expected_area_positions, &checksum](
Vector3i node_pos, int lod, const LodOctree::NodeData &node_data) {
auto insert_result = found_positions.insert(node_pos);
// Must be one of the expected positions
ZYLANN_TEST_ASSERT(expected_area_positions.find(node_pos) != expected_area_positions.end());
// Must not be a duplicate
ZYLANN_TEST_ASSERT(insert_result.second == true);
checksum += node_data.state;
});
});
// Doing it again just to measure time
{
ProfilingClock profiling_clock;
int checksum2 = 0;
full_box.for_each_cell([&octree, &expected_positions, &checksum2](Vector3i pos) {
const Box3i area_box(pos - Vector3i(1, 1, 1), Vector3i(3, 3, 3));
octree.for_leaves_in_box(
area_box, [&checksum2](Vector3i node_pos, int lod, const LodOctree::NodeData &node_data) {
checksum2 += node_data.state;
});
});
ZYLANN_TEST_ASSERT(checksum2 == checksum);
const int for_each_cell_time = profiling_clock.restart();
const float single_query_time = float(for_each_cell_time) / Vector3iUtil::get_volume(full_box.size);
print_line(String("for_each_cell time with {0} lods: total {1} us, single query {2} us, checksum: {3}")
.format(varray(lods, for_each_cell_time, single_query_time, checksum2)));
}
}
} // namespace zylann::voxel::tests