godot_voxel/streams/voxel_block_serializer.cpp
2022-04-16 02:27:18 +01:00

567 lines
19 KiB
C++

#include "voxel_block_serializer.h"
#include "../storage/voxel_buffer_internal.h"
#include "../storage/voxel_memory_pool.h"
#include "../util/macros.h"
#include "../util/math/vector3i.h"
#include "../util/profiling.h"
#include "../util/serialization.h"
#include "compressed_data.h"
#include <core/io/marshalls.h> // For `encode_variant`
#include <core/io/stream_peer.h>
#include <limits>
namespace zylann::voxel {
namespace BlockSerializer {
const uint8_t BLOCK_FORMAT_VERSION = 3;
const unsigned int BLOCK_TRAILING_MAGIC = 0x900df00d;
const unsigned int BLOCK_TRAILING_MAGIC_SIZE = 4;
const unsigned int BLOCK_METADATA_HEADER_SIZE = sizeof(uint32_t);
// Temporary data buffers, re-used to reduce allocations
thread_local std::vector<uint8_t> tls_data;
thread_local std::vector<uint8_t> tls_compressed_data;
thread_local std::vector<uint8_t> tls_metadata_tmp;
size_t get_metadata_size_in_bytes(const VoxelBufferInternal &buffer) {
size_t size = 0;
const FlatMap<Vector3i, Variant> &voxel_metadata = buffer.get_voxel_metadata();
for (FlatMap<Vector3i, Variant>::ConstIterator it = voxel_metadata.begin(); it != voxel_metadata.end(); ++it) {
const Vector3i pos = it->key;
ERR_FAIL_COND_V_MSG(pos.x < 0 || static_cast<uint32_t>(pos.x) >= VoxelBufferInternal::MAX_SIZE, 0,
"Invalid voxel metadata X position");
ERR_FAIL_COND_V_MSG(pos.y < 0 || static_cast<uint32_t>(pos.y) >= VoxelBufferInternal::MAX_SIZE, 0,
"Invalid voxel metadata Y position");
ERR_FAIL_COND_V_MSG(pos.z < 0 || static_cast<uint32_t>(pos.z) >= VoxelBufferInternal::MAX_SIZE, 0,
"Invalid voxel metadata Z position");
size += 3 * sizeof(uint16_t); // Positions are stored as 3 unsigned shorts
int len;
const Error err = encode_variant(it->value, nullptr, len, false);
ERR_FAIL_COND_V_MSG(err != OK, 0, "Error when trying to encode voxel metadata.");
size += len;
}
// If no metadata is found at all, nothing is serialized, not even null.
// It spares 24 bytes (40 if real_t == double),
// and is backward compatible with saves made before introduction of metadata.
if (size != 0 || buffer.get_block_metadata() != Variant()) {
int len;
// Get size first by invoking the function is "length mode"
const Error err = encode_variant(buffer.get_block_metadata(), nullptr, len, false);
ERR_FAIL_COND_V_MSG(err != OK, 0, "Error when trying to encode block metadata.");
size += len;
}
return size;
}
template <typename T>
inline void write(uint8_t *&dst, T d) {
*(T *)dst = d;
dst += sizeof(T);
}
template <typename T>
inline T read(uint8_t *&src) {
T d = *(T *)src;
src += sizeof(T);
return d;
}
// The target buffer MUST have correct size. Recoverable errors must have been checked before.
void serialize_metadata(Span<uint8_t> p_dst, const VoxelBufferInternal &buffer) {
uint8_t *dst = p_dst.data();
{
int written_length;
encode_variant(buffer.get_block_metadata(), dst, written_length, false);
dst += written_length;
// I chose to cast this way to fix a GCC warning.
// If dst - p_dst is negative (which is wrong), it will wrap and cause a justified assertion failure
CRASH_COND_MSG(
static_cast<size_t>(dst - p_dst.data()) > p_dst.size(), "Wrote block metadata out of expected bounds");
}
const FlatMap<Vector3i, Variant> &voxel_metadata = buffer.get_voxel_metadata();
for (FlatMap<Vector3i, Variant>::ConstIterator it = voxel_metadata.begin(); it != voxel_metadata.end(); ++it) {
// Serializing key as ushort because it's more than enough for a 3D dense array
static_assert(VoxelBufferInternal::MAX_SIZE <= std::numeric_limits<uint16_t>::max(),
"Maximum size exceeds serialization support");
const Vector3i pos = it->key;
write<uint16_t>(dst, pos.x);
write<uint16_t>(dst, pos.y);
write<uint16_t>(dst, pos.z);
int written_length;
const Error err = encode_variant(it->value, dst, written_length, false);
CRASH_COND_MSG(err != OK, "Error when trying to encode voxel metadata.");
dst += written_length;
CRASH_COND_MSG(
static_cast<size_t>(dst - p_dst.data()) > p_dst.size(), "Wrote voxel metadata out of expected bounds");
}
CRASH_COND_MSG(static_cast<size_t>(dst - p_dst.data()) != p_dst.size(),
String("Written metadata doesn't match expected count (expected {0}, got {1})")
.format(varray(ZN_SIZE_T_TO_VARIANT(p_dst.size()), (int)(dst - p_dst.data()))));
}
template <typename T>
struct ClearOnExit {
T &container;
~ClearOnExit() {
container.clear();
}
};
//#define CLEAR_ON_EXIT(container) ClearOnExit<decltype(container)> clear_on_exit_##__LINE__;
bool deserialize_metadata(uint8_t *p_src, VoxelBufferInternal &buffer, const size_t metadata_size) {
uint8_t *src = p_src;
size_t remaining_length = metadata_size;
{
Variant block_metadata;
int read_length;
const Error err = decode_variant(block_metadata, src, remaining_length, &read_length, false);
ERR_FAIL_COND_V_MSG(err != OK, false, "Failed to deserialize block metadata");
remaining_length -= read_length;
src += read_length;
CRASH_COND_MSG(remaining_length > metadata_size, "Block metadata size underflow");
buffer.set_block_metadata(block_metadata);
}
typedef FlatMap<Vector3i, Variant>::Pair Pair;
static thread_local std::vector<Pair> tls_pairs;
// Clear when exiting scope (including cases of error) so we don't store dangling Variants
ClearOnExit<std::vector<Pair>> clear_tls_pairs{ tls_pairs };
while (remaining_length > 0) {
Vector3i pos;
pos.x = read<uint16_t>(src);
pos.y = read<uint16_t>(src);
pos.z = read<uint16_t>(src);
remaining_length -= 3 * sizeof(uint16_t);
ERR_CONTINUE_MSG(!buffer.is_position_valid(pos),
String("Invalid voxel metadata position {0} for buffer of size {1}")
.format(varray(pos, buffer.get_size())));
Variant metadata;
int read_length;
const Error err = decode_variant(metadata, src, remaining_length, &read_length, false);
ERR_FAIL_COND_V_MSG(err != OK, false, "Failed to deserialize block metadata");
remaining_length -= read_length;
src += read_length;
CRASH_COND_MSG(remaining_length > metadata_size, "Block metadata size underflow");
tls_pairs.push_back(Pair{ pos, metadata });
}
// Set all metadata at once, FlatMap is faster to initialize this way
buffer.clear_and_set_voxel_metadata(to_span(tls_pairs));
CRASH_COND_MSG(remaining_length != 0, "Did not read expected size");
return true;
}
size_t get_size_in_bytes(const VoxelBufferInternal &buffer, size_t &metadata_size) {
// Version and size
size_t size = 1 * sizeof(uint8_t) + 3 * sizeof(uint16_t);
const Vector3i size_in_voxels = buffer.get_size();
for (unsigned int channel_index = 0; channel_index < VoxelBufferInternal::MAX_CHANNELS; ++channel_index) {
const VoxelBufferInternal::Compression compression = buffer.get_channel_compression(channel_index);
const VoxelBufferInternal::Depth depth = buffer.get_channel_depth(channel_index);
// For format value
size += 1;
switch (compression) {
case VoxelBufferInternal::COMPRESSION_NONE: {
size += VoxelBufferInternal::get_size_in_bytes_for_volume(size_in_voxels, depth);
} break;
case VoxelBufferInternal::COMPRESSION_UNIFORM: {
size += VoxelBufferInternal::get_depth_bit_count(depth) >> 3;
} break;
default:
ERR_PRINT("Unhandled compression mode");
CRASH_NOW();
}
}
metadata_size = get_metadata_size_in_bytes(buffer);
size_t metadata_size_with_header = 0;
if (metadata_size > 0) {
metadata_size_with_header = metadata_size + BLOCK_METADATA_HEADER_SIZE;
}
return size + metadata_size_with_header + BLOCK_TRAILING_MAGIC_SIZE;
}
SerializeResult serialize(const VoxelBufferInternal &voxel_buffer) {
//
ZN_PROFILE_SCOPE();
std::vector<uint8_t> &dst_data = tls_data;
std::vector<uint8_t> &metadata_tmp = tls_metadata_tmp;
dst_data.clear();
metadata_tmp.clear();
// Cannot serialize an empty block
ERR_FAIL_COND_V(Vector3iUtil::get_volume(voxel_buffer.get_size()) == 0, SerializeResult(dst_data, false));
size_t expected_metadata_size = 0;
const size_t expected_data_size = get_size_in_bytes(voxel_buffer, expected_metadata_size);
dst_data.reserve(expected_data_size);
MemoryWriter f(dst_data, ENDIANESS_LITTLE_ENDIAN);
f.store_8(BLOCK_FORMAT_VERSION);
ERR_FAIL_COND_V(
voxel_buffer.get_size().x > std::numeric_limits<uint16_t>().max(), SerializeResult(dst_data, false));
f.store_16(voxel_buffer.get_size().x);
ERR_FAIL_COND_V(
voxel_buffer.get_size().y > std::numeric_limits<uint16_t>().max(), SerializeResult(dst_data, false));
f.store_16(voxel_buffer.get_size().y);
ERR_FAIL_COND_V(
voxel_buffer.get_size().z > std::numeric_limits<uint16_t>().max(), SerializeResult(dst_data, false));
f.store_16(voxel_buffer.get_size().z);
for (unsigned int channel_index = 0; channel_index < VoxelBufferInternal::MAX_CHANNELS; ++channel_index) {
const VoxelBufferInternal::Compression compression = voxel_buffer.get_channel_compression(channel_index);
const VoxelBufferInternal::Depth depth = voxel_buffer.get_channel_depth(channel_index);
// Low nibble: compression (up to 16 values allowed)
// High nibble: depth (up to 16 values allowed)
const uint8_t fmt = static_cast<uint8_t>(compression) | (static_cast<uint8_t>(depth) << 4);
f.store_8(fmt);
switch (compression) {
case VoxelBufferInternal::COMPRESSION_NONE: {
Span<uint8_t> data;
ERR_FAIL_COND_V(!voxel_buffer.get_channel_raw(channel_index, data), SerializeResult(dst_data, false));
f.store_buffer(data);
} break;
case VoxelBufferInternal::COMPRESSION_UNIFORM: {
const uint64_t v = voxel_buffer.get_voxel(Vector3i(), channel_index);
switch (depth) {
case VoxelBufferInternal::DEPTH_8_BIT:
f.store_8(v);
break;
case VoxelBufferInternal::DEPTH_16_BIT:
f.store_16(v);
break;
case VoxelBufferInternal::DEPTH_32_BIT:
f.store_32(v);
break;
case VoxelBufferInternal::DEPTH_64_BIT:
f.store_64(v);
break;
default:
CRASH_NOW();
}
} break;
default:
CRASH_COND("Unhandled compression mode");
}
}
// Metadata has more reasons to fail. If a recoverable error occurs prior to serializing,
// we just discard all metadata as if it was empty.
if (expected_metadata_size > 0) {
f.store_32(expected_metadata_size);
metadata_tmp.resize(expected_metadata_size);
// This function brings me joy. </irony>
serialize_metadata(to_span(metadata_tmp), voxel_buffer);
f.store_buffer(to_span(metadata_tmp));
}
f.store_32(BLOCK_TRAILING_MAGIC);
// Check out of bounds writing
CRASH_COND(dst_data.size() != expected_data_size);
return SerializeResult(dst_data, true);
}
bool migrate_v2_to_v3(Span<const uint8_t> p_data, std::vector<uint8_t> &dst) {
// In v2, SDF data was using a legacy arbitrary formula to encode fixed-point numbers.
// In v3, it now uses inorm8 and inorm16.
// Serialized size does not change.
// Constants used at the time of this version
const unsigned int channel_count = 8;
const unsigned int sdf_channel_index = 2;
const unsigned int no_compression = 0;
const unsigned int uniform_compression = 1;
dst.resize(p_data.size());
memcpy(dst.data(), p_data.data(), p_data.size());
MemoryReader mr(p_data, ENDIANESS_LITTLE_ENDIAN);
const uint8_t rv = mr.get_8(); // version
CRASH_COND(rv != 2);
dst[0] = 3;
const unsigned short size_x = mr.get_16(); // size_x
const unsigned short size_y = mr.get_16(); // size_y
const unsigned short size_z = mr.get_16(); // size_z
const unsigned int volume = size_x * size_y * size_z;
for (unsigned int channel_index = 0; channel_index < channel_count; ++channel_index) {
const uint8_t fmt = mr.get_8();
const uint8_t compression_value = fmt & 0xf;
const uint8_t depth_value = (fmt >> 4) & 0xf;
ERR_FAIL_INDEX_V(compression_value, 2, false);
ERR_FAIL_INDEX_V(depth_value, 4, false);
const unsigned int voxel_size = 1 << depth_value;
if (channel_index == sdf_channel_index) {
ByteSpanWithPosition dst2(to_span(dst), mr.pos);
MemoryWriterExistingBuffer mw(dst2, ENDIANESS_LITTLE_ENDIAN);
if (compression_value == no_compression) {
switch (depth_value) {
case 0:
for (unsigned int i = 0; i < volume; ++i) {
mw.store_8(snorm_to_s8(legacy::u8_to_snorm(mr.get_8())));
}
break;
case 1:
for (unsigned int i = 0; i < volume; ++i) {
mw.store_16(snorm_to_s16(legacy::u16_to_snorm(mr.get_16())));
}
break;
case 2:
case 3:
// Depths above 16bit use floats, just skip them
mr.pos += voxel_size * volume;
break;
}
} else if (compression_value == uniform_compression) {
switch (depth_value) {
case 0:
mw.store_8(snorm_to_s8(legacy::u8_to_snorm(mr.get_8())));
break;
case 1:
mw.store_16(snorm_to_s16(legacy::u16_to_snorm(mr.get_16())));
break;
case 2:
case 3:
// Depths above 16bit use floats, just skip them
mr.pos += voxel_size;
break;
}
}
} else {
// Skip
if (compression_value == no_compression) {
mr.pos += voxel_size * volume;
} else if (compression_value == uniform_compression) {
mr.pos += voxel_size;
}
}
}
return true;
}
bool deserialize(Span<const uint8_t> p_data, VoxelBufferInternal &out_voxel_buffer) {
ZN_PROFILE_SCOPE();
std::vector<uint8_t> &metadata_tmp = tls_metadata_tmp;
ERR_FAIL_COND_V(p_data.size() < sizeof(uint32_t), false);
const uint32_t magic = *reinterpret_cast<const uint32_t *>(&p_data[p_data.size() - sizeof(uint32_t)]);
ERR_FAIL_COND_V(magic != BLOCK_TRAILING_MAGIC, false);
MemoryReader f(p_data, ENDIANESS_LITTLE_ENDIAN);
const uint8_t format_version = f.get_8();
if (format_version == 2) {
std::vector<uint8_t> migrated_data;
ERR_FAIL_COND_V(!migrate_v2_to_v3(p_data, migrated_data), false);
return deserialize(to_span_const(migrated_data), out_voxel_buffer);
} else {
ERR_FAIL_COND_V(format_version != BLOCK_FORMAT_VERSION, false);
}
const unsigned int size_x = f.get_16();
const unsigned int size_y = f.get_16();
const unsigned int size_z = f.get_16();
out_voxel_buffer.create(Vector3i(size_x, size_y, size_z));
for (unsigned int channel_index = 0; channel_index < VoxelBufferInternal::MAX_CHANNELS; ++channel_index) {
const uint8_t fmt = f.get_8();
const uint8_t compression_value = fmt & 0xf;
const uint8_t depth_value = (fmt >> 4) & 0xf;
ERR_FAIL_COND_V_MSG(compression_value >= VoxelBufferInternal::COMPRESSION_COUNT, false,
"At offset 0x" + String::num_int64(f.get_position() - 1, 16));
ERR_FAIL_COND_V_MSG(depth_value >= VoxelBufferInternal::DEPTH_COUNT, false,
"At offset 0x" + String::num_int64(f.get_position() - 1, 16));
VoxelBufferInternal::Compression compression = (VoxelBufferInternal::Compression)compression_value;
VoxelBufferInternal::Depth depth = (VoxelBufferInternal::Depth)depth_value;
out_voxel_buffer.set_channel_depth(channel_index, depth);
switch (compression) {
case VoxelBufferInternal::COMPRESSION_NONE: {
out_voxel_buffer.decompress_channel(channel_index);
Span<uint8_t> buffer;
CRASH_COND(!out_voxel_buffer.get_channel_raw(channel_index, buffer));
const size_t read_len = f.get_buffer(buffer);
if (read_len != buffer.size()) {
ERR_PRINT("Unexpected end of file");
return false;
}
} break;
case VoxelBufferInternal::COMPRESSION_UNIFORM: {
uint64_t v;
switch (out_voxel_buffer.get_channel_depth(channel_index)) {
case VoxelBufferInternal::DEPTH_8_BIT:
v = f.get_8();
break;
case VoxelBufferInternal::DEPTH_16_BIT:
v = f.get_16();
break;
case VoxelBufferInternal::DEPTH_32_BIT:
v = f.get_32();
break;
case VoxelBufferInternal::DEPTH_64_BIT:
v = f.get_64();
break;
default:
CRASH_NOW();
}
out_voxel_buffer.clear_channel(channel_index, v);
} break;
default:
ERR_PRINT("Unhandled compression mode");
return false;
}
}
if (p_data.size() - f.get_position() > BLOCK_TRAILING_MAGIC_SIZE) {
const size_t metadata_size = f.get_32();
ERR_FAIL_COND_V(f.get_position() + metadata_size > p_data.size(), false);
metadata_tmp.resize(metadata_size);
f.get_buffer(to_span(metadata_tmp));
deserialize_metadata(metadata_tmp.data(), out_voxel_buffer, metadata_tmp.size());
}
// Failure at this indicates file corruption
ERR_FAIL_COND_V_MSG(
f.get_32() != BLOCK_TRAILING_MAGIC, false, "At offset 0x" + String::num_int64(f.get_position() - 4, 16));
return true;
}
SerializeResult serialize_and_compress(const VoxelBufferInternal &voxel_buffer) {
ZN_PROFILE_SCOPE();
std::vector<uint8_t> &compressed_data = tls_compressed_data;
SerializeResult res = serialize(voxel_buffer);
ERR_FAIL_COND_V(!res.success, SerializeResult(compressed_data, false));
const std::vector<uint8_t> &data = res.data;
res.success = CompressedData::compress(
Span<const uint8_t>(data.data(), 0, data.size()), compressed_data, CompressedData::COMPRESSION_LZ4);
ERR_FAIL_COND_V(!res.success, SerializeResult(compressed_data, false));
return SerializeResult(compressed_data, true);
}
bool decompress_and_deserialize(Span<const uint8_t> p_data, VoxelBufferInternal &out_voxel_buffer) {
ZN_PROFILE_SCOPE();
std::vector<uint8_t> &data = tls_data;
const bool res = CompressedData::decompress(p_data, data);
ERR_FAIL_COND_V(!res, false);
return deserialize(to_span_const(data), out_voxel_buffer);
}
bool decompress_and_deserialize(FileAccess &f, unsigned int size_to_read, VoxelBufferInternal &out_voxel_buffer) {
ZN_PROFILE_SCOPE();
#if defined(TOOLS_ENABLED) || defined(DEBUG_ENABLED)
const size_t fpos = f.get_position();
const size_t remaining_file_size = f.get_length() - fpos;
ERR_FAIL_COND_V(size_to_read > remaining_file_size, false);
#endif
std::vector<uint8_t> &compressed_data = tls_compressed_data;
compressed_data.resize(size_to_read);
const unsigned int read_size = f.get_buffer(compressed_data.data(), size_to_read);
ERR_FAIL_COND_V(read_size != size_to_read, false);
return decompress_and_deserialize(to_span_const(compressed_data), out_voxel_buffer);
}
int serialize(StreamPeer &peer, VoxelBufferInternal &voxel_buffer, bool compress) {
if (compress) {
SerializeResult res = serialize_and_compress(voxel_buffer);
ERR_FAIL_COND_V(!res.success, -1);
peer.put_data(res.data.data(), res.data.size());
return res.data.size();
} else {
SerializeResult res = serialize(voxel_buffer);
ERR_FAIL_COND_V(!res.success, -1);
peer.put_data(res.data.data(), res.data.size());
return res.data.size();
}
}
void deserialize(StreamPeer &peer, VoxelBufferInternal &voxel_buffer, int size, bool decompress) {
if (decompress) {
std::vector<uint8_t> &compressed_data = tls_compressed_data;
compressed_data.resize(size);
const Error err = peer.get_data(compressed_data.data(), compressed_data.size());
ERR_FAIL_COND(err != OK);
bool success = decompress_and_deserialize(to_span_const(compressed_data), voxel_buffer);
ERR_FAIL_COND(!success);
} else {
std::vector<uint8_t> &data = tls_data;
data.resize(size);
const Error err = peer.get_data(data.data(), data.size());
ERR_FAIL_COND(err != OK);
deserialize(to_span_const(data), voxel_buffer);
}
}
} // namespace BlockSerializer
} // namespace zylann::voxel