godot_voxel/voxel_buffer.cpp

807 lines
23 KiB
C++

#define VOXEL_BUFFER_USE_MEMORY_POOL
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
#include "voxel_memory_pool.h"
#endif
#include "edition/voxel_tool_buffer.h"
#include "voxel_buffer.h"
#include <core/io/marshalls.h>
#include <core/math/math_funcs.h>
#include <string.h>
namespace {
inline uint8_t *allocate_channel_data(uint32_t size) {
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
return VoxelMemoryPool::get_singleton()->allocate(size);
#else
return (uint8_t *)memalloc(size * sizeof(uint8_t));
#endif
}
inline void free_channel_data(uint8_t *data, uint32_t size) {
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
VoxelMemoryPool::get_singleton()->recycle(data, size);
#else
memfree(data);
#endif
}
uint32_t g_depth_bit_counts[] = {
8, 16, 32, 64
};
uint64_t g_depth_max_values[] = {
0xff, // 8
0xffff, // 16
0xffffffff, // 32
0xffffffffffffffff // 64
};
inline uint32_t get_depth_bit_count(VoxelBuffer::Depth d) {
CRASH_COND(d < 0 || d >= VoxelBuffer::DEPTH_COUNT);
return g_depth_bit_counts[d];
}
inline uint64_t get_max_value_for_depth(VoxelBuffer::Depth d) {
CRASH_COND(d < 0 || d >= VoxelBuffer::DEPTH_COUNT);
return g_depth_max_values[d];
}
inline uint64_t clamp_value_for_depth(uint64_t value, VoxelBuffer::Depth d) {
uint64_t max_val = get_max_value_for_depth(d);
if (value >= max_val) {
return max_val;
}
return value;
}
static_assert(sizeof(uint32_t) == sizeof(float), "uint32_t and float cannot be marshalled back and forth");
static_assert(sizeof(uint64_t) == sizeof(double), "uint64_t and double cannot be marshalled back and forth");
inline uint64_t real_to_raw_voxel(real_t value, VoxelBuffer::Depth depth) {
switch (depth) {
case VoxelBuffer::DEPTH_8_BIT:
return clamp(static_cast<int>(128.f * value + 128.f), 0, 0xff);
case VoxelBuffer::DEPTH_16_BIT:
return clamp(static_cast<int>(0x7fff * value + 0x7fff), 0, 0xffff);
case VoxelBuffer::DEPTH_32_BIT: {
MarshallFloat m;
m.f = value;
return m.i;
}
case VoxelBuffer::DEPTH_64_BIT: {
MarshallDouble m;
m.d = value;
return m.l;
}
default:
CRASH_NOW();
return 0;
}
}
inline real_t raw_voxel_to_real(uint64_t value, VoxelBuffer::Depth depth) {
// Depths below 32 are normalized between -1 and 1
switch (depth) {
case VoxelBuffer::DEPTH_8_BIT:
return (static_cast<real_t>(value) - 0x7f) / 0x7f;
case VoxelBuffer::DEPTH_16_BIT:
return (static_cast<real_t>(value) - 0x7fff) / 0x7fff;
case VoxelBuffer::DEPTH_32_BIT: {
MarshallFloat m;
m.i = value;
return m.f;
}
case VoxelBuffer::DEPTH_64_BIT: {
MarshallDouble m;
m.l = value;
return m.d;
}
default:
CRASH_NOW();
return 0;
}
}
} // namespace
const char *VoxelBuffer::CHANNEL_ID_HINT_STRING = "Type,Sdf,Data2,Data3,Data4,Data5,Data6,Data7";
VoxelBuffer::VoxelBuffer() {
_channels[CHANNEL_SDF].defval = 255;
}
VoxelBuffer::~VoxelBuffer() {
clear();
}
void VoxelBuffer::create(int sx, int sy, int sz) {
if (sx <= 0 || sy <= 0 || sz <= 0) {
return;
}
Vector3i new_size(sx, sy, sz);
if (new_size != _size) {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
Channel &channel = _channels[i];
if (channel.data) {
// Channel already contained data
delete_channel(i);
create_channel(i, new_size, channel.defval);
}
}
_size = new_size;
}
}
void VoxelBuffer::create(Vector3i size) {
create(size.x, size.y, size.z);
}
void VoxelBuffer::clear() {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
Channel &channel = _channels[i];
if (channel.data) {
delete_channel(i);
}
}
}
void VoxelBuffer::clear_channel(unsigned int channel_index, uint64_t clear_value) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
if (channel.data) {
delete_channel(channel_index);
}
channel.defval = clamp_value_for_depth(clear_value, channel.depth);
}
void VoxelBuffer::clear_channel_f(unsigned int channel_index, real_t clear_value) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
const Channel &channel = _channels[channel_index];
clear_channel(channel_index, real_to_raw_voxel(clear_value, channel.depth));
}
void VoxelBuffer::set_default_values(FixedArray<uint64_t, VoxelBuffer::MAX_CHANNELS> values) {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
_channels[i].defval = clamp_value_for_depth(values[i], _channels[i].depth);
}
}
uint64_t VoxelBuffer::get_voxel(int x, int y, int z, unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0);
const Channel &channel = _channels[channel_index];
if (validate_pos(x, y, z) && channel.data) {
uint32_t i = index(x, y, z);
switch (channel.depth) {
case DEPTH_8_BIT:
return channel.data[i];
case DEPTH_16_BIT:
return ((uint16_t *)channel.data)[i];
case DEPTH_32_BIT:
return ((uint32_t *)channel.data)[i];
case DEPTH_64_BIT:
return ((uint64_t *)channel.data)[i];
default:
CRASH_NOW();
return 0;
}
return channel.data[index(x, y, z)];
} else {
return channel.defval;
}
}
void VoxelBuffer::set_voxel(uint64_t value, int x, int y, int z, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
ERR_FAIL_COND(!validate_pos(x, y, z));
Channel &channel = _channels[channel_index];
value = clamp_value_for_depth(value, channel.depth);
bool do_set = true;
if (channel.data == NULL) {
if (channel.defval != value) {
// Allocate channel with same initial values as defval
create_channel(channel_index, _size, channel.defval);
} else {
do_set = false;
}
}
if (do_set) {
uint32_t i = index(x, y, z);
switch (channel.depth) {
case DEPTH_8_BIT:
channel.data[i] = value;
break;
case DEPTH_16_BIT:
((uint16_t *)channel.data)[i] = value;
break;
case DEPTH_32_BIT:
((uint32_t *)channel.data)[i] = value;
break;
case DEPTH_64_BIT:
((uint64_t *)channel.data)[i] = value;
break;
default:
CRASH_NOW();
break;
}
}
}
real_t VoxelBuffer::get_voxel_f(int x, int y, int z, unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0);
return raw_voxel_to_real(get_voxel(x, y, z, channel_index), _channels[channel_index].depth);
}
void VoxelBuffer::set_voxel_f(real_t value, int x, int y, int z, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
set_voxel(real_to_raw_voxel(value, _channels[channel_index].depth), x, y, z, channel_index);
}
// This version does not cause errors if out of bounds. Use only if it's okay to be outside.
void VoxelBuffer::try_set_voxel(int x, int y, int z, int value, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
if (!validate_pos(x, y, z)) {
return;
}
set_voxel(x, y, z, value, channel_index);
}
void VoxelBuffer::fill(uint64_t defval, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
defval = clamp_value_for_depth(defval, channel.depth);
if (channel.data == NULL) {
// Channel is already optimized and uniform
if (channel.defval == defval) {
// No change
return;
} else {
// Just change default value
channel.defval = defval;
return;
}
}
unsigned int volume = get_volume();
switch (channel.depth) {
case DEPTH_8_BIT:
memset(channel.data, defval, channel.size_in_bytes);
break;
case DEPTH_16_BIT:
for (uint32_t i = 0; i < volume; ++i) {
((uint16_t *)channel.data)[i] = defval;
}
break;
case DEPTH_32_BIT:
for (uint32_t i = 0; i < volume; ++i) {
((uint32_t *)channel.data)[i] = defval;
}
break;
case DEPTH_64_BIT:
for (uint32_t i = 0; i < volume; ++i) {
((uint64_t *)channel.data)[i] = defval;
}
break;
default:
CRASH_NOW();
break;
}
}
void VoxelBuffer::fill_area(uint64_t defval, Vector3i min, Vector3i max, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Vector3i::sort_min_max(min, max);
min.clamp_to(Vector3i(0, 0, 0), _size + Vector3i(1, 1, 1));
max.clamp_to(Vector3i(0, 0, 0), _size + Vector3i(1, 1, 1));
Vector3i area_size = max - min;
if (area_size.x == 0 || area_size.y == 0 || area_size.z == 0) {
return;
}
Channel &channel = _channels[channel_index];
defval = clamp_value_for_depth(defval, channel.depth);
if (channel.data == NULL) {
if (channel.defval == defval) {
return;
} else {
create_channel(channel_index, _size, channel.defval);
}
}
Vector3i pos;
unsigned int volume = get_volume();
for (pos.z = min.z; pos.z < max.z; ++pos.z) {
for (pos.x = min.x; pos.x < max.x; ++pos.x) {
unsigned int dst_ri = index(pos.x, pos.y + min.y, pos.z);
CRASH_COND(dst_ri >= volume);
switch (channel.depth) {
case DEPTH_8_BIT:
// Fill row by row
memset(&channel.data[dst_ri], defval, area_size.y * sizeof(uint8_t));
break;
case DEPTH_16_BIT:
for (int i = 0; i < area_size.y; ++i) {
((uint16_t *)channel.data)[dst_ri + i] = defval;
}
break;
case DEPTH_32_BIT:
for (int i = 0; i < area_size.y; ++i) {
((uint32_t *)channel.data)[dst_ri + i] = defval;
}
break;
case DEPTH_64_BIT:
for (int i = 0; i < area_size.y; ++i) {
((uint64_t *)channel.data)[dst_ri + i] = defval;
}
break;
default:
CRASH_NOW();
break;
}
}
}
}
void VoxelBuffer::fill_f(real_t value, unsigned int channel) {
ERR_FAIL_INDEX(channel, MAX_CHANNELS);
fill(real_to_raw_voxel(value, _channels[channel].depth), channel);
}
template <typename T>
inline bool is_uniform(const uint8_t *p_data, uint32_t size) {
const T *data = (const T *)p_data;
T v0 = data[0];
for (unsigned int i = 1; i < size; ++i) {
if (data[i] != v0) {
return false;
}
}
return true;
}
bool VoxelBuffer::is_uniform(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, true);
const Channel &channel = _channels[channel_index];
if (channel.data == nullptr) {
// Channel has been optimized
return true;
}
unsigned int volume = get_volume();
// Channel isn't optimized, so must look at each voxel
switch (channel.depth) {
case DEPTH_8_BIT:
return ::is_uniform<uint8_t>(channel.data, volume);
case DEPTH_16_BIT:
return ::is_uniform<uint16_t>(channel.data, volume);
case DEPTH_32_BIT:
return ::is_uniform<uint32_t>(channel.data, volume);
case DEPTH_64_BIT:
return ::is_uniform<uint64_t>(channel.data, volume);
default:
CRASH_NOW();
break;
}
return true;
}
void VoxelBuffer::compress_uniform_channels() {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
if (_channels[i].data && is_uniform(i)) {
clear_channel(i, _channels[i].data[0]);
}
}
}
void VoxelBuffer::decompress_channel(unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
if (channel.data == nullptr) {
create_channel(channel_index, _size, channel.defval);
}
}
VoxelBuffer::Compression VoxelBuffer::get_channel_compression(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, VoxelBuffer::COMPRESSION_NONE);
const Channel &channel = _channels[channel_index];
if (channel.data == nullptr) {
return COMPRESSION_UNIFORM;
}
return COMPRESSION_NONE;
}
void VoxelBuffer::copy_from(const VoxelBuffer &other) {
// Copy all channels, assuming sizes and formats match
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
copy_from(other, i);
}
}
void VoxelBuffer::copy_from(const VoxelBuffer &other, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
ERR_FAIL_COND(other._size != _size);
Channel &channel = _channels[channel_index];
const Channel &other_channel = other._channels[channel_index];
ERR_FAIL_COND(other_channel.depth != channel.depth);
if (other_channel.data) {
if (channel.data == NULL) {
create_channel_noinit(channel_index, _size);
}
CRASH_COND(channel.size_in_bytes != other_channel.size_in_bytes);
memcpy(channel.data, other_channel.data, channel.size_in_bytes);
} else if (channel.data) {
delete_channel(channel_index);
}
channel.defval = other_channel.defval;
channel.depth = other_channel.depth;
}
void VoxelBuffer::copy_from(const VoxelBuffer &other, Vector3i src_min, Vector3i src_max, Vector3i dst_min, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
const Channel &other_channel = other._channels[channel_index];
ERR_FAIL_COND(other_channel.depth != channel.depth);
if (channel.data == nullptr && other_channel.data == nullptr && channel.defval == other_channel.defval) {
// No action needed
return;
}
Vector3i::sort_min_max(src_min, src_max);
src_min.clamp_to(Vector3i(0, 0, 0), other._size);
src_max.clamp_to(Vector3i(0, 0, 0), other._size + Vector3i(1, 1, 1));
dst_min.clamp_to(Vector3i(0, 0, 0), _size);
Vector3i area_size = src_max - src_min;
//Vector3i dst_max = dst_min + area_size;
if (area_size == _size && area_size == other._size) {
// Equivalent of full copy between two blocks of same size
copy_from(other, channel_index);
} else {
if (other_channel.data) {
if (channel.data == NULL) {
create_channel(channel_index, _size, channel.defval);
}
if (channel.depth == DEPTH_8_BIT) {
// Native format
// Copy row by row
Vector3i pos;
for (pos.z = 0; pos.z < area_size.z; ++pos.z) {
for (pos.x = 0; pos.x < area_size.x; ++pos.x) {
// Row direction is Y
unsigned int src_ri = other.index(pos.x + src_min.x, pos.y + src_min.y, pos.z + src_min.z);
unsigned int dst_ri = index(pos.x + dst_min.x, pos.y + dst_min.y, pos.z + dst_min.z);
memcpy(&channel.data[dst_ri], &other_channel.data[src_ri], area_size.y * sizeof(uint8_t));
}
}
} else {
// TODO Optimized versions
Vector3i pos;
for (pos.z = 0; pos.z < area_size.z; ++pos.z) {
for (pos.x = 0; pos.x < area_size.x; ++pos.x) {
for (pos.y = 0; pos.y < area_size.y; ++pos.y) {
uint64_t v = other.get_voxel(src_min + pos, channel_index);
set_voxel(v, dst_min + pos, channel_index);
}
}
}
}
} else if (channel.defval != other_channel.defval) {
if (channel.data == NULL) {
create_channel(channel_index, _size, channel.defval);
}
fill_area(other_channel.defval, dst_min, dst_min + area_size, channel_index);
}
}
}
Ref<VoxelBuffer> VoxelBuffer::duplicate() const {
VoxelBuffer *d = memnew(VoxelBuffer);
d->create(_size);
d->copy_from(*this);
return Ref<VoxelBuffer>(d);
}
bool VoxelBuffer::get_channel_raw(unsigned int channel_index, ArraySlice<uint8_t> &slice) const {
const Channel &channel = _channels[channel_index];
if (channel.data != nullptr) {
slice = ArraySlice<uint8_t>(channel.data, 0, channel.size_in_bytes);
return true;
}
slice = ArraySlice<uint8_t>();
return false;
}
void VoxelBuffer::create_channel(int i, Vector3i size, uint64_t defval) {
create_channel_noinit(i, size);
fill(defval, i);
}
uint32_t VoxelBuffer::get_size_in_bytes_for_volume(Vector3i size, Depth depth) {
// Calculate appropriate size based on bit depth
const unsigned int volume = size.x * size.y * size.z;
const unsigned int bits = volume * ::get_depth_bit_count(depth);
unsigned int size_in_bytes = (bits >> 3);
return size_in_bytes;
}
void VoxelBuffer::create_channel_noinit(int i, Vector3i size) {
Channel &channel = _channels[i];
uint32_t size_in_bytes = get_size_in_bytes_for_volume(size, channel.depth);
CRASH_COND(channel.data != nullptr);
channel.data = allocate_channel_data(size_in_bytes);
channel.size_in_bytes = size_in_bytes;
}
void VoxelBuffer::delete_channel(int i) {
Channel &channel = _channels[i];
ERR_FAIL_COND(channel.data == nullptr);
free_channel_data(channel.data, channel.size_in_bytes);
channel.data = nullptr;
channel.size_in_bytes = 0;
}
void VoxelBuffer::downscale_to(VoxelBuffer &dst, Vector3i src_min, Vector3i src_max, Vector3i dst_min) const {
// TODO Align input to multiple of two
src_min.clamp_to(Vector3i(), _size);
src_max.clamp_to(Vector3i(), _size + Vector3i(1));
Vector3i dst_max = dst_min + ((src_max - src_min) >> 1);
dst_min.clamp_to(Vector3i(), dst._size);
dst_max.clamp_to(Vector3i(), dst._size + Vector3i(1));
for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) {
const Channel &src_channel = _channels[channel_index];
const Channel &dst_channel = dst._channels[channel_index];
if (src_channel.data == nullptr && dst_channel.data == nullptr && src_channel.defval == dst_channel.defval) {
// No action needed
continue;
}
// Nearest-neighbor downscaling
Vector3i pos;
for (pos.z = dst_min.z; pos.z < dst_max.z; ++pos.z) {
for (pos.x = dst_min.x; pos.x < dst_max.x; ++pos.x) {
for (pos.y = dst_min.y; pos.y < dst_max.y; ++pos.y) {
const Vector3i src_pos = src_min + ((pos - dst_min) << 1);
// TODO Remove check once it works
CRASH_COND(!validate_pos(src_pos.x, src_pos.y, src_pos.z));
uint64_t v;
if (src_channel.data) {
// TODO Optimized version?
v = get_voxel(src_pos, channel_index);
} else {
v = src_channel.defval;
}
dst.set_voxel(v, pos, channel_index);
}
}
}
}
}
Ref<VoxelTool> VoxelBuffer::get_voxel_tool() {
// I can't make this function `const`, because `Ref<T>` has no constructor taking a `const T*`.
// The compiler would then choose Ref<T>(const Variant&), which fumbles `this` into a null pointer
Ref<VoxelBuffer> vb(this);
return Ref<VoxelTool>(memnew(VoxelToolBuffer(vb)));
}
bool VoxelBuffer::equals(const VoxelBuffer *p_other) const {
CRASH_COND(p_other == nullptr);
if (p_other->_size != _size) {
return false;
}
for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) {
const Channel &channel = _channels[channel_index];
const Channel &other_channel = p_other->_channels[channel_index];
if ((channel.data == nullptr) != (other_channel.data == nullptr)) {
// Note: they could still logically be equal if one channel contains uniform voxel memory
return false;
}
if (channel.depth != other_channel.depth) {
return false;
}
if (channel.data == nullptr) {
if (channel.defval != other_channel.defval) {
return false;
}
} else {
CRASH_COND(channel.size_in_bytes != other_channel.size_in_bytes);
for (unsigned int i = 0; i < channel.size_in_bytes; ++i) {
if (channel.data[i] != other_channel.data[i]) {
return false;
}
}
}
}
return true;
}
void VoxelBuffer::set_channel_depth(unsigned int channel_index, Depth new_depth) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
ERR_FAIL_INDEX(new_depth, DEPTH_COUNT);
Channel &channel = _channels[channel_index];
if (channel.depth == new_depth) {
return;
}
if (channel.data != nullptr) {
// TODO Implement conversion
WARN_PRINT("Changing VoxelBuffer depth with present data, this will reset the channel");
delete_channel(channel_index);
}
channel.defval = clamp_value_for_depth(channel.defval, new_depth);
}
VoxelBuffer::Depth VoxelBuffer::get_channel_depth(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, DEPTH_8_BIT);
return _channels[channel_index].depth;
}
uint32_t VoxelBuffer::get_depth_bit_count(Depth d) {
return ::get_depth_bit_count(d);
}
Ref<Image> VoxelBuffer::debug_print_sdf_to_image_top_down() {
Image *im = memnew(Image);
im->create(_size.x, _size.z, false, Image::FORMAT_RGB8);
im->lock();
Vector3i pos;
for (pos.z = 0; pos.z < _size.z; ++pos.z) {
for (pos.x = 0; pos.x < _size.x; ++pos.x) {
for (pos.y = _size.y - 1; pos.y >= 0; --pos.y) {
float v = get_voxel_f(pos.x, pos.y, pos.z, CHANNEL_SDF);
if (v < 0.0) {
break;
}
}
float h = pos.y;
float c = h / _size.y;
im->set_pixel(pos.x, pos.z, Color(c, c, c));
}
}
im->unlock();
return Ref<Image>(im);
}
void VoxelBuffer::_bind_methods() {
ClassDB::bind_method(D_METHOD("create", "sx", "sy", "sz"), &VoxelBuffer::_b_create);
ClassDB::bind_method(D_METHOD("clear"), &VoxelBuffer::clear);
ClassDB::bind_method(D_METHOD("get_size"), &VoxelBuffer::_b_get_size);
ClassDB::bind_method(D_METHOD("get_size_x"), &VoxelBuffer::get_size_x);
ClassDB::bind_method(D_METHOD("get_size_y"), &VoxelBuffer::get_size_y);
ClassDB::bind_method(D_METHOD("get_size_z"), &VoxelBuffer::get_size_z);
ClassDB::bind_method(D_METHOD("set_voxel", "value", "x", "y", "z", "channel"), &VoxelBuffer::_b_set_voxel, DEFVAL(0));
ClassDB::bind_method(D_METHOD("set_voxel_f", "value", "x", "y", "z", "channel"), &VoxelBuffer::_b_set_voxel_f, DEFVAL(0));
ClassDB::bind_method(D_METHOD("set_voxel_v", "value", "pos", "channel"), &VoxelBuffer::_b_set_voxel_v, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_voxel", "x", "y", "z", "channel"), &VoxelBuffer::_b_get_voxel, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_voxel_f", "x", "y", "z", "channel"), &VoxelBuffer::get_voxel_f, DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_voxel_tool"), &VoxelBuffer::get_voxel_tool);
ClassDB::bind_method(D_METHOD("get_channel_depth", "channel"), &VoxelBuffer::get_channel_depth);
ClassDB::bind_method(D_METHOD("set_channel_depth", "channel", "depth"), &VoxelBuffer::set_channel_depth);
ClassDB::bind_method(D_METHOD("fill", "value", "channel"), &VoxelBuffer::fill, DEFVAL(0));
ClassDB::bind_method(D_METHOD("fill_f", "value", "channel"), &VoxelBuffer::fill_f, DEFVAL(0));
ClassDB::bind_method(D_METHOD("fill_area", "value", "min", "max", "channel"), &VoxelBuffer::_b_fill_area, DEFVAL(0));
ClassDB::bind_method(D_METHOD("copy_channel_from", "other", "channel"), &VoxelBuffer::_b_copy_channel_from);
ClassDB::bind_method(D_METHOD("copy_channel_from_area", "other", "src_min", "src_max", "dst_min", "channel"), &VoxelBuffer::_b_copy_channel_from_area);
ClassDB::bind_method(D_METHOD("downscale_to", "dst", "src_min", "src_max", "dst_min"), &VoxelBuffer::_b_downscale_to);
ClassDB::bind_method(D_METHOD("is_uniform", "channel"), &VoxelBuffer::is_uniform);
ClassDB::bind_method(D_METHOD("optimize"), &VoxelBuffer::compress_uniform_channels);
BIND_ENUM_CONSTANT(CHANNEL_TYPE);
BIND_ENUM_CONSTANT(CHANNEL_SDF);
BIND_ENUM_CONSTANT(CHANNEL_DATA2);
BIND_ENUM_CONSTANT(CHANNEL_DATA3);
BIND_ENUM_CONSTANT(CHANNEL_DATA4);
BIND_ENUM_CONSTANT(CHANNEL_DATA5);
BIND_ENUM_CONSTANT(CHANNEL_DATA6);
BIND_ENUM_CONSTANT(CHANNEL_DATA7);
BIND_ENUM_CONSTANT(MAX_CHANNELS);
BIND_ENUM_CONSTANT(DEPTH_8_BIT);
BIND_ENUM_CONSTANT(DEPTH_16_BIT);
BIND_ENUM_CONSTANT(DEPTH_32_BIT);
BIND_ENUM_CONSTANT(DEPTH_64_BIT);
BIND_ENUM_CONSTANT(DEPTH_COUNT);
}
void VoxelBuffer::_b_copy_channel_from(Ref<VoxelBuffer> other, unsigned int channel) {
ERR_FAIL_COND(other.is_null());
copy_from(**other, channel);
}
void VoxelBuffer::_b_copy_channel_from_area(Ref<VoxelBuffer> other, Vector3 src_min, Vector3 src_max, Vector3 dst_min, unsigned int channel) {
ERR_FAIL_COND(other.is_null());
copy_from(**other, Vector3i(src_min), Vector3i(src_max), Vector3i(dst_min), channel);
}
void VoxelBuffer::_b_downscale_to(Ref<VoxelBuffer> dst, Vector3 src_min, Vector3 src_max, Vector3 dst_min) const {
ERR_FAIL_COND(dst.is_null());
downscale_to(**dst, Vector3i(src_min), Vector3i(src_max), Vector3i(dst_min));
}