- Merged VoxelGeneratorGraph::Node into ProgramGraph::Node - Separated compilation and execution to its own class
627 lines
19 KiB
C++
627 lines
19 KiB
C++
#include "voxel_graph_runtime.h"
|
|
#include "range_utility.h"
|
|
#include "voxel_generator_graph.h"
|
|
#include "voxel_graph_node_db.h"
|
|
|
|
//#ifdef DEBUG_ENABLED
|
|
//#define VOXEL_DEBUG_GRAPH_PROG_SENTINEL uint16_t(12345) // 48, 57 (base 10)
|
|
//#endif
|
|
|
|
//template <typename T>
|
|
//inline void write_static(std::vector<uint8_t> &mem, uint32_t p, const T &v) {
|
|
//#ifdef DEBUG_ENABLED
|
|
// CRASH_COND(p + sizeof(T) >= mem.size());
|
|
//#endif
|
|
// *(T *)(&mem[p]) = v;
|
|
//}
|
|
|
|
template <typename T>
|
|
inline void append(std::vector<uint8_t> &mem, const T &v) {
|
|
size_t p = mem.size();
|
|
mem.resize(p + sizeof(T));
|
|
*(T *)(&mem[p]) = v;
|
|
}
|
|
|
|
template <typename T>
|
|
inline const T &read(const std::vector<uint8_t> &mem, uint32_t &p) {
|
|
#ifdef DEBUG_ENABLED
|
|
CRASH_COND(p + sizeof(T) > mem.size());
|
|
#endif
|
|
const T *v = (const T *)&mem[p];
|
|
p += sizeof(T);
|
|
return *v;
|
|
}
|
|
|
|
inline float get_pixel_repeat(Image &im, int x, int y) {
|
|
return im.get_pixel(wrap(x, im.get_width()), wrap(y, im.get_height())).r;
|
|
}
|
|
|
|
void VoxelGraphRuntime::clear() {
|
|
_program.clear();
|
|
_memory.resize(8, 0);
|
|
}
|
|
|
|
void VoxelGraphRuntime::compile(const ProgramGraph &graph) {
|
|
std::vector<uint32_t> order;
|
|
std::vector<uint32_t> terminal_nodes;
|
|
|
|
graph.find_terminal_nodes(terminal_nodes);
|
|
// For now only 1 end is supported
|
|
ERR_FAIL_COND(terminal_nodes.size() != 1);
|
|
|
|
graph.find_dependencies(terminal_nodes.back(), order);
|
|
|
|
_program.clear();
|
|
|
|
// Main inputs X, Y, Z
|
|
_memory.resize(3);
|
|
|
|
std::vector<uint8_t> &program = _program;
|
|
const VoxelGraphNodeDB &type_db = *VoxelGraphNodeDB::get_singleton();
|
|
HashMap<ProgramGraph::PortLocation, uint16_t, ProgramGraph::PortLocationHasher> output_port_addresses;
|
|
bool has_output = false;
|
|
|
|
for (size_t i = 0; i < order.size(); ++i) {
|
|
const uint32_t node_id = order[i];
|
|
const ProgramGraph::Node *node = graph.get_node(node_id);
|
|
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node->type_id);
|
|
|
|
CRASH_COND(node == nullptr);
|
|
CRASH_COND(node->inputs.size() != type.inputs.size());
|
|
CRASH_COND(node->outputs.size() != type.outputs.size());
|
|
|
|
switch (node->type_id) {
|
|
case VoxelGeneratorGraph::NODE_CONSTANT: {
|
|
CRASH_COND(type.outputs.size() != 1);
|
|
CRASH_COND(type.params.size() != 1);
|
|
uint16_t a = _memory.size();
|
|
_memory.push_back(node->params[0].operator float());
|
|
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = a;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_INPUT_X:
|
|
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = 0;
|
|
break;
|
|
|
|
case VoxelGeneratorGraph::NODE_INPUT_Y:
|
|
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = 1;
|
|
break;
|
|
|
|
case VoxelGeneratorGraph::NODE_INPUT_Z:
|
|
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = 2;
|
|
break;
|
|
|
|
case VoxelGeneratorGraph::NODE_OUTPUT_SDF:
|
|
// TODO Multiple outputs may be supported if we get branching
|
|
CRASH_COND(has_output);
|
|
has_output = true;
|
|
break;
|
|
|
|
default: {
|
|
// Add actual operation
|
|
CRASH_COND(node->type_id > 0xff);
|
|
append(program, static_cast<uint8_t>(node->type_id));
|
|
|
|
// Add inputs
|
|
for (size_t j = 0; j < type.inputs.size(); ++j) {
|
|
uint16_t a;
|
|
|
|
if (node->inputs[j].connections.size() == 0) {
|
|
// No input, default it
|
|
// TODO Take param value if specified
|
|
a = _memory.size();
|
|
_memory.push_back(0);
|
|
|
|
} else {
|
|
ProgramGraph::PortLocation src_port = node->inputs[j].connections[0];
|
|
const uint16_t *aptr = output_port_addresses.getptr(src_port);
|
|
// Previous node ports must have been registered
|
|
CRASH_COND(aptr == nullptr);
|
|
a = *aptr;
|
|
}
|
|
|
|
append(program, a);
|
|
}
|
|
|
|
// Add outputs
|
|
for (size_t j = 0; j < type.outputs.size(); ++j) {
|
|
const uint16_t a = _memory.size();
|
|
_memory.push_back(0);
|
|
|
|
// This will be used by next nodes
|
|
const ProgramGraph::PortLocation op{ node_id, static_cast<uint32_t>(j) };
|
|
output_port_addresses[op] = a;
|
|
|
|
append(program, a);
|
|
}
|
|
|
|
// Add special params
|
|
switch (node->type_id) {
|
|
|
|
case VoxelGeneratorGraph::NODE_CURVE: {
|
|
Ref<Curve> curve = node->params[0];
|
|
CRASH_COND(curve.is_null());
|
|
uint8_t is_monotonic_increasing;
|
|
Interval range = get_curve_range(**curve, is_monotonic_increasing);
|
|
append(program, is_monotonic_increasing);
|
|
append(program, range.min);
|
|
append(program, range.max);
|
|
append(program, *curve);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_IMAGE_2D: {
|
|
Ref<Image> im = node->params[0];
|
|
CRASH_COND(im.is_null());
|
|
Interval range = get_heightmap_range(**im);
|
|
append(program, range.min);
|
|
append(program, range.max);
|
|
append(program, *im);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_NOISE_2D:
|
|
case VoxelGeneratorGraph::NODE_NOISE_3D: {
|
|
Ref<OpenSimplexNoise> noise = node->params[0];
|
|
CRASH_COND(noise.is_null());
|
|
append(program, *noise);
|
|
} break;
|
|
|
|
// TODO Worth it?
|
|
case VoxelGeneratorGraph::NODE_CLAMP:
|
|
append(program, node->params[0].operator float());
|
|
append(program, node->params[1].operator float());
|
|
break;
|
|
|
|
case VoxelGeneratorGraph::NODE_REMAP: {
|
|
float min0 = node->params[0].operator float();
|
|
float max0 = node->params[1].operator float();
|
|
float min1 = node->params[2].operator float();
|
|
float max1 = node->params[3].operator float();
|
|
append(program, -min0);
|
|
append(program, Math::is_equal_approx(max0, min0) ? 99999.f : 1.f / (max0 - min0));
|
|
append(program, min1);
|
|
append(program, max1 - min1);
|
|
} break;
|
|
|
|
} // switch special params
|
|
|
|
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
|
|
// Append a special value after each operation
|
|
append(program, VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
|
|
#endif
|
|
|
|
} break; // default
|
|
|
|
} // switch type
|
|
}
|
|
|
|
if (_memory.size() < 4) {
|
|
// In case there is nothing
|
|
_memory.resize(4, 0);
|
|
}
|
|
|
|
// Reserve space for range analysis
|
|
_memory.resize(_memory.size() * 2);
|
|
// Make it a copy to keep eventual constants at consistent adresses
|
|
const size_t half_size = _memory.size() / 2;
|
|
for (size_t i = 0, j = half_size; i < half_size; ++i, ++j) {
|
|
_memory[j] = _memory[i];
|
|
}
|
|
|
|
print_line(String("Compiled voxel graph. Program size: {0}b, memory size: {1}b")
|
|
.format(varray(_program.size() * sizeof(float), _memory.size() * sizeof(float))));
|
|
|
|
CRASH_COND(!has_output);
|
|
}
|
|
|
|
// The order of fields in the following structs matters.
|
|
// They map the layout produced by the compilation.
|
|
// Inputs go first, then outputs, then params (if applicable at runtime).
|
|
// TODO Think about alignment
|
|
|
|
struct PNodeBinop {
|
|
uint16_t a_i0;
|
|
uint16_t a_i1;
|
|
uint16_t a_out;
|
|
};
|
|
|
|
struct PNodeMonoFunc {
|
|
uint16_t a_in;
|
|
uint16_t a_out;
|
|
};
|
|
|
|
struct PNodeDistance2D {
|
|
uint16_t a_x0;
|
|
uint16_t a_y0;
|
|
uint16_t a_x1;
|
|
uint16_t a_y1;
|
|
uint16_t a_out;
|
|
};
|
|
|
|
struct PNodeDistance3D {
|
|
uint16_t a_x0;
|
|
uint16_t a_y0;
|
|
uint16_t a_z0;
|
|
uint16_t a_x1;
|
|
uint16_t a_y1;
|
|
uint16_t a_z1;
|
|
uint16_t a_out;
|
|
};
|
|
|
|
struct PNodeClamp {
|
|
uint16_t a_x;
|
|
uint16_t a_out;
|
|
float p_min;
|
|
float p_max;
|
|
};
|
|
|
|
struct PNodeMix {
|
|
uint16_t a_i0;
|
|
uint16_t a_i1;
|
|
uint16_t a_ratio;
|
|
uint16_t a_out;
|
|
};
|
|
|
|
struct PNodeRemap {
|
|
uint16_t a_x;
|
|
uint16_t a_out;
|
|
float p_c0;
|
|
float p_m0;
|
|
float p_c1;
|
|
float p_m1;
|
|
};
|
|
|
|
struct PNodeCurve {
|
|
uint16_t a_in;
|
|
uint16_t a_out;
|
|
uint8_t is_monotonic_increasing;
|
|
float min_value;
|
|
float max_value;
|
|
Curve *p_curve;
|
|
};
|
|
|
|
struct PNodeNoise2D {
|
|
uint16_t a_x;
|
|
uint16_t a_y;
|
|
uint16_t a_out;
|
|
OpenSimplexNoise *p_noise;
|
|
};
|
|
|
|
struct PNodeNoise3D {
|
|
uint16_t a_x;
|
|
uint16_t a_y;
|
|
uint16_t a_z;
|
|
uint16_t a_out;
|
|
OpenSimplexNoise *p_noise;
|
|
};
|
|
|
|
struct PNodeImage2D {
|
|
uint16_t a_x;
|
|
uint16_t a_y;
|
|
uint16_t a_out;
|
|
float min_value;
|
|
float max_value;
|
|
Image *p_image;
|
|
};
|
|
|
|
float VoxelGraphRuntime::generate_single(const Vector3i &position) {
|
|
// This part must be optimized for speed
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
CRASH_COND(_memory.size() == 0);
|
|
#endif
|
|
|
|
ArraySlice<float> memory(_memory, 0, _memory.size() / 2);
|
|
memory[0] = position.x;
|
|
memory[1] = position.y;
|
|
memory[2] = position.z;
|
|
|
|
// STL is unreadable on debug builds of Godot, because _DEBUG isn't defined
|
|
//#ifdef DEBUG_ENABLED
|
|
// const size_t memory_size = memory.size();
|
|
// const size_t program_size = _program.size();
|
|
// const float *memory_raw = memory.data();
|
|
// const uint8_t *program_raw = (const uint8_t *)_program.data();
|
|
//#endif
|
|
|
|
uint32_t pc = 0;
|
|
while (pc < _program.size()) {
|
|
|
|
const uint8_t opid = _program[pc++];
|
|
|
|
switch (opid) {
|
|
case VoxelGeneratorGraph::NODE_CONSTANT:
|
|
case VoxelGeneratorGraph::NODE_INPUT_X:
|
|
case VoxelGeneratorGraph::NODE_INPUT_Y:
|
|
case VoxelGeneratorGraph::NODE_INPUT_Z:
|
|
case VoxelGeneratorGraph::NODE_OUTPUT_SDF:
|
|
// Not part of the runtime
|
|
CRASH_NOW();
|
|
break;
|
|
|
|
case VoxelGeneratorGraph::NODE_ADD: {
|
|
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
|
|
memory[n.a_out] = memory[n.a_i0] + memory[n.a_i1];
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_SUBTRACT: {
|
|
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
|
|
memory[n.a_out] = memory[n.a_i0] - memory[n.a_i1];
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_MULTIPLY: {
|
|
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
|
|
memory[n.a_out] = memory[n.a_i0] * memory[n.a_i1];
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_SINE: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
memory[n.a_out] = Math::sin(Math_PI * memory[n.a_in]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_FLOOR: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
memory[n.a_out] = Math::floor(memory[n.a_in]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_ABS: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
memory[n.a_out] = Math::abs(memory[n.a_in]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_SQRT: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
memory[n.a_out] = Math::sqrt(memory[n.a_in]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_DISTANCE_2D: {
|
|
const PNodeDistance2D &n = read<PNodeDistance2D>(_program, pc);
|
|
memory[n.a_out] = Math::sqrt(squared(memory[n.a_x1] - memory[n.a_x0]) +
|
|
squared(memory[n.a_y1] - memory[n.a_y0]));
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_DISTANCE_3D: {
|
|
const PNodeDistance3D &n = read<PNodeDistance3D>(_program, pc);
|
|
memory[n.a_out] = Math::sqrt(squared(memory[n.a_x1] - memory[n.a_x0]) +
|
|
squared(memory[n.a_y1] - memory[n.a_y0]) +
|
|
squared(memory[n.a_z1] - memory[n.a_z0]));
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_MIX: {
|
|
const PNodeMix &n = read<PNodeMix>(_program, pc);
|
|
memory[n.a_out] = Math::lerp(memory[n.a_i0], memory[n.a_i1], memory[n.a_ratio]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_CLAMP: {
|
|
const PNodeClamp &n = read<PNodeClamp>(_program, pc);
|
|
memory[n.a_out] = clamp(memory[n.a_x], memory[n.p_min], memory[n.p_max]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_REMAP: {
|
|
const PNodeRemap &n = read<PNodeRemap>(_program, pc);
|
|
memory[n.a_out] = ((memory[n.a_x] - n.p_c0) * n.p_m0) * n.p_m1 + n.p_c1;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_CURVE: {
|
|
const PNodeCurve &n = read<PNodeCurve>(_program, pc);
|
|
memory[n.a_out] = n.p_curve->interpolate_baked(memory[n.a_in]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_NOISE_2D: {
|
|
const PNodeNoise2D &n = read<PNodeNoise2D>(_program, pc);
|
|
memory[n.a_out] = n.p_noise->get_noise_2d(memory[n.a_x], memory[n.a_y]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_NOISE_3D: {
|
|
const PNodeNoise3D &n = read<PNodeNoise3D>(_program, pc);
|
|
memory[n.a_out] = n.p_noise->get_noise_3d(memory[n.a_x], memory[n.a_y], memory[n.a_z]);
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_IMAGE_2D: {
|
|
const PNodeImage2D &n = read<PNodeImage2D>(_program, pc);
|
|
// TODO Not great, but in Godot 4.0 we won't need to lock anymore. Otherwise, need to do it in a pre-run and post-run
|
|
n.p_image->lock();
|
|
memory[n.a_out] = get_pixel_repeat(*n.p_image, memory[n.a_x], memory[n.a_y]);
|
|
n.p_image->unlock();
|
|
} break;
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
break;
|
|
}
|
|
|
|
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
|
|
// If this fails, the program is ill-formed
|
|
CRASH_COND(read<uint16_t>(_program, pc) != VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
|
|
#endif
|
|
}
|
|
|
|
return memory[memory.size() - 1];
|
|
}
|
|
|
|
Interval VoxelGraphRuntime::analyze_range(Vector3i min_pos, Vector3i max_pos) {
|
|
ArraySlice<float> min_memory(_memory, 0, _memory.size() / 2);
|
|
ArraySlice<float> max_memory(_memory, _memory.size() / 2, _memory.size());
|
|
min_memory[0] = min_pos.x;
|
|
min_memory[1] = min_pos.y;
|
|
min_memory[2] = min_pos.z;
|
|
max_memory[0] = max_pos.x;
|
|
max_memory[1] = max_pos.y;
|
|
max_memory[2] = max_pos.z;
|
|
|
|
uint32_t pc = 0;
|
|
while (pc < _program.size()) {
|
|
|
|
const uint8_t opid = _program[pc++];
|
|
|
|
switch (opid) {
|
|
case VoxelGeneratorGraph::NODE_CONSTANT:
|
|
case VoxelGeneratorGraph::NODE_INPUT_X:
|
|
case VoxelGeneratorGraph::NODE_INPUT_Y:
|
|
case VoxelGeneratorGraph::NODE_INPUT_Z:
|
|
case VoxelGeneratorGraph::NODE_OUTPUT_SDF:
|
|
// Not part of the runtime
|
|
CRASH_NOW();
|
|
break;
|
|
|
|
case VoxelGeneratorGraph::NODE_ADD: {
|
|
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
|
|
min_memory[n.a_out] = min_memory[n.a_i0] + min_memory[n.a_i1];
|
|
max_memory[n.a_out] = max_memory[n.a_i0] + max_memory[n.a_i1];
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_SUBTRACT: {
|
|
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
|
|
min_memory[n.a_out] = min_memory[n.a_i0] - max_memory[n.a_i1];
|
|
max_memory[n.a_out] = max_memory[n.a_i0] - min_memory[n.a_i1];
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_MULTIPLY: {
|
|
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
|
|
Interval r = Interval(min_memory[n.a_i0], max_memory[n.a_i0]) *
|
|
Interval(min_memory[n.a_i1], max_memory[n.a_i1]);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_SINE: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
Interval r = sin(Interval(min_memory[n.a_in], max_memory[n.a_in]) * Math_PI);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_FLOOR: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
// Floor is monotonic so I guess we can just do that
|
|
min_memory[n.a_out] = Math::floor(min_memory[n.a_in]);
|
|
max_memory[n.a_out] = Math::floor(max_memory[n.a_in]); // ceil?
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_ABS: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
Interval r = abs(Interval(min_memory[n.a_in], max_memory[n.a_in]));
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_SQRT: {
|
|
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
|
|
Interval r = sqrt(Interval(min_memory[n.a_in], max_memory[n.a_in]));
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_DISTANCE_2D: {
|
|
const PNodeDistance2D &n = read<PNodeDistance2D>(_program, pc);
|
|
Interval x0(min_memory[n.a_x0], max_memory[n.a_x0]);
|
|
Interval y0(min_memory[n.a_y0], max_memory[n.a_y0]);
|
|
Interval x1(min_memory[n.a_x1], max_memory[n.a_x1]);
|
|
Interval y1(min_memory[n.a_y1], max_memory[n.a_y1]);
|
|
Interval dx = x1 - x0;
|
|
Interval dy = y1 - y0;
|
|
Interval r = sqrt(dx * dx + dy * dy);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_DISTANCE_3D: {
|
|
const PNodeDistance3D &n = read<PNodeDistance3D>(_program, pc);
|
|
Interval x0(min_memory[n.a_x0], max_memory[n.a_x0]);
|
|
Interval y0(min_memory[n.a_y0], max_memory[n.a_y0]);
|
|
Interval z0(min_memory[n.a_z0], max_memory[n.a_z0]);
|
|
Interval x1(min_memory[n.a_x1], max_memory[n.a_x1]);
|
|
Interval y1(min_memory[n.a_y1], max_memory[n.a_y1]);
|
|
Interval z1(min_memory[n.a_z1], max_memory[n.a_z1]);
|
|
Interval dx = x1 - x0;
|
|
Interval dy = y1 - y0;
|
|
Interval dz = z1 - z0;
|
|
Interval r = sqrt(dx * dx + dy * dy + dz * dz);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_MIX: {
|
|
const PNodeMix &n = read<PNodeMix>(_program, pc);
|
|
Interval a(min_memory[n.a_i0], max_memory[n.a_i0]);
|
|
Interval b(min_memory[n.a_i1], max_memory[n.a_i1]);
|
|
Interval t(min_memory[n.a_ratio], max_memory[n.a_ratio]);
|
|
Interval r = lerp(a, b, t);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_CLAMP: {
|
|
const PNodeClamp &n = read<PNodeClamp>(_program, pc);
|
|
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
|
|
// TODO We may want to have wirable min and max later
|
|
Interval cmin = Interval::from_single_value(n.p_min);
|
|
Interval cmax = Interval::from_single_value(n.p_max);
|
|
Interval r = clamp(x, cmin, cmax);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_REMAP: {
|
|
const PNodeRemap &n = read<PNodeRemap>(_program, pc);
|
|
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
|
|
Interval r = ((x - n.p_c0) * n.p_m0) * n.p_m1 + n.p_c1;
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_CURVE: {
|
|
const PNodeCurve &n = read<PNodeCurve>(_program, pc);
|
|
if (min_memory[n.a_in] == max_memory[n.a_in]) {
|
|
float v = n.p_curve->interpolate_baked(min_memory[n.a_in]);
|
|
min_memory[n.a_out] = v;
|
|
max_memory[n.a_out] = v;
|
|
} else if (n.is_monotonic_increasing) {
|
|
min_memory[n.a_out] = n.p_curve->interpolate_baked(min_memory[n.a_in]);
|
|
max_memory[n.a_out] = n.p_curve->interpolate_baked(max_memory[n.a_in]);
|
|
} else {
|
|
// TODO Segment the curve?
|
|
min_memory[n.a_out] = n.min_value;
|
|
max_memory[n.a_out] = n.max_value;
|
|
}
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_NOISE_2D: {
|
|
const PNodeNoise2D &n = read<PNodeNoise2D>(_program, pc);
|
|
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
|
|
Interval y(min_memory[n.a_y], max_memory[n.a_y]);
|
|
Interval r = get_osn_range_2d(n.p_noise, x, y);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_NOISE_3D: {
|
|
const PNodeNoise3D &n = read<PNodeNoise3D>(_program, pc);
|
|
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
|
|
Interval y(min_memory[n.a_y], max_memory[n.a_y]);
|
|
Interval z(min_memory[n.a_z], max_memory[n.a_z]);
|
|
Interval r = get_osn_range_3d(n.p_noise, x, y, z);
|
|
min_memory[n.a_out] = r.min;
|
|
max_memory[n.a_out] = r.max;
|
|
} break;
|
|
|
|
case VoxelGeneratorGraph::NODE_IMAGE_2D: {
|
|
const PNodeImage2D &n = read<PNodeImage2D>(_program, pc);
|
|
// TODO Segment image?
|
|
min_memory[n.a_out] = n.min_value;
|
|
max_memory[n.a_out] = n.max_value;
|
|
} break;
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
break;
|
|
}
|
|
|
|
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
|
|
// If this fails, the program is ill-formed
|
|
CRASH_COND(read<uint16_t>(_program, pc) != VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
|
|
#endif
|
|
}
|
|
|
|
return Interval(min_memory[min_memory.size() - 1], max_memory[max_memory.size() - 1]);
|
|
}
|