godot_voxel/generators/graph/voxel_graph_runtime.cpp
Marc Gilleron a3b64c3983 A bit of reorganization:
- Merged VoxelGeneratorGraph::Node into ProgramGraph::Node
- Separated compilation and execution to its own class
2020-02-29 00:17:47 +00:00

627 lines
19 KiB
C++

#include "voxel_graph_runtime.h"
#include "range_utility.h"
#include "voxel_generator_graph.h"
#include "voxel_graph_node_db.h"
//#ifdef DEBUG_ENABLED
//#define VOXEL_DEBUG_GRAPH_PROG_SENTINEL uint16_t(12345) // 48, 57 (base 10)
//#endif
//template <typename T>
//inline void write_static(std::vector<uint8_t> &mem, uint32_t p, const T &v) {
//#ifdef DEBUG_ENABLED
// CRASH_COND(p + sizeof(T) >= mem.size());
//#endif
// *(T *)(&mem[p]) = v;
//}
template <typename T>
inline void append(std::vector<uint8_t> &mem, const T &v) {
size_t p = mem.size();
mem.resize(p + sizeof(T));
*(T *)(&mem[p]) = v;
}
template <typename T>
inline const T &read(const std::vector<uint8_t> &mem, uint32_t &p) {
#ifdef DEBUG_ENABLED
CRASH_COND(p + sizeof(T) > mem.size());
#endif
const T *v = (const T *)&mem[p];
p += sizeof(T);
return *v;
}
inline float get_pixel_repeat(Image &im, int x, int y) {
return im.get_pixel(wrap(x, im.get_width()), wrap(y, im.get_height())).r;
}
void VoxelGraphRuntime::clear() {
_program.clear();
_memory.resize(8, 0);
}
void VoxelGraphRuntime::compile(const ProgramGraph &graph) {
std::vector<uint32_t> order;
std::vector<uint32_t> terminal_nodes;
graph.find_terminal_nodes(terminal_nodes);
// For now only 1 end is supported
ERR_FAIL_COND(terminal_nodes.size() != 1);
graph.find_dependencies(terminal_nodes.back(), order);
_program.clear();
// Main inputs X, Y, Z
_memory.resize(3);
std::vector<uint8_t> &program = _program;
const VoxelGraphNodeDB &type_db = *VoxelGraphNodeDB::get_singleton();
HashMap<ProgramGraph::PortLocation, uint16_t, ProgramGraph::PortLocationHasher> output_port_addresses;
bool has_output = false;
for (size_t i = 0; i < order.size(); ++i) {
const uint32_t node_id = order[i];
const ProgramGraph::Node *node = graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node->type_id);
CRASH_COND(node == nullptr);
CRASH_COND(node->inputs.size() != type.inputs.size());
CRASH_COND(node->outputs.size() != type.outputs.size());
switch (node->type_id) {
case VoxelGeneratorGraph::NODE_CONSTANT: {
CRASH_COND(type.outputs.size() != 1);
CRASH_COND(type.params.size() != 1);
uint16_t a = _memory.size();
_memory.push_back(node->params[0].operator float());
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = a;
} break;
case VoxelGeneratorGraph::NODE_INPUT_X:
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = 0;
break;
case VoxelGeneratorGraph::NODE_INPUT_Y:
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = 1;
break;
case VoxelGeneratorGraph::NODE_INPUT_Z:
output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = 2;
break;
case VoxelGeneratorGraph::NODE_OUTPUT_SDF:
// TODO Multiple outputs may be supported if we get branching
CRASH_COND(has_output);
has_output = true;
break;
default: {
// Add actual operation
CRASH_COND(node->type_id > 0xff);
append(program, static_cast<uint8_t>(node->type_id));
// Add inputs
for (size_t j = 0; j < type.inputs.size(); ++j) {
uint16_t a;
if (node->inputs[j].connections.size() == 0) {
// No input, default it
// TODO Take param value if specified
a = _memory.size();
_memory.push_back(0);
} else {
ProgramGraph::PortLocation src_port = node->inputs[j].connections[0];
const uint16_t *aptr = output_port_addresses.getptr(src_port);
// Previous node ports must have been registered
CRASH_COND(aptr == nullptr);
a = *aptr;
}
append(program, a);
}
// Add outputs
for (size_t j = 0; j < type.outputs.size(); ++j) {
const uint16_t a = _memory.size();
_memory.push_back(0);
// This will be used by next nodes
const ProgramGraph::PortLocation op{ node_id, static_cast<uint32_t>(j) };
output_port_addresses[op] = a;
append(program, a);
}
// Add special params
switch (node->type_id) {
case VoxelGeneratorGraph::NODE_CURVE: {
Ref<Curve> curve = node->params[0];
CRASH_COND(curve.is_null());
uint8_t is_monotonic_increasing;
Interval range = get_curve_range(**curve, is_monotonic_increasing);
append(program, is_monotonic_increasing);
append(program, range.min);
append(program, range.max);
append(program, *curve);
} break;
case VoxelGeneratorGraph::NODE_IMAGE_2D: {
Ref<Image> im = node->params[0];
CRASH_COND(im.is_null());
Interval range = get_heightmap_range(**im);
append(program, range.min);
append(program, range.max);
append(program, *im);
} break;
case VoxelGeneratorGraph::NODE_NOISE_2D:
case VoxelGeneratorGraph::NODE_NOISE_3D: {
Ref<OpenSimplexNoise> noise = node->params[0];
CRASH_COND(noise.is_null());
append(program, *noise);
} break;
// TODO Worth it?
case VoxelGeneratorGraph::NODE_CLAMP:
append(program, node->params[0].operator float());
append(program, node->params[1].operator float());
break;
case VoxelGeneratorGraph::NODE_REMAP: {
float min0 = node->params[0].operator float();
float max0 = node->params[1].operator float();
float min1 = node->params[2].operator float();
float max1 = node->params[3].operator float();
append(program, -min0);
append(program, Math::is_equal_approx(max0, min0) ? 99999.f : 1.f / (max0 - min0));
append(program, min1);
append(program, max1 - min1);
} break;
} // switch special params
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
// Append a special value after each operation
append(program, VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
#endif
} break; // default
} // switch type
}
if (_memory.size() < 4) {
// In case there is nothing
_memory.resize(4, 0);
}
// Reserve space for range analysis
_memory.resize(_memory.size() * 2);
// Make it a copy to keep eventual constants at consistent adresses
const size_t half_size = _memory.size() / 2;
for (size_t i = 0, j = half_size; i < half_size; ++i, ++j) {
_memory[j] = _memory[i];
}
print_line(String("Compiled voxel graph. Program size: {0}b, memory size: {1}b")
.format(varray(_program.size() * sizeof(float), _memory.size() * sizeof(float))));
CRASH_COND(!has_output);
}
// The order of fields in the following structs matters.
// They map the layout produced by the compilation.
// Inputs go first, then outputs, then params (if applicable at runtime).
// TODO Think about alignment
struct PNodeBinop {
uint16_t a_i0;
uint16_t a_i1;
uint16_t a_out;
};
struct PNodeMonoFunc {
uint16_t a_in;
uint16_t a_out;
};
struct PNodeDistance2D {
uint16_t a_x0;
uint16_t a_y0;
uint16_t a_x1;
uint16_t a_y1;
uint16_t a_out;
};
struct PNodeDistance3D {
uint16_t a_x0;
uint16_t a_y0;
uint16_t a_z0;
uint16_t a_x1;
uint16_t a_y1;
uint16_t a_z1;
uint16_t a_out;
};
struct PNodeClamp {
uint16_t a_x;
uint16_t a_out;
float p_min;
float p_max;
};
struct PNodeMix {
uint16_t a_i0;
uint16_t a_i1;
uint16_t a_ratio;
uint16_t a_out;
};
struct PNodeRemap {
uint16_t a_x;
uint16_t a_out;
float p_c0;
float p_m0;
float p_c1;
float p_m1;
};
struct PNodeCurve {
uint16_t a_in;
uint16_t a_out;
uint8_t is_monotonic_increasing;
float min_value;
float max_value;
Curve *p_curve;
};
struct PNodeNoise2D {
uint16_t a_x;
uint16_t a_y;
uint16_t a_out;
OpenSimplexNoise *p_noise;
};
struct PNodeNoise3D {
uint16_t a_x;
uint16_t a_y;
uint16_t a_z;
uint16_t a_out;
OpenSimplexNoise *p_noise;
};
struct PNodeImage2D {
uint16_t a_x;
uint16_t a_y;
uint16_t a_out;
float min_value;
float max_value;
Image *p_image;
};
float VoxelGraphRuntime::generate_single(const Vector3i &position) {
// This part must be optimized for speed
#ifdef DEBUG_ENABLED
CRASH_COND(_memory.size() == 0);
#endif
ArraySlice<float> memory(_memory, 0, _memory.size() / 2);
memory[0] = position.x;
memory[1] = position.y;
memory[2] = position.z;
// STL is unreadable on debug builds of Godot, because _DEBUG isn't defined
//#ifdef DEBUG_ENABLED
// const size_t memory_size = memory.size();
// const size_t program_size = _program.size();
// const float *memory_raw = memory.data();
// const uint8_t *program_raw = (const uint8_t *)_program.data();
//#endif
uint32_t pc = 0;
while (pc < _program.size()) {
const uint8_t opid = _program[pc++];
switch (opid) {
case VoxelGeneratorGraph::NODE_CONSTANT:
case VoxelGeneratorGraph::NODE_INPUT_X:
case VoxelGeneratorGraph::NODE_INPUT_Y:
case VoxelGeneratorGraph::NODE_INPUT_Z:
case VoxelGeneratorGraph::NODE_OUTPUT_SDF:
// Not part of the runtime
CRASH_NOW();
break;
case VoxelGeneratorGraph::NODE_ADD: {
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
memory[n.a_out] = memory[n.a_i0] + memory[n.a_i1];
} break;
case VoxelGeneratorGraph::NODE_SUBTRACT: {
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
memory[n.a_out] = memory[n.a_i0] - memory[n.a_i1];
} break;
case VoxelGeneratorGraph::NODE_MULTIPLY: {
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
memory[n.a_out] = memory[n.a_i0] * memory[n.a_i1];
} break;
case VoxelGeneratorGraph::NODE_SINE: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
memory[n.a_out] = Math::sin(Math_PI * memory[n.a_in]);
} break;
case VoxelGeneratorGraph::NODE_FLOOR: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
memory[n.a_out] = Math::floor(memory[n.a_in]);
} break;
case VoxelGeneratorGraph::NODE_ABS: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
memory[n.a_out] = Math::abs(memory[n.a_in]);
} break;
case VoxelGeneratorGraph::NODE_SQRT: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
memory[n.a_out] = Math::sqrt(memory[n.a_in]);
} break;
case VoxelGeneratorGraph::NODE_DISTANCE_2D: {
const PNodeDistance2D &n = read<PNodeDistance2D>(_program, pc);
memory[n.a_out] = Math::sqrt(squared(memory[n.a_x1] - memory[n.a_x0]) +
squared(memory[n.a_y1] - memory[n.a_y0]));
} break;
case VoxelGeneratorGraph::NODE_DISTANCE_3D: {
const PNodeDistance3D &n = read<PNodeDistance3D>(_program, pc);
memory[n.a_out] = Math::sqrt(squared(memory[n.a_x1] - memory[n.a_x0]) +
squared(memory[n.a_y1] - memory[n.a_y0]) +
squared(memory[n.a_z1] - memory[n.a_z0]));
} break;
case VoxelGeneratorGraph::NODE_MIX: {
const PNodeMix &n = read<PNodeMix>(_program, pc);
memory[n.a_out] = Math::lerp(memory[n.a_i0], memory[n.a_i1], memory[n.a_ratio]);
} break;
case VoxelGeneratorGraph::NODE_CLAMP: {
const PNodeClamp &n = read<PNodeClamp>(_program, pc);
memory[n.a_out] = clamp(memory[n.a_x], memory[n.p_min], memory[n.p_max]);
} break;
case VoxelGeneratorGraph::NODE_REMAP: {
const PNodeRemap &n = read<PNodeRemap>(_program, pc);
memory[n.a_out] = ((memory[n.a_x] - n.p_c0) * n.p_m0) * n.p_m1 + n.p_c1;
} break;
case VoxelGeneratorGraph::NODE_CURVE: {
const PNodeCurve &n = read<PNodeCurve>(_program, pc);
memory[n.a_out] = n.p_curve->interpolate_baked(memory[n.a_in]);
} break;
case VoxelGeneratorGraph::NODE_NOISE_2D: {
const PNodeNoise2D &n = read<PNodeNoise2D>(_program, pc);
memory[n.a_out] = n.p_noise->get_noise_2d(memory[n.a_x], memory[n.a_y]);
} break;
case VoxelGeneratorGraph::NODE_NOISE_3D: {
const PNodeNoise3D &n = read<PNodeNoise3D>(_program, pc);
memory[n.a_out] = n.p_noise->get_noise_3d(memory[n.a_x], memory[n.a_y], memory[n.a_z]);
} break;
case VoxelGeneratorGraph::NODE_IMAGE_2D: {
const PNodeImage2D &n = read<PNodeImage2D>(_program, pc);
// TODO Not great, but in Godot 4.0 we won't need to lock anymore. Otherwise, need to do it in a pre-run and post-run
n.p_image->lock();
memory[n.a_out] = get_pixel_repeat(*n.p_image, memory[n.a_x], memory[n.a_y]);
n.p_image->unlock();
} break;
default:
CRASH_NOW();
break;
}
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
// If this fails, the program is ill-formed
CRASH_COND(read<uint16_t>(_program, pc) != VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
#endif
}
return memory[memory.size() - 1];
}
Interval VoxelGraphRuntime::analyze_range(Vector3i min_pos, Vector3i max_pos) {
ArraySlice<float> min_memory(_memory, 0, _memory.size() / 2);
ArraySlice<float> max_memory(_memory, _memory.size() / 2, _memory.size());
min_memory[0] = min_pos.x;
min_memory[1] = min_pos.y;
min_memory[2] = min_pos.z;
max_memory[0] = max_pos.x;
max_memory[1] = max_pos.y;
max_memory[2] = max_pos.z;
uint32_t pc = 0;
while (pc < _program.size()) {
const uint8_t opid = _program[pc++];
switch (opid) {
case VoxelGeneratorGraph::NODE_CONSTANT:
case VoxelGeneratorGraph::NODE_INPUT_X:
case VoxelGeneratorGraph::NODE_INPUT_Y:
case VoxelGeneratorGraph::NODE_INPUT_Z:
case VoxelGeneratorGraph::NODE_OUTPUT_SDF:
// Not part of the runtime
CRASH_NOW();
break;
case VoxelGeneratorGraph::NODE_ADD: {
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
min_memory[n.a_out] = min_memory[n.a_i0] + min_memory[n.a_i1];
max_memory[n.a_out] = max_memory[n.a_i0] + max_memory[n.a_i1];
} break;
case VoxelGeneratorGraph::NODE_SUBTRACT: {
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
min_memory[n.a_out] = min_memory[n.a_i0] - max_memory[n.a_i1];
max_memory[n.a_out] = max_memory[n.a_i0] - min_memory[n.a_i1];
} break;
case VoxelGeneratorGraph::NODE_MULTIPLY: {
const PNodeBinop &n = read<PNodeBinop>(_program, pc);
Interval r = Interval(min_memory[n.a_i0], max_memory[n.a_i0]) *
Interval(min_memory[n.a_i1], max_memory[n.a_i1]);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_SINE: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
Interval r = sin(Interval(min_memory[n.a_in], max_memory[n.a_in]) * Math_PI);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_FLOOR: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
// Floor is monotonic so I guess we can just do that
min_memory[n.a_out] = Math::floor(min_memory[n.a_in]);
max_memory[n.a_out] = Math::floor(max_memory[n.a_in]); // ceil?
} break;
case VoxelGeneratorGraph::NODE_ABS: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
Interval r = abs(Interval(min_memory[n.a_in], max_memory[n.a_in]));
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_SQRT: {
const PNodeMonoFunc &n = read<PNodeMonoFunc>(_program, pc);
Interval r = sqrt(Interval(min_memory[n.a_in], max_memory[n.a_in]));
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_DISTANCE_2D: {
const PNodeDistance2D &n = read<PNodeDistance2D>(_program, pc);
Interval x0(min_memory[n.a_x0], max_memory[n.a_x0]);
Interval y0(min_memory[n.a_y0], max_memory[n.a_y0]);
Interval x1(min_memory[n.a_x1], max_memory[n.a_x1]);
Interval y1(min_memory[n.a_y1], max_memory[n.a_y1]);
Interval dx = x1 - x0;
Interval dy = y1 - y0;
Interval r = sqrt(dx * dx + dy * dy);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_DISTANCE_3D: {
const PNodeDistance3D &n = read<PNodeDistance3D>(_program, pc);
Interval x0(min_memory[n.a_x0], max_memory[n.a_x0]);
Interval y0(min_memory[n.a_y0], max_memory[n.a_y0]);
Interval z0(min_memory[n.a_z0], max_memory[n.a_z0]);
Interval x1(min_memory[n.a_x1], max_memory[n.a_x1]);
Interval y1(min_memory[n.a_y1], max_memory[n.a_y1]);
Interval z1(min_memory[n.a_z1], max_memory[n.a_z1]);
Interval dx = x1 - x0;
Interval dy = y1 - y0;
Interval dz = z1 - z0;
Interval r = sqrt(dx * dx + dy * dy + dz * dz);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_MIX: {
const PNodeMix &n = read<PNodeMix>(_program, pc);
Interval a(min_memory[n.a_i0], max_memory[n.a_i0]);
Interval b(min_memory[n.a_i1], max_memory[n.a_i1]);
Interval t(min_memory[n.a_ratio], max_memory[n.a_ratio]);
Interval r = lerp(a, b, t);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_CLAMP: {
const PNodeClamp &n = read<PNodeClamp>(_program, pc);
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
// TODO We may want to have wirable min and max later
Interval cmin = Interval::from_single_value(n.p_min);
Interval cmax = Interval::from_single_value(n.p_max);
Interval r = clamp(x, cmin, cmax);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_REMAP: {
const PNodeRemap &n = read<PNodeRemap>(_program, pc);
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
Interval r = ((x - n.p_c0) * n.p_m0) * n.p_m1 + n.p_c1;
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_CURVE: {
const PNodeCurve &n = read<PNodeCurve>(_program, pc);
if (min_memory[n.a_in] == max_memory[n.a_in]) {
float v = n.p_curve->interpolate_baked(min_memory[n.a_in]);
min_memory[n.a_out] = v;
max_memory[n.a_out] = v;
} else if (n.is_monotonic_increasing) {
min_memory[n.a_out] = n.p_curve->interpolate_baked(min_memory[n.a_in]);
max_memory[n.a_out] = n.p_curve->interpolate_baked(max_memory[n.a_in]);
} else {
// TODO Segment the curve?
min_memory[n.a_out] = n.min_value;
max_memory[n.a_out] = n.max_value;
}
} break;
case VoxelGeneratorGraph::NODE_NOISE_2D: {
const PNodeNoise2D &n = read<PNodeNoise2D>(_program, pc);
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
Interval y(min_memory[n.a_y], max_memory[n.a_y]);
Interval r = get_osn_range_2d(n.p_noise, x, y);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_NOISE_3D: {
const PNodeNoise3D &n = read<PNodeNoise3D>(_program, pc);
Interval x(min_memory[n.a_x], max_memory[n.a_x]);
Interval y(min_memory[n.a_y], max_memory[n.a_y]);
Interval z(min_memory[n.a_z], max_memory[n.a_z]);
Interval r = get_osn_range_3d(n.p_noise, x, y, z);
min_memory[n.a_out] = r.min;
max_memory[n.a_out] = r.max;
} break;
case VoxelGeneratorGraph::NODE_IMAGE_2D: {
const PNodeImage2D &n = read<PNodeImage2D>(_program, pc);
// TODO Segment image?
min_memory[n.a_out] = n.min_value;
max_memory[n.a_out] = n.max_value;
} break;
default:
CRASH_NOW();
break;
}
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
// If this fails, the program is ill-formed
CRASH_COND(read<uint16_t>(_program, pc) != VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
#endif
}
return Interval(min_memory[min_memory.size() - 1], max_memory[max_memory.size() - 1]);
}