godot_voxel/storage/voxel_buffer_internal.cpp
2022-01-09 03:06:58 +00:00

918 lines
27 KiB
C++

#define VOXEL_BUFFER_USE_MEMORY_POOL
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
#include "voxel_memory_pool.h"
#endif
#include "../util/funcs.h"
#include "../util/profiling.h"
#include "voxel_buffer_internal.h"
#include <core/io/image.h>
#include <core/io/marshalls.h>
#include <core/math/math_funcs.h>
#include <string.h>
namespace zylann::voxel {
inline uint8_t *allocate_channel_data(size_t size) {
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
return VoxelMemoryPool::get_singleton()->allocate(size);
#else
return (uint8_t *)memalloc(size * sizeof(uint8_t));
#endif
}
inline void free_channel_data(uint8_t *data, uint32_t size) {
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
VoxelMemoryPool::get_singleton()->recycle(data, size);
#else
memfree(data);
#endif
}
uint64_t g_depth_max_values[] = {
0xff, // 8
0xffff, // 16
0xffffffff, // 32
0xffffffffffffffff // 64
};
inline uint64_t get_max_value_for_depth(VoxelBufferInternal::Depth d) {
CRASH_COND(d < 0 || d >= VoxelBufferInternal::DEPTH_COUNT);
return g_depth_max_values[d];
}
inline uint64_t clamp_value_for_depth(uint64_t value, VoxelBufferInternal::Depth d) {
const uint64_t max_val = get_max_value_for_depth(d);
if (value >= max_val) {
return max_val;
}
return value;
}
static_assert(sizeof(uint32_t) == sizeof(float), "uint32_t and float cannot be marshalled back and forth");
static_assert(sizeof(uint64_t) == sizeof(double), "uint64_t and double cannot be marshalled back and forth");
inline uint64_t real_to_raw_voxel(real_t value, VoxelBufferInternal::Depth depth) {
switch (depth) {
case VoxelBufferInternal::DEPTH_8_BIT:
return norm_to_u8(value);
case VoxelBufferInternal::DEPTH_16_BIT:
return norm_to_u16(value);
case VoxelBufferInternal::DEPTH_32_BIT: {
MarshallFloat m;
m.f = value;
return m.i;
}
case VoxelBufferInternal::DEPTH_64_BIT: {
MarshallDouble m;
m.d = value;
return m.l;
}
default:
CRASH_NOW();
return 0;
}
}
inline real_t raw_voxel_to_real(uint64_t value, VoxelBufferInternal::Depth depth) {
// Depths below 32 are normalized between -1 and 1
switch (depth) {
case VoxelBufferInternal::DEPTH_8_BIT:
return u8_to_norm(value);
case VoxelBufferInternal::DEPTH_16_BIT:
return u16_to_norm(value);
case VoxelBufferInternal::DEPTH_32_BIT: {
MarshallFloat m;
m.i = value;
return m.f;
}
case VoxelBufferInternal::DEPTH_64_BIT: {
MarshallDouble m;
m.l = value;
return m.d;
}
default:
CRASH_NOW();
return 0;
}
}
VoxelBufferInternal::VoxelBufferInternal() {
// Minecraft uses way more than 255 block types and there is room for eventual metadata such as rotation
_channels[CHANNEL_TYPE].depth = DEFAULT_TYPE_CHANNEL_DEPTH;
_channels[CHANNEL_TYPE].defval = 0;
// 16-bit is better on average to handle large worlds
_channels[CHANNEL_SDF].depth = DEFAULT_SDF_CHANNEL_DEPTH;
_channels[CHANNEL_SDF].defval = 0xffff;
_channels[CHANNEL_INDICES].depth = DEPTH_16_BIT;
_channels[CHANNEL_INDICES].defval = encode_indices_to_packed_u16(0, 1, 2, 3);
_channels[CHANNEL_WEIGHTS].depth = DEPTH_16_BIT;
_channels[CHANNEL_WEIGHTS].defval = encode_weights_to_packed_u16(15, 0, 0, 0);
}
VoxelBufferInternal::VoxelBufferInternal(VoxelBufferInternal &&src) {
src.move_to(*this);
}
VoxelBufferInternal::~VoxelBufferInternal() {
clear();
}
VoxelBufferInternal &VoxelBufferInternal::operator=(VoxelBufferInternal &&src) {
src.move_to(*this);
return *this;
}
void VoxelBufferInternal::create(unsigned int sx, unsigned int sy, unsigned int sz) {
ERR_FAIL_COND(sx > MAX_SIZE || sy > MAX_SIZE || sz > MAX_SIZE);
#ifdef TOOLS_ENABLED
if (sx == 0 || sy == 0 || sz == 0) {
WARN_PRINT(String("VoxelBuffer::create called with empty size ({0}, {1}, {2})").format(varray(sx, sy, sz)));
}
#endif
clear_voxel_metadata();
const Vector3i new_size(sx, sy, sz);
if (new_size != _size) {
// Assign size first, because `create_channel` uses it
_size = new_size;
for (unsigned int i = 0; i < _channels.size(); ++i) {
Channel &channel = _channels[i];
if (channel.data != nullptr) {
// Channel already contained data
delete_channel(i);
ERR_FAIL_COND(!create_channel(i, channel.defval));
}
}
}
}
void VoxelBufferInternal::create(Vector3i size) {
create(size.x, size.y, size.z);
}
void VoxelBufferInternal::clear() {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
Channel &channel = _channels[i];
if (channel.data != nullptr) {
delete_channel(i);
}
}
_size = Vector3i();
clear_voxel_metadata();
}
void VoxelBufferInternal::clear_channel(unsigned int channel_index, uint64_t clear_value) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
clear_channel(channel, clear_value);
}
void VoxelBufferInternal::clear_channel(Channel &channel, uint64_t clear_value) {
if (channel.data != nullptr) {
delete_channel(channel);
}
channel.defval = clamp_value_for_depth(clear_value, channel.depth);
}
void VoxelBufferInternal::clear_channel_f(unsigned int channel_index, real_t clear_value) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
const Channel &channel = _channels[channel_index];
clear_channel(channel_index, real_to_raw_voxel(clear_value, channel.depth));
}
void VoxelBufferInternal::set_default_values(FixedArray<uint64_t, VoxelBufferInternal::MAX_CHANNELS> values) {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
_channels[i].defval = clamp_value_for_depth(values[i], _channels[i].depth);
}
}
uint64_t VoxelBufferInternal::get_voxel(int x, int y, int z, unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0);
ERR_FAIL_COND_V_MSG(!is_position_valid(x, y, z), 0, String("At position ({0}, {1}, {2})").format(varray(x, y, z)));
const Channel &channel = _channels[channel_index];
if (channel.data != nullptr) {
const uint32_t i = get_index(x, y, z);
switch (channel.depth) {
case DEPTH_8_BIT:
return channel.data[i];
case DEPTH_16_BIT:
return reinterpret_cast<uint16_t *>(channel.data)[i];
case DEPTH_32_BIT:
return reinterpret_cast<uint32_t *>(channel.data)[i];
case DEPTH_64_BIT:
return reinterpret_cast<uint64_t *>(channel.data)[i];
default:
CRASH_NOW();
return 0;
}
} else {
return channel.defval;
}
}
void VoxelBufferInternal::set_voxel(uint64_t value, int x, int y, int z, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
ERR_FAIL_COND_MSG(!is_position_valid(x, y, z), String("At position ({0}, {1}, {2})").format(varray(x, y, z)));
Channel &channel = _channels[channel_index];
value = clamp_value_for_depth(value, channel.depth);
bool do_set = true;
if (channel.data == nullptr) {
if (channel.defval != value) {
// Allocate channel with same initial values as defval
ERR_FAIL_COND(!create_channel(channel_index, channel.defval));
} else {
do_set = false;
}
}
if (do_set) {
const uint32_t i = get_index(x, y, z);
switch (channel.depth) {
case DEPTH_8_BIT:
channel.data[i] = value;
break;
case DEPTH_16_BIT:
reinterpret_cast<uint16_t *>(channel.data)[i] = value;
break;
case DEPTH_32_BIT:
reinterpret_cast<uint32_t *>(channel.data)[i] = value;
break;
case DEPTH_64_BIT:
reinterpret_cast<uint64_t *>(channel.data)[i] = value;
break;
default:
CRASH_NOW();
break;
}
}
}
real_t VoxelBufferInternal::get_voxel_f(int x, int y, int z, unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, 0);
return raw_voxel_to_real(get_voxel(x, y, z, channel_index), _channels[channel_index].depth);
}
void VoxelBufferInternal::set_voxel_f(real_t value, int x, int y, int z, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
set_voxel(real_to_raw_voxel(value, _channels[channel_index].depth), x, y, z, channel_index);
}
void VoxelBufferInternal::fill(uint64_t defval, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
defval = clamp_value_for_depth(defval, channel.depth);
if (channel.data == nullptr) {
// Channel is already optimized and uniform
if (channel.defval == defval) {
// No change
return;
} else {
// Just change default value
channel.defval = defval;
return;
}
}
const size_t volume = get_volume();
#ifdef DEBUG_ENABLED
CRASH_COND(channel.size_in_bytes != get_size_in_bytes_for_volume(_size, channel.depth));
#endif
switch (channel.depth) {
case DEPTH_8_BIT:
memset(channel.data, defval, channel.size_in_bytes);
break;
case DEPTH_16_BIT:
for (size_t i = 0; i < volume; ++i) {
reinterpret_cast<uint16_t *>(channel.data)[i] = defval;
}
break;
case DEPTH_32_BIT:
for (size_t i = 0; i < volume; ++i) {
reinterpret_cast<uint32_t *>(channel.data)[i] = defval;
}
break;
case DEPTH_64_BIT:
for (size_t i = 0; i < volume; ++i) {
reinterpret_cast<uint64_t *>(channel.data)[i] = defval;
}
break;
default:
CRASH_NOW();
break;
}
}
void VoxelBufferInternal::fill_area(uint64_t defval, Vector3i min, Vector3i max, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Vector3iUtil::sort_min_max(min, max);
min = min.clamp(Vector3i(0, 0, 0), _size);
max = max.clamp(Vector3i(0, 0, 0), _size); // `_size` is included
const Vector3i area_size = max - min;
if (area_size.x == 0 || area_size.y == 0 || area_size.z == 0) {
return;
}
Channel &channel = _channels[channel_index];
defval = clamp_value_for_depth(defval, channel.depth);
if (channel.data == nullptr) {
if (channel.defval == defval) {
return;
} else {
ERR_FAIL_COND(!create_channel(channel_index, channel.defval));
}
}
Vector3i pos;
const size_t volume = get_volume();
for (pos.z = min.z; pos.z < max.z; ++pos.z) {
for (pos.x = min.x; pos.x < max.x; ++pos.x) {
const size_t dst_ri = get_index(pos.x, pos.y + min.y, pos.z);
CRASH_COND(dst_ri >= volume);
switch (channel.depth) {
case DEPTH_8_BIT:
// Fill row by row
memset(&channel.data[dst_ri], defval, area_size.y * sizeof(uint8_t));
break;
case DEPTH_16_BIT:
for (int i = 0; i < area_size.y; ++i) {
((uint16_t *)channel.data)[dst_ri + i] = defval;
}
break;
case DEPTH_32_BIT:
for (int i = 0; i < area_size.y; ++i) {
((uint32_t *)channel.data)[dst_ri + i] = defval;
}
break;
case DEPTH_64_BIT:
for (int i = 0; i < area_size.y; ++i) {
((uint64_t *)channel.data)[dst_ri + i] = defval;
}
break;
default:
CRASH_NOW();
break;
}
}
}
}
void VoxelBufferInternal::fill_area_f(float fvalue, Vector3i min, Vector3i max, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
const Channel &channel = _channels[channel_index];
fill_area(real_to_raw_voxel(fvalue, channel.depth), min, max, channel_index);
}
void VoxelBufferInternal::fill_f(real_t value, unsigned int channel) {
ERR_FAIL_INDEX(channel, MAX_CHANNELS);
fill(real_to_raw_voxel(value, _channels[channel].depth), channel);
}
template <typename T>
inline bool is_uniform_b(const uint8_t *data, size_t item_count) {
return is_uniform<T>(reinterpret_cast<const T *>(data), item_count);
}
bool VoxelBufferInternal::is_uniform(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, true);
const Channel &channel = _channels[channel_index];
return is_uniform(channel);
}
bool VoxelBufferInternal::is_uniform(const Channel &channel) {
if (channel.data == nullptr) {
// Channel has been optimized
return true;
}
// Channel isn't optimized, so must look at each voxel
switch (channel.depth) {
case DEPTH_8_BIT:
return is_uniform_b<uint8_t>(channel.data, channel.size_in_bytes);
case DEPTH_16_BIT:
return is_uniform_b<uint16_t>(channel.data, channel.size_in_bytes / 2);
case DEPTH_32_BIT:
return is_uniform_b<uint32_t>(channel.data, channel.size_in_bytes / 4);
case DEPTH_64_BIT:
return is_uniform_b<uint64_t>(channel.data, channel.size_in_bytes / 8);
default:
CRASH_NOW();
break;
}
return true;
}
uint64_t get_first_voxel(const VoxelBufferInternal::Channel &channel) {
CRASH_COND(channel.data == nullptr);
switch (channel.depth) {
case VoxelBufferInternal::DEPTH_8_BIT:
return channel.data[0];
case VoxelBufferInternal::DEPTH_16_BIT:
return reinterpret_cast<uint16_t *>(channel.data)[0];
case VoxelBufferInternal::DEPTH_32_BIT:
return reinterpret_cast<uint32_t *>(channel.data)[0];
case VoxelBufferInternal::DEPTH_64_BIT:
return reinterpret_cast<uint64_t *>(channel.data)[0];
default:
CRASH_NOW();
return 0;
}
}
void VoxelBufferInternal::compress_uniform_channels() {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
Channel &channel = _channels[i];
compress_if_uniform(channel);
}
}
void VoxelBufferInternal::compress_if_uniform(Channel &channel) {
if (channel.data != nullptr && is_uniform(channel)) {
const uint64_t v = get_first_voxel(channel);
clear_channel(channel, v);
}
}
void VoxelBufferInternal::decompress_channel(unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
if (channel.data == nullptr) {
ERR_FAIL_COND(!create_channel(channel_index, channel.defval));
}
}
VoxelBufferInternal::Compression VoxelBufferInternal::get_channel_compression(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, VoxelBufferInternal::COMPRESSION_NONE);
const Channel &channel = _channels[channel_index];
if (channel.data == nullptr) {
return COMPRESSION_UNIFORM;
}
return COMPRESSION_NONE;
}
void VoxelBufferInternal::copy_format(const VoxelBufferInternal &other) {
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
set_channel_depth(i, other.get_channel_depth(i));
}
}
void VoxelBufferInternal::copy_from(const VoxelBufferInternal &other) {
// Copy all channels, assuming sizes and formats match
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
copy_from(other, i);
}
}
void VoxelBufferInternal::copy_from(const VoxelBufferInternal &other, unsigned int channel_index) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
ERR_FAIL_COND(other._size != _size);
Channel &channel = _channels[channel_index];
const Channel &other_channel = other._channels[channel_index];
ERR_FAIL_COND(other_channel.depth != channel.depth);
if (other_channel.data != nullptr) {
if (channel.data == nullptr) {
ERR_FAIL_COND(!create_channel_noinit(channel_index, _size));
}
CRASH_COND(channel.size_in_bytes != other_channel.size_in_bytes);
memcpy(channel.data, other_channel.data, channel.size_in_bytes);
} else if (channel.data != nullptr) {
delete_channel(channel_index);
}
channel.defval = other_channel.defval;
channel.depth = other_channel.depth;
}
// TODO Disallow copying from overlapping areas of the same buffer
void VoxelBufferInternal::copy_from(const VoxelBufferInternal &other, Vector3i src_min, Vector3i src_max,
Vector3i dst_min, unsigned int channel_index) {
//
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
Channel &channel = _channels[channel_index];
const Channel &other_channel = other._channels[channel_index];
ERR_FAIL_COND(other_channel.depth != channel.depth);
if (channel.data == nullptr && other_channel.data == nullptr && channel.defval == other_channel.defval) {
// No action needed
return;
}
if (other_channel.data != nullptr) {
if (channel.data == nullptr) {
// Note, we do this even if the pasted data happens to be all the same value as our current channel.
// We assume that this case is not frequent enough to bother, and compression can happen later
ERR_FAIL_COND(!create_channel(channel_index, channel.defval));
}
const unsigned int item_size = get_depth_byte_count(channel.depth);
Span<const uint8_t> src(other_channel.data, other_channel.size_in_bytes);
Span<uint8_t> dst(channel.data, channel.size_in_bytes);
copy_3d_region_zxy(dst, _size, dst_min, src, other._size, src_min, src_max, item_size);
} else if (channel.defval != other_channel.defval) {
// This logic is still required due to how source and destination regions can be specified.
// The actual size of the destination area must be determined from the source area, after it has been clipped.
Vector3iUtil::sort_min_max(src_min, src_max);
clip_copy_region(src_min, src_max, other._size, dst_min, _size);
const Vector3i area_size = src_max - src_min;
if (area_size.x <= 0 || area_size.y <= 0 || area_size.z <= 0) {
// Degenerate area, we'll not copy anything.
return;
}
fill_area(other_channel.defval, dst_min, dst_min + area_size, channel_index);
}
}
void VoxelBufferInternal::duplicate_to(VoxelBufferInternal &dst, bool include_metadata) const {
dst.create(_size);
for (unsigned int i = 0; i < _channels.size(); ++i) {
dst.set_channel_depth(i, _channels[i].depth);
}
dst.copy_from(*this);
if (include_metadata) {
dst.copy_voxel_metadata(*this);
}
}
void VoxelBufferInternal::move_to(VoxelBufferInternal &dst) {
if (this == &dst) {
return;
}
dst.clear();
dst._channels = _channels;
dst._size = _size;
// TODO Optimization: Godot needs move semantics
dst._block_metadata = _block_metadata;
_block_metadata = Variant();
// TODO Optimization: Godot needs move semantics
dst._voxel_metadata = _voxel_metadata;
_voxel_metadata.clear();
for (unsigned int i = 0; i < _channels.size(); ++i) {
Channel &channel = _channels[i];
channel.data = nullptr;
channel.size_in_bytes = 0;
}
}
bool VoxelBufferInternal::get_channel_raw(unsigned int channel_index, Span<uint8_t> &slice) const {
const Channel &channel = _channels[channel_index];
if (channel.data != nullptr) {
slice = Span<uint8_t>(channel.data, 0, channel.size_in_bytes);
return true;
}
slice = Span<uint8_t>();
return false;
}
bool VoxelBufferInternal::create_channel(int i, uint64_t defval) {
if (!create_channel_noinit(i, _size)) {
return false;
}
fill(defval, i);
return true;
}
size_t VoxelBufferInternal::get_size_in_bytes_for_volume(Vector3i size, Depth depth) {
// Calculate appropriate size based on bit depth
const size_t volume = size.x * size.y * size.z;
const size_t bits = volume * get_depth_bit_count(depth);
const size_t size_in_bytes = (bits >> 3);
return size_in_bytes;
}
bool VoxelBufferInternal::create_channel_noinit(int i, Vector3i size) {
Channel &channel = _channels[i];
const size_t size_in_bytes = get_size_in_bytes_for_volume(size, channel.depth);
ERR_FAIL_COND_V_MSG(size_in_bytes > Channel::MAX_SIZE_IN_BYTES, false, "Buffer is too big");
CRASH_COND(channel.data != nullptr); // The channel must not already be allocated
channel.data = allocate_channel_data(size_in_bytes);
ERR_FAIL_COND_V(channel.data == nullptr, false);
channel.size_in_bytes = size_in_bytes;
return true;
}
void VoxelBufferInternal::delete_channel(int i) {
Channel &channel = _channels[i];
delete_channel(channel);
}
void VoxelBufferInternal::delete_channel(Channel &channel) {
ERR_FAIL_COND(channel.data == nullptr);
// Don't use `_size` to obtain `data` byte count, since we could have changed `_size` up-front during a create().
// `size_in_bytes` reflects what is currently allocated inside `data`, regardless of anything else.
free_channel_data(channel.data, channel.size_in_bytes);
channel.data = nullptr;
channel.size_in_bytes = 0;
}
void VoxelBufferInternal::downscale_to(
VoxelBufferInternal &dst, Vector3i src_min, Vector3i src_max, Vector3i dst_min) const {
// TODO Align input to multiple of two
src_min = src_min.clamp(Vector3i(), _size - Vector3i(1, 1, 1));
src_max = src_max.clamp(Vector3i(), _size);
Vector3i dst_max = dst_min + ((src_max - src_min) >> 1);
// TODO This will be wrong if it overlaps the border?
dst_min = dst_min.clamp(Vector3i(), dst._size - Vector3i(1, 1, 1));
dst_max = dst_max.clamp(Vector3i(), dst._size);
for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) {
const Channel &src_channel = _channels[channel_index];
const Channel &dst_channel = dst._channels[channel_index];
if (src_channel.data == nullptr && dst_channel.data == nullptr && src_channel.defval == dst_channel.defval) {
// No action needed
continue;
}
// Nearest-neighbor downscaling
Vector3i pos;
for (pos.z = dst_min.z; pos.z < dst_max.z; ++pos.z) {
for (pos.x = dst_min.x; pos.x < dst_max.x; ++pos.x) {
for (pos.y = dst_min.y; pos.y < dst_max.y; ++pos.y) {
const Vector3i src_pos = src_min + ((pos - dst_min) << 1);
// TODO Remove check once it works
CRASH_COND(!is_position_valid(src_pos.x, src_pos.y, src_pos.z));
uint64_t v;
if (src_channel.data) {
// TODO Optimized version?
v = get_voxel(src_pos, channel_index);
} else {
v = src_channel.defval;
}
dst.set_voxel(v, pos, channel_index);
}
}
}
}
}
bool VoxelBufferInternal::equals(const VoxelBufferInternal &p_other) const {
if (p_other._size != _size) {
return false;
}
for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) {
const Channel &channel = _channels[channel_index];
const Channel &other_channel = p_other._channels[channel_index];
if ((channel.data == nullptr) != (other_channel.data == nullptr)) {
// Note: they could still logically be equal if one channel contains uniform voxel memory
return false;
}
if (channel.depth != other_channel.depth) {
return false;
}
if (channel.data == nullptr) {
if (channel.defval != other_channel.defval) {
return false;
}
} else {
ERR_FAIL_COND_V(channel.size_in_bytes != other_channel.size_in_bytes, false);
for (size_t i = 0; i < channel.size_in_bytes; ++i) {
if (channel.data[i] != other_channel.data[i]) {
return false;
}
}
}
}
return true;
}
void VoxelBufferInternal::set_channel_depth(unsigned int channel_index, Depth new_depth) {
ERR_FAIL_INDEX(channel_index, MAX_CHANNELS);
ERR_FAIL_INDEX(new_depth, DEPTH_COUNT);
Channel &channel = _channels[channel_index];
if (channel.depth == new_depth) {
return;
}
if (channel.data != nullptr) {
// TODO Implement conversion and do it when specified
WARN_PRINT("Changing VoxelBuffer depth with present data, this will reset the channel");
delete_channel(channel_index);
}
channel.defval = clamp_value_for_depth(channel.defval, new_depth);
channel.depth = new_depth;
}
VoxelBufferInternal::Depth VoxelBufferInternal::get_channel_depth(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, DEPTH_8_BIT);
return _channels[channel_index].depth;
}
float VoxelBufferInternal::get_sdf_quantization_scale(Depth d) {
switch (d) {
// Normalized
case DEPTH_8_BIT:
return constants::QUANTIZED_SDF_8_BITS_SCALE;
case DEPTH_16_BIT:
return constants::QUANTIZED_SDF_16_BITS_SCALE;
// Direct
default:
return 1.f;
}
}
void VoxelBufferInternal::set_block_metadata(Variant meta) {
_block_metadata = meta;
}
Variant VoxelBufferInternal::get_voxel_metadata(Vector3i pos) const {
ERR_FAIL_COND_V(!is_position_valid(pos), Variant());
const Map<Vector3i, Variant>::Element *elem = _voxel_metadata.find(pos);
if (elem != nullptr) {
return elem->value();
} else {
return Variant();
}
}
void VoxelBufferInternal::set_voxel_metadata(Vector3i pos, Variant meta) {
ERR_FAIL_COND(!is_position_valid(pos));
if (meta.get_type() == Variant::NIL) {
_voxel_metadata.erase(pos);
} else {
_voxel_metadata[pos] = meta;
}
}
void VoxelBufferInternal::for_each_voxel_metadata(const Callable &callback) const {
ERR_FAIL_COND(callback.is_null());
const Map<Vector3i, Variant>::Element *elem = _voxel_metadata.front();
while (elem != nullptr) {
const Variant key = elem->key();
const Variant *args[2] = { &key, &elem->value() };
Callable::CallError err;
Variant retval; // We don't care about the return value, Callable API requires it
callback.call(args, 2, retval, err);
ERR_FAIL_COND_MSG(
err.error != Callable::CallError::CALL_OK, String("Callable failed at {0}").format(varray(key)));
// TODO Can't provide detailed error because FuncRef doesn't give us access to the object
// ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, false,
// Variant::get_call_error_text(callback->get_object(), method_name, nullptr, 0, err));
elem = elem->next();
}
}
void VoxelBufferInternal::for_each_voxel_metadata_in_area(const Callable &callback, Box3i box) const {
ERR_FAIL_COND(callback.is_null());
for_each_voxel_metadata_in_area(box, [&callback](Vector3i pos, Variant meta) {
const Variant key = pos;
const Variant *args[2] = { &key, &meta };
Callable::CallError err;
Variant retval; // We don't care about the return value, Callable API requires it
callback.call(args, 2, retval, err);
ERR_FAIL_COND_MSG(
err.error != Callable::CallError::CALL_OK, String("Callable failed at {0}").format(varray(key)));
// TODO Can't provide detailed error because FuncRef doesn't give us access to the object
// ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, false,
// Variant::get_call_error_text(callback->get_object(), method_name, nullptr, 0, err));
});
}
void VoxelBufferInternal::clear_voxel_metadata() {
_voxel_metadata.clear();
}
void VoxelBufferInternal::clear_voxel_metadata_in_area(Box3i box) {
Map<Vector3i, Variant>::Element *elem = _voxel_metadata.front();
while (elem != nullptr) {
Map<Vector3i, Variant>::Element *next_elem = elem->next();
if (box.contains(elem->key())) {
_voxel_metadata.erase(elem);
}
elem = next_elem;
}
}
void VoxelBufferInternal::copy_voxel_metadata_in_area(
const VoxelBufferInternal &src_buffer, Box3i src_box, Vector3i dst_origin) {
ERR_FAIL_COND(!src_buffer.is_box_valid(src_box));
const Box3i clipped_src_box = src_box.clipped(Box3i(src_box.pos - dst_origin, _size));
const Vector3i clipped_dst_offset = dst_origin + clipped_src_box.pos - src_box.pos;
const Map<Vector3i, Variant>::Element *elem = src_buffer._voxel_metadata.front();
while (elem != nullptr) {
const Vector3i src_pos = elem->key();
if (src_box.contains(src_pos)) {
const Vector3i dst_pos = src_pos + clipped_dst_offset;
CRASH_COND(!is_position_valid(dst_pos));
_voxel_metadata[dst_pos] = elem->value().duplicate();
}
elem = elem->next();
}
}
void VoxelBufferInternal::copy_voxel_metadata(const VoxelBufferInternal &src_buffer) {
ERR_FAIL_COND(src_buffer.get_size() != _size);
const Map<Vector3i, Variant>::Element *elem = src_buffer._voxel_metadata.front();
while (elem != nullptr) {
const Vector3i pos = elem->key();
_voxel_metadata[pos] = elem->value().duplicate();
elem = elem->next();
}
_block_metadata = src_buffer._block_metadata.duplicate();
}
Ref<Image> VoxelBufferInternal::debug_print_sdf_to_image_top_down() {
Ref<Image> im;
im.instantiate();
im->create(_size.x, _size.z, false, Image::FORMAT_RGB8);
Vector3i pos;
for (pos.z = 0; pos.z < _size.z; ++pos.z) {
for (pos.x = 0; pos.x < _size.x; ++pos.x) {
for (pos.y = _size.y - 1; pos.y >= 0; --pos.y) {
float v = get_voxel_f(pos.x, pos.y, pos.z, CHANNEL_SDF);
if (v < 0.0) {
break;
}
}
float h = pos.y;
float c = h / _size.y;
im->set_pixel(pos.x, pos.z, Color(c, c, c));
}
}
return im;
}
} // namespace zylann::voxel