godot_voxel/server/voxel_server.h

345 lines
9.8 KiB
C++

#ifndef VOXEL_SERVER_H
#define VOXEL_SERVER_H
#include "../generators/voxel_generator.h"
#include "../meshers/blocky/voxel_mesher_blocky.h"
#include "../streams/voxel_stream.h"
#include "../util/file_locker.h"
#include "struct_db.h"
#include "voxel_thread_pool.h"
#include <scene/main/node.h>
#include <memory>
// Access point for asynchronous voxel processing APIs.
// Functions must be used from the main thread.
class VoxelServer : public Object {
GDCLASS(VoxelServer, Object)
public:
struct BlockMeshOutput {
enum Type {
TYPE_MESHED, // Contains mesh
TYPE_DROPPED // Indicates the meshing was cancelled
};
Type type;
VoxelMesher::Output surfaces;
Vector3i position;
uint8_t lod;
};
struct BlockDataOutput {
enum Type {
TYPE_LOAD,
TYPE_SAVE
};
Type type;
Ref<VoxelBuffer> voxels;
Vector3i position;
uint8_t lod;
bool dropped;
};
struct BlockMeshInput {
// Moore area ordered by forward XYZ iteration
FixedArray<Ref<VoxelBuffer>, Cube::MOORE_AREA_3D_COUNT> blocks;
Vector3i position;
uint8_t lod = 0;
};
struct ReceptionBuffers {
std::vector<BlockMeshOutput> mesh_output;
std::vector<BlockDataOutput> data_output;
};
struct Viewer {
// enum Flags {
// FLAG_DATA = 1,
// FLAG_VISUAL = 2,
// FLAG_COLLISION = 4,
// FLAGS_COUNT = 3
// };
Vector3 world_position;
unsigned int view_distance = 128;
bool require_collisions = false;
bool require_visuals = true;
};
enum VolumeType {
VOLUME_SPARSE_GRID,
VOLUME_SPARSE_OCTREE
};
static VoxelServer *get_singleton();
static void create_singleton();
static void destroy_singleton();
VoxelServer();
~VoxelServer();
// TODO Rename functions to C convention
uint32_t add_volume(ReceptionBuffers *buffers, VolumeType type);
void set_volume_transform(uint32_t volume_id, Transform t);
void set_volume_block_size(uint32_t volume_id, uint32_t block_size);
void set_volume_stream(uint32_t volume_id, Ref<VoxelStream> stream);
void set_volume_generator(uint32_t volume_id, Ref<VoxelGenerator> generator);
void set_volume_mesher(uint32_t volume_id, Ref<VoxelMesher> mesher);
void set_volume_octree_split_scale(uint32_t volume_id, float split_scale);
void invalidate_volume_mesh_requests(uint32_t volume_id);
void request_block_mesh(uint32_t volume_id, BlockMeshInput &input);
void request_block_load(uint32_t volume_id, Vector3i block_pos, int lod);
void request_block_save(uint32_t volume_id, Ref<VoxelBuffer> voxels, Vector3i block_pos, int lod);
void remove_volume(uint32_t volume_id);
// TODO Rename functions to C convention
uint32_t add_viewer();
void remove_viewer(uint32_t viewer_id);
void set_viewer_position(uint32_t viewer_id, Vector3 position);
void set_viewer_distance(uint32_t viewer_id, unsigned int distance);
unsigned int get_viewer_distance(uint32_t viewer_id) const;
void set_viewer_requires_visuals(uint32_t viewer_id, bool enabled);
bool is_viewer_requiring_visuals(uint32_t viewer_id) const;
void set_viewer_requires_collisions(uint32_t viewer_id, bool enabled);
bool is_viewer_requiring_collisions(uint32_t viewer_id) const;
bool viewer_exists(uint32_t viewer_id) const;
template <typename F>
inline void for_each_viewer(F f) const {
_world.viewers.for_each_with_id(f);
}
// Gets by how much voxels must be padded with neighbors in order to be polygonized properly
// void get_min_max_block_padding(
// bool blocky_enabled, bool smooth_enabled,
// unsigned int &out_min_padding, unsigned int &out_max_padding) const;
void process();
void wait_and_clear_all_tasks(bool warn);
inline VoxelFileLocker &get_file_locker() {
return _file_locker;
}
static inline int get_octree_lod_block_region_extent(float split_scale) {
// This is a bounding radius of blocks around a viewer within which we may load them.
// It depends on the LOD split scale, which tells how close to a block we need to be for it to subdivide.
// Each LOD is fractal so that value is the same for each of them, multiplied by 2^lod.
return static_cast<int>(split_scale) * 2 + 2;
}
struct Stats {
struct ThreadPoolStats {
unsigned int thread_count;
unsigned int active_threads;
unsigned int tasks;
Dictionary to_dict() {
Dictionary d;
d["tasks"] = tasks;
d["active_threads"] = active_threads;
d["thread_count"] = thread_count;
return d;
}
};
ThreadPoolStats streaming;
ThreadPoolStats generation;
ThreadPoolStats meshing;
Dictionary to_dict() {
Dictionary d;
d["streaming"] = streaming.to_dict();
d["generation"] = generation.to_dict();
d["meshing"] = meshing.to_dict();
return d;
}
};
Stats get_stats() const;
private:
class BlockDataRequest;
class BlockGenerateRequest;
void request_block_generate_from_data_request(BlockDataRequest *src);
void request_block_save_from_generate_request(BlockGenerateRequest *src);
Dictionary _b_get_stats();
static void _bind_methods();
// Since we are going to send data to tasks running in multiple threads, a few strategies are in place:
//
// - Copy the data for each task. This is suitable for simple information that doesn't change after scheduling.
//
// - Per-thread instances. This is done if some heap-allocated class instances are not safe
// to use in multiple threads, and don't change after being scheduled.
//
// - Shared pointers. This is used if the data can change after being scheduled.
// This is often done without locking, but only if it's ok to have dirty reads.
// If such data sets change structurally (like their size, or other non-dirty-readable fields),
// then a new instance is created and old references are left to "die out".
struct StreamingDependency {
Ref<VoxelStream> stream;
Ref<VoxelGenerator> generator;
bool valid = true;
};
struct MeshingDependency {
Ref<VoxelMesher> mesher;
bool valid = true;
};
struct Volume {
VolumeType type;
ReceptionBuffers *reception_buffers = nullptr;
Transform transform;
Ref<VoxelStream> stream;
Ref<VoxelGenerator> generator;
Ref<VoxelMesher> mesher;
uint32_t block_size = 16;
float octree_split_scale = 0;
std::shared_ptr<StreamingDependency> stream_dependency;
std::shared_ptr<MeshingDependency> meshing_dependency;
};
struct PriorityDependencyShared {
// These positions are written by the main thread and read by block processing threads.
// Order doesn't matter.
// It's only used to adjust task priority so using a lock isn't worth it. In worst case scenario,
// a task will run much sooner or later than expected, but it will run in any case.
std::vector<Vector3> viewers;
float highest_view_distance = 999999;
};
struct World {
StructDB<Volume> volumes;
StructDB<Viewer> viewers;
// Must be overwritten with a new instance if count changes.
std::shared_ptr<PriorityDependencyShared> shared_priority_dependency;
};
struct PriorityDependency {
std::shared_ptr<PriorityDependencyShared> shared;
Vector3 world_position; // TODO Won't update while in queue. Can it be bad?
// If the closest viewer is further away than this distance, the request can be cancelled as not worth it
float drop_distance_squared;
};
void init_priority_dependency(PriorityDependency &dep, Vector3i block_position, uint8_t lod, const Volume &volume);
static int get_priority(const PriorityDependency &dep, uint8_t lod, float *out_closest_distance_sq);
class BlockDataRequest : public IVoxelTask {
public:
enum Type {
TYPE_LOAD = 0,
TYPE_SAVE,
TYPE_FALLBACK_ON_GENERATOR
};
void run(VoxelTaskContext ctx) override;
int get_priority() override;
bool is_cancelled() override;
Ref<VoxelBuffer> voxels;
Vector3i position;
uint32_t volume_id;
uint8_t lod;
uint8_t block_size;
uint8_t type;
bool has_run = false;
bool too_far = false;
PriorityDependency priority_dependency;
std::shared_ptr<StreamingDependency> stream_dependency;
// TODO Find a way to separate save, it doesnt need sorting
};
class BlockGenerateRequest : public IVoxelTask {
public:
void run(VoxelTaskContext ctx) override;
int get_priority() override;
bool is_cancelled() override;
Ref<VoxelBuffer> voxels;
Vector3i position;
uint32_t volume_id;
uint8_t lod;
uint8_t block_size;
bool has_run = false;
bool too_far = false;
PriorityDependency priority_dependency;
std::shared_ptr<StreamingDependency> stream_dependency;
};
class BlockMeshRequest : public IVoxelTask {
public:
void run(VoxelTaskContext ctx) override;
int get_priority() override;
bool is_cancelled() override;
FixedArray<Ref<VoxelBuffer>, Cube::MOORE_AREA_3D_COUNT> blocks;
Vector3i position;
uint32_t volume_id;
uint8_t lod;
bool has_run = false;
bool too_far = false;
PriorityDependency priority_dependency;
std::shared_ptr<MeshingDependency> meshing_dependency;
VoxelMesher::Output surfaces_output;
};
// TODO multi-world support in the future
World _world;
VoxelThreadPool _streaming_thread_pool;
VoxelThreadPool _generation_thread_pool;
VoxelThreadPool _meshing_thread_pool;
VoxelFileLocker _file_locker;
};
// TODO Hack to make VoxelServer update... need ways to integrate callbacks from main loop!
class VoxelServerUpdater : public Node {
GDCLASS(VoxelServerUpdater, Node)
public:
~VoxelServerUpdater();
static void ensure_existence(SceneTree *st);
protected:
void _notification(int p_what);
private:
VoxelServerUpdater();
};
struct VoxelFileLockerRead {
VoxelFileLockerRead(String path) :
_path(path) {
VoxelServer::get_singleton()->get_file_locker().lock_read(path);
}
~VoxelFileLockerRead() {
VoxelServer::get_singleton()->get_file_locker().unlock(_path);
}
String _path;
};
struct VoxelFileLockerWrite {
VoxelFileLockerWrite(String path) :
_path(path) {
VoxelServer::get_singleton()->get_file_locker().lock_write(path);
}
~VoxelFileLockerWrite() {
VoxelServer::get_singleton()->get_file_locker().unlock(_path);
}
String _path;
};
#endif // VOXEL_SERVER_H