godot_voxel/terrain/voxel_box_mover.cpp

190 lines
5.5 KiB
C++

#include "voxel_box_mover.h"
#include "voxel_map.h"
static AABB expand_with_vector(AABB box, Vector3 v) {
if (v.x > 0) {
box.size.x += v.x;
} else if (v.x < 0) {
box.position.x += v.x;
box.size.x -= v.x;
}
if (v.y > 0) {
box.size.y += v.y;
} else if (v.y < 0) {
box.position.y += v.y;
box.size.y -= v.y;
}
if (v.z > 0) {
box.size.z += v.z;
} else if (v.z < 0) {
box.position.z += v.z;
box.size.z -= v.z;
}
return box;
}
static float calculate_i_offset(AABB box, AABB other, float motion, int i, int j, int k) {
const float EPSILON = 0.001;
Vector3 other_end = other.position + other.size;
Vector3 box_end = box.position + box.size;
if (other_end[k] <= box.position[k] || other.position[k] >= box_end[k]) {
return motion;
}
if (other_end[j] <= box.position[j] || other.position[j] >= box_end[j]) {
return motion;
}
if (motion > 0.0 && other_end[i] <= box.position[i]) {
float off = box.position[i] - other_end[i] - EPSILON;
if (off < motion) {
motion = off;
}
}
if (motion < 0.0 && other.position[i] >= box_end[i]) {
float off = box_end[i] - other.position[i] + EPSILON;
if (off > motion) {
motion = off;
}
}
return motion;
}
// Gets the transformed vector for moving a box and slide.
// This algorithm is free from tunnelling for axis-aligned movement,
// except in some high-speed diagonal cases or huge size differences:
// For example, if a box is fast enough to have a diagonal motion jumping from A to B,
// it will pass through C if that other box is the only other one:
//
// o---o
// | A |
// o---o
// o---o
// | C |
// o---o
// o---o
// | B |
// o---o
//
// TODO one way to fix this would be to try a "hot side" projection instead
//
static Vector3 get_motion(AABB box, Vector3 motion, const std::vector<AABB> &environment_boxes) {
// The bounding box is expanded to include it's estimated version at next update.
// This also makes the algorithm tunnelling-free
AABB expanded_box = expand_with_vector(box, motion);
Vector<AABB> colliding_boxes;
for (size_t i = 0; i < environment_boxes.size(); ++i) {
const AABB &other = environment_boxes[i];
if (expanded_box.intersects(other)) {
colliding_boxes.push_back(other);
}
}
if (colliding_boxes.size() == 0) {
return motion;
}
//print("Colliding: ", colliding_boxes.size())
Vector3 new_motion = motion;
for (int i = 0; i < colliding_boxes.size(); ++i) {
new_motion.y = calculate_i_offset(colliding_boxes[i], box, new_motion.y, 1, 0, 2);
}
box.position.y += new_motion.y;
for (int i = 0; i < colliding_boxes.size(); ++i) {
new_motion.x = calculate_i_offset(colliding_boxes[i], box, new_motion.x, 0, 1, 2);
}
box.position.x += new_motion.x;
for (int i = 0; i < colliding_boxes.size(); ++i) {
new_motion.z = calculate_i_offset(colliding_boxes[i], box, new_motion.z, 2, 1, 0);
}
box.position.z += new_motion.z;
return new_motion;
}
Vector3 VoxelBoxMover::get_motion(Vector3 pos, Vector3 motion, AABB aabb, VoxelTerrain *terrain) {
ERR_FAIL_COND_V(terrain == nullptr, Vector3());
Ref<VoxelLibrary> library_ref = terrain->get_voxel_library();
ERR_FAIL_COND_V(library_ref.is_null(), Vector3());
VoxelLibrary &library = **library_ref;
AABB box(aabb.position + pos, aabb.size);
AABB expanded_box = expand_with_vector(box, motion);
_colliding_boxes.clear();
std::vector<AABB> &potential_boxes = _colliding_boxes;
// Collect collisions with the terrain
Ref<VoxelMap> voxels_ref = terrain->get_storage();
ERR_FAIL_COND_V(voxels_ref.is_null(), Vector3());
const VoxelMap &voxels = **voxels_ref;
const int min_x = int(Math::floor(expanded_box.position.x));
const int min_y = int(Math::floor(expanded_box.position.y));
const int min_z = int(Math::floor(expanded_box.position.z));
const Vector3 expanded_box_end = expanded_box.position + expanded_box.size;
const int max_x = int(Math::ceil(expanded_box_end.x));
const int max_y = int(Math::ceil(expanded_box_end.y));
const int max_z = int(Math::ceil(expanded_box_end.z));
Vector3i i(min_x, min_y, min_z);
for (i.z = min_z; i.z < max_z; ++i.z) {
for (i.y = min_y; i.y < max_y; ++i.y) {
for (i.x = min_x; i.x < max_x; ++i.x) {
const int type_id = voxels.get_voxel(i, 0);
if (library.has_voxel(type_id)) {
const Voxel &voxel_type = library.get_voxel_const(type_id);
if ((voxel_type.get_collision_mask() & _collision_mask) == 0) {
continue;
}
const std::vector<AABB> &local_boxes = voxel_type.get_collision_aabbs();
for (auto it = local_boxes.begin(); it != local_boxes.end(); ++it) {
AABB world_box = *it;
world_box.position += i.to_vec3();
potential_boxes.push_back(world_box);
}
}
}
}
}
// Calculate collisions
return ::get_motion(box, motion, potential_boxes);
}
void VoxelBoxMover::set_collision_mask(uint32_t mask) {
_collision_mask = mask;
}
void VoxelBoxMover::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_motion", "pos", "motion", "aabb", "terrain"), &VoxelBoxMover::_b_get_motion);
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &VoxelBoxMover::set_collision_mask);
ClassDB::bind_method(D_METHOD("get_collision_mask"), &VoxelBoxMover::get_collision_mask);
}
Vector3 VoxelBoxMover::_b_get_motion(Vector3 pos, Vector3 motion, AABB aabb, Node *terrain_node) {
ERR_FAIL_COND_V(terrain_node == nullptr, Vector3());
VoxelTerrain *terrain = Object::cast_to<VoxelTerrain>(terrain_node);
ERR_FAIL_COND_V(terrain == nullptr, Vector3());
return get_motion(pos, motion, aabb, terrain);
}