912 lines
27 KiB
C++
912 lines
27 KiB
C++
#define VOXEL_BUFFER_USE_MEMORY_POOL
|
|
|
|
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
|
|
#include "voxel_memory_pool.h"
|
|
#endif
|
|
|
|
#include "../util/funcs.h"
|
|
#include "../util/profiling.h"
|
|
#include "../util/string_funcs.h"
|
|
#include "voxel_buffer_internal.h"
|
|
|
|
#include <core/io/image.h>
|
|
#include <core/io/marshalls.h>
|
|
#include <core/math/math_funcs.h>
|
|
|
|
namespace zylann::voxel {
|
|
|
|
inline uint8_t *allocate_channel_data(size_t size) {
|
|
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
|
|
return VoxelMemoryPool::get_singleton().allocate(size);
|
|
#else
|
|
return (uint8_t *)memalloc(size * sizeof(uint8_t));
|
|
#endif
|
|
}
|
|
|
|
inline void free_channel_data(uint8_t *data, uint32_t size) {
|
|
#ifdef VOXEL_BUFFER_USE_MEMORY_POOL
|
|
VoxelMemoryPool::get_singleton().recycle(data, size);
|
|
#else
|
|
memfree(data);
|
|
#endif
|
|
}
|
|
|
|
// uint64_t g_depth_max_values[] = {
|
|
// 0xff, // 8
|
|
// 0xffff, // 16
|
|
// 0xffffffff, // 32
|
|
// 0xffffffffffffffff // 64
|
|
// };
|
|
|
|
// inline uint64_t get_max_value_for_depth(VoxelBufferInternal::Depth d) {
|
|
// CRASH_COND(d < 0 || d >= VoxelBufferInternal::DEPTH_COUNT);
|
|
// return g_depth_max_values[d];
|
|
// }
|
|
|
|
// inline uint64_t clamp_value_for_depth(uint64_t value, VoxelBufferInternal::Depth d) {
|
|
// const uint64_t max_val = get_max_value_for_depth(d);
|
|
// if (value >= max_val) {
|
|
// return max_val;
|
|
// }
|
|
// return value;
|
|
// }
|
|
|
|
static_assert(sizeof(uint32_t) == sizeof(float), "uint32_t and float cannot be marshalled back and forth");
|
|
static_assert(sizeof(uint64_t) == sizeof(double), "uint64_t and double cannot be marshalled back and forth");
|
|
|
|
inline uint64_t real_to_raw_voxel(real_t value, VoxelBufferInternal::Depth depth) {
|
|
switch (depth) {
|
|
case VoxelBufferInternal::DEPTH_8_BIT:
|
|
return snorm_to_s8(value);
|
|
|
|
case VoxelBufferInternal::DEPTH_16_BIT:
|
|
return snorm_to_s16(value);
|
|
|
|
case VoxelBufferInternal::DEPTH_32_BIT: {
|
|
MarshallFloat m;
|
|
m.f = value;
|
|
return m.i;
|
|
}
|
|
case VoxelBufferInternal::DEPTH_64_BIT: {
|
|
MarshallDouble m;
|
|
m.d = value;
|
|
return m.l;
|
|
}
|
|
default:
|
|
CRASH_NOW();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
inline real_t raw_voxel_to_real(uint64_t value, VoxelBufferInternal::Depth depth) {
|
|
// Depths below 32 are normalized between -1 and 1
|
|
switch (depth) {
|
|
case VoxelBufferInternal::DEPTH_8_BIT:
|
|
return s8_to_snorm(value);
|
|
|
|
case VoxelBufferInternal::DEPTH_16_BIT:
|
|
return s16_to_snorm(value);
|
|
|
|
case VoxelBufferInternal::DEPTH_32_BIT: {
|
|
MarshallFloat m;
|
|
m.i = value;
|
|
return m.f;
|
|
}
|
|
|
|
case VoxelBufferInternal::DEPTH_64_BIT: {
|
|
MarshallDouble m;
|
|
m.l = value;
|
|
return m.d;
|
|
}
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
VoxelBufferInternal::VoxelBufferInternal() {
|
|
// Minecraft uses way more than 255 block types and there is room for eventual metadata such as rotation
|
|
_channels[CHANNEL_TYPE].depth = DEFAULT_TYPE_CHANNEL_DEPTH;
|
|
_channels[CHANNEL_TYPE].defval = 0;
|
|
|
|
// 16-bit is better on average to handle large worlds
|
|
_channels[CHANNEL_SDF].depth = DEFAULT_SDF_CHANNEL_DEPTH;
|
|
_channels[CHANNEL_SDF].defval = snorm_to_s16(1.f);
|
|
|
|
_channels[CHANNEL_INDICES].depth = DEPTH_16_BIT;
|
|
_channels[CHANNEL_INDICES].defval = encode_indices_to_packed_u16(0, 1, 2, 3);
|
|
|
|
_channels[CHANNEL_WEIGHTS].depth = DEPTH_16_BIT;
|
|
_channels[CHANNEL_WEIGHTS].defval = encode_weights_to_packed_u16(15, 0, 0, 0);
|
|
}
|
|
|
|
VoxelBufferInternal::VoxelBufferInternal(VoxelBufferInternal &&src) {
|
|
src.move_to(*this);
|
|
}
|
|
|
|
VoxelBufferInternal::~VoxelBufferInternal() {
|
|
clear();
|
|
}
|
|
|
|
VoxelBufferInternal &VoxelBufferInternal::operator=(VoxelBufferInternal &&src) {
|
|
src.move_to(*this);
|
|
return *this;
|
|
}
|
|
|
|
void VoxelBufferInternal::create(unsigned int sx, unsigned int sy, unsigned int sz) {
|
|
ZN_ASSERT_RETURN(sx <= MAX_SIZE && sy <= MAX_SIZE && sz <= MAX_SIZE);
|
|
#ifdef TOOLS_ENABLED
|
|
if (sx == 0 || sy == 0 || sz == 0) {
|
|
ZN_PRINT_WARNING(format("VoxelBuffer::create called with empty size ({}, {}, {})", sx, sy, sz));
|
|
}
|
|
#endif
|
|
|
|
clear_voxel_metadata();
|
|
|
|
const Vector3i new_size(sx, sy, sz);
|
|
if (new_size != _size) {
|
|
// Assign size first, because `create_channel` uses it
|
|
_size = new_size;
|
|
for (unsigned int i = 0; i < _channels.size(); ++i) {
|
|
Channel &channel = _channels[i];
|
|
if (channel.data != nullptr) {
|
|
// Channel already contained data
|
|
delete_channel(i);
|
|
ZN_ASSERT_RETURN(create_channel(i, channel.defval));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::create(Vector3i size) {
|
|
create(size.x, size.y, size.z);
|
|
}
|
|
|
|
void VoxelBufferInternal::clear() {
|
|
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
|
|
Channel &channel = _channels[i];
|
|
if (channel.data != nullptr) {
|
|
delete_channel(i);
|
|
}
|
|
}
|
|
_size = Vector3i();
|
|
clear_voxel_metadata();
|
|
}
|
|
|
|
void VoxelBufferInternal::clear_channel(unsigned int channel_index, uint64_t clear_value) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
Channel &channel = _channels[channel_index];
|
|
clear_channel(channel, clear_value);
|
|
}
|
|
|
|
void VoxelBufferInternal::clear_channel(Channel &channel, uint64_t clear_value) {
|
|
if (channel.data != nullptr) {
|
|
delete_channel(channel);
|
|
}
|
|
channel.defval = clear_value;
|
|
}
|
|
|
|
void VoxelBufferInternal::clear_channel_f(unsigned int channel_index, real_t clear_value) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
const Channel &channel = _channels[channel_index];
|
|
clear_channel(channel_index, real_to_raw_voxel(clear_value, channel.depth));
|
|
}
|
|
|
|
void VoxelBufferInternal::set_default_values(FixedArray<uint64_t, VoxelBufferInternal::MAX_CHANNELS> values) {
|
|
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
|
|
_channels[i].defval = values[i];
|
|
}
|
|
}
|
|
|
|
uint64_t VoxelBufferInternal::get_voxel(int x, int y, int z, unsigned int channel_index) const {
|
|
ZN_ASSERT_RETURN_V(channel_index < MAX_CHANNELS, 0);
|
|
ZN_ASSERT_RETURN_V_MSG(is_position_valid(x, y, z), 0, format("At position ({}, {}, {})", x, y, z));
|
|
|
|
const Channel &channel = _channels[channel_index];
|
|
|
|
if (channel.data != nullptr) {
|
|
const uint32_t i = get_index(x, y, z);
|
|
|
|
switch (channel.depth) {
|
|
case DEPTH_8_BIT:
|
|
return channel.data[i];
|
|
|
|
case DEPTH_16_BIT:
|
|
return reinterpret_cast<uint16_t *>(channel.data)[i];
|
|
|
|
case DEPTH_32_BIT:
|
|
return reinterpret_cast<uint32_t *>(channel.data)[i];
|
|
|
|
case DEPTH_64_BIT:
|
|
return reinterpret_cast<uint64_t *>(channel.data)[i];
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
return 0;
|
|
}
|
|
|
|
} else {
|
|
return channel.defval;
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::set_voxel(uint64_t value, int x, int y, int z, unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
ZN_ASSERT_RETURN_MSG(is_position_valid(x, y, z), format("At position ({}, {}, {})", x, y, z));
|
|
|
|
Channel &channel = _channels[channel_index];
|
|
|
|
bool do_set = true;
|
|
|
|
if (channel.data == nullptr) {
|
|
if (channel.defval != value) {
|
|
// Allocate channel with same initial values as defval
|
|
ZN_ASSERT_RETURN(create_channel(channel_index, channel.defval));
|
|
} else {
|
|
do_set = false;
|
|
}
|
|
}
|
|
|
|
if (do_set) {
|
|
const uint32_t i = get_index(x, y, z);
|
|
|
|
switch (channel.depth) {
|
|
case DEPTH_8_BIT:
|
|
// Note, if the value is negative, it may be in the range supported by int8_t.
|
|
// This use case might exist for SDF data, although it is preferable to use `set_voxel_f`.
|
|
// Similar for higher depths.
|
|
channel.data[i] = value;
|
|
break;
|
|
|
|
case DEPTH_16_BIT:
|
|
reinterpret_cast<uint16_t *>(channel.data)[i] = value;
|
|
break;
|
|
|
|
case DEPTH_32_BIT:
|
|
reinterpret_cast<uint32_t *>(channel.data)[i] = value;
|
|
break;
|
|
|
|
case DEPTH_64_BIT:
|
|
reinterpret_cast<uint64_t *>(channel.data)[i] = value;
|
|
break;
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t VoxelBufferInternal::get_voxel_f(int x, int y, int z, unsigned int channel_index) const {
|
|
ZN_ASSERT_RETURN_V(channel_index < MAX_CHANNELS, 0);
|
|
return raw_voxel_to_real(get_voxel(x, y, z, channel_index), _channels[channel_index].depth);
|
|
}
|
|
|
|
void VoxelBufferInternal::set_voxel_f(real_t value, int x, int y, int z, unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
set_voxel(real_to_raw_voxel(value, _channels[channel_index].depth), x, y, z, channel_index);
|
|
}
|
|
|
|
void VoxelBufferInternal::fill(uint64_t defval, unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
|
|
Channel &channel = _channels[channel_index];
|
|
|
|
if (channel.data == nullptr) {
|
|
// Channel is already optimized and uniform
|
|
if (channel.defval == defval) {
|
|
// No change
|
|
return;
|
|
} else {
|
|
// Just change default value
|
|
channel.defval = defval;
|
|
return;
|
|
}
|
|
}
|
|
|
|
const size_t volume = get_volume();
|
|
#ifdef DEBUG_ENABLED
|
|
ZN_ASSERT(channel.size_in_bytes == get_size_in_bytes_for_volume(_size, channel.depth));
|
|
#endif
|
|
|
|
switch (channel.depth) {
|
|
case DEPTH_8_BIT:
|
|
memset(channel.data, defval, channel.size_in_bytes);
|
|
break;
|
|
|
|
case DEPTH_16_BIT:
|
|
for (size_t i = 0; i < volume; ++i) {
|
|
reinterpret_cast<uint16_t *>(channel.data)[i] = defval;
|
|
}
|
|
break;
|
|
|
|
case DEPTH_32_BIT:
|
|
for (size_t i = 0; i < volume; ++i) {
|
|
reinterpret_cast<uint32_t *>(channel.data)[i] = defval;
|
|
}
|
|
break;
|
|
|
|
case DEPTH_64_BIT:
|
|
for (size_t i = 0; i < volume; ++i) {
|
|
reinterpret_cast<uint64_t *>(channel.data)[i] = defval;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::fill_area(uint64_t defval, Vector3i min, Vector3i max, unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
|
|
Vector3iUtil::sort_min_max(min, max);
|
|
min = min.clamp(Vector3i(0, 0, 0), _size);
|
|
max = max.clamp(Vector3i(0, 0, 0), _size); // `_size` is included
|
|
const Vector3i area_size = max - min;
|
|
if (area_size.x == 0 || area_size.y == 0 || area_size.z == 0) {
|
|
return;
|
|
}
|
|
|
|
Channel &channel = _channels[channel_index];
|
|
|
|
if (channel.data == nullptr) {
|
|
if (channel.defval == defval) {
|
|
return;
|
|
} else {
|
|
ZN_ASSERT_RETURN(create_channel(channel_index, channel.defval));
|
|
}
|
|
}
|
|
|
|
Vector3i pos;
|
|
const size_t volume = get_volume();
|
|
|
|
for (pos.z = min.z; pos.z < max.z; ++pos.z) {
|
|
for (pos.x = min.x; pos.x < max.x; ++pos.x) {
|
|
const size_t dst_ri = get_index(pos.x, pos.y + min.y, pos.z);
|
|
ZN_ASSERT(dst_ri < volume);
|
|
|
|
switch (channel.depth) {
|
|
case DEPTH_8_BIT:
|
|
// Fill row by row
|
|
memset(&channel.data[dst_ri], defval, area_size.y * sizeof(uint8_t));
|
|
break;
|
|
|
|
case DEPTH_16_BIT:
|
|
for (int i = 0; i < area_size.y; ++i) {
|
|
((uint16_t *)channel.data)[dst_ri + i] = defval;
|
|
}
|
|
break;
|
|
|
|
case DEPTH_32_BIT:
|
|
for (int i = 0; i < area_size.y; ++i) {
|
|
((uint32_t *)channel.data)[dst_ri + i] = defval;
|
|
}
|
|
break;
|
|
|
|
case DEPTH_64_BIT:
|
|
for (int i = 0; i < area_size.y; ++i) {
|
|
((uint64_t *)channel.data)[dst_ri + i] = defval;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CRASH_NOW();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::fill_area_f(float fvalue, Vector3i min, Vector3i max, unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
const Channel &channel = _channels[channel_index];
|
|
fill_area(real_to_raw_voxel(fvalue, channel.depth), min, max, channel_index);
|
|
}
|
|
|
|
void VoxelBufferInternal::fill_f(real_t value, unsigned int channel) {
|
|
ZN_ASSERT_RETURN(channel, MAX_CHANNELS);
|
|
fill(real_to_raw_voxel(value, _channels[channel].depth), channel);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool is_uniform_b(const uint8_t *data, size_t item_count) {
|
|
return is_uniform<T>(reinterpret_cast<const T *>(data), item_count);
|
|
}
|
|
|
|
bool VoxelBufferInternal::is_uniform(unsigned int channel_index) const {
|
|
ZN_ASSERT_RETURN_V(channel_index < MAX_CHANNELS, true);
|
|
const Channel &channel = _channels[channel_index];
|
|
return is_uniform(channel);
|
|
}
|
|
|
|
bool VoxelBufferInternal::is_uniform(const Channel &channel) {
|
|
if (channel.data == nullptr) {
|
|
// Channel has been optimized
|
|
return true;
|
|
}
|
|
|
|
// Channel isn't optimized, so must look at each voxel
|
|
switch (channel.depth) {
|
|
case DEPTH_8_BIT:
|
|
return is_uniform_b<uint8_t>(channel.data, channel.size_in_bytes);
|
|
case DEPTH_16_BIT:
|
|
return is_uniform_b<uint16_t>(channel.data, channel.size_in_bytes / 2);
|
|
case DEPTH_32_BIT:
|
|
return is_uniform_b<uint32_t>(channel.data, channel.size_in_bytes / 4);
|
|
case DEPTH_64_BIT:
|
|
return is_uniform_b<uint64_t>(channel.data, channel.size_in_bytes / 8);
|
|
default:
|
|
CRASH_NOW();
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint64_t get_first_voxel(const VoxelBufferInternal::Channel &channel) {
|
|
ZN_ASSERT(channel.data != nullptr);
|
|
|
|
switch (channel.depth) {
|
|
case VoxelBufferInternal::DEPTH_8_BIT:
|
|
return channel.data[0];
|
|
|
|
case VoxelBufferInternal::DEPTH_16_BIT:
|
|
return reinterpret_cast<uint16_t *>(channel.data)[0];
|
|
|
|
case VoxelBufferInternal::DEPTH_32_BIT:
|
|
return reinterpret_cast<uint32_t *>(channel.data)[0];
|
|
|
|
case VoxelBufferInternal::DEPTH_64_BIT:
|
|
return reinterpret_cast<uint64_t *>(channel.data)[0];
|
|
|
|
default:
|
|
ZN_CRASH();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::compress_uniform_channels() {
|
|
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
|
|
Channel &channel = _channels[i];
|
|
compress_if_uniform(channel);
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::compress_if_uniform(Channel &channel) {
|
|
if (channel.data != nullptr && is_uniform(channel)) {
|
|
const uint64_t v = get_first_voxel(channel);
|
|
clear_channel(channel, v);
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::decompress_channel(unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
Channel &channel = _channels[channel_index];
|
|
if (channel.data == nullptr) {
|
|
ZN_ASSERT_RETURN(create_channel(channel_index, channel.defval));
|
|
}
|
|
}
|
|
|
|
VoxelBufferInternal::Compression VoxelBufferInternal::get_channel_compression(unsigned int channel_index) const {
|
|
ZN_ASSERT_RETURN_V(channel_index < MAX_CHANNELS, VoxelBufferInternal::COMPRESSION_NONE);
|
|
const Channel &channel = _channels[channel_index];
|
|
if (channel.data == nullptr) {
|
|
return COMPRESSION_UNIFORM;
|
|
}
|
|
return COMPRESSION_NONE;
|
|
}
|
|
|
|
void VoxelBufferInternal::copy_format(const VoxelBufferInternal &other) {
|
|
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
|
|
set_channel_depth(i, other.get_channel_depth(i));
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::copy_from(const VoxelBufferInternal &other) {
|
|
// Copy all channels, assuming sizes and formats match
|
|
for (unsigned int i = 0; i < MAX_CHANNELS; ++i) {
|
|
copy_from(other, i);
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::copy_from(const VoxelBufferInternal &other, unsigned int channel_index) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
ZN_ASSERT_RETURN(other._size == _size);
|
|
|
|
Channel &channel = _channels[channel_index];
|
|
const Channel &other_channel = other._channels[channel_index];
|
|
|
|
ZN_ASSERT_RETURN(other_channel.depth == channel.depth);
|
|
|
|
if (other_channel.data != nullptr) {
|
|
if (channel.data == nullptr) {
|
|
ZN_ASSERT_RETURN(create_channel_noinit(channel_index, _size));
|
|
}
|
|
ZN_ASSERT(channel.size_in_bytes == other_channel.size_in_bytes);
|
|
memcpy(channel.data, other_channel.data, channel.size_in_bytes);
|
|
|
|
} else if (channel.data != nullptr) {
|
|
delete_channel(channel_index);
|
|
}
|
|
|
|
channel.defval = other_channel.defval;
|
|
channel.depth = other_channel.depth;
|
|
}
|
|
|
|
// TODO Disallow copying from overlapping areas of the same buffer
|
|
void VoxelBufferInternal::copy_from(const VoxelBufferInternal &other, Vector3i src_min, Vector3i src_max,
|
|
Vector3i dst_min, unsigned int channel_index) {
|
|
//
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
|
|
Channel &channel = _channels[channel_index];
|
|
const Channel &other_channel = other._channels[channel_index];
|
|
|
|
ZN_ASSERT_RETURN(other_channel.depth == channel.depth);
|
|
|
|
if (channel.data == nullptr && other_channel.data == nullptr && channel.defval == other_channel.defval) {
|
|
// No action needed
|
|
return;
|
|
}
|
|
|
|
if (other_channel.data != nullptr) {
|
|
if (channel.data == nullptr) {
|
|
// Note, we do this even if the pasted data happens to be all the same value as our current channel.
|
|
// We assume that this case is not frequent enough to bother, and compression can happen later
|
|
ZN_ASSERT_RETURN(create_channel(channel_index, channel.defval));
|
|
}
|
|
const unsigned int item_size = get_depth_byte_count(channel.depth);
|
|
Span<const uint8_t> src(other_channel.data, other_channel.size_in_bytes);
|
|
Span<uint8_t> dst(channel.data, channel.size_in_bytes);
|
|
copy_3d_region_zxy(dst, _size, dst_min, src, other._size, src_min, src_max, item_size);
|
|
|
|
} else if (channel.defval != other_channel.defval) {
|
|
// This logic is still required due to how source and destination regions can be specified.
|
|
// The actual size of the destination area must be determined from the source area, after it has been clipped.
|
|
Vector3iUtil::sort_min_max(src_min, src_max);
|
|
clip_copy_region(src_min, src_max, other._size, dst_min, _size);
|
|
const Vector3i area_size = src_max - src_min;
|
|
if (area_size.x <= 0 || area_size.y <= 0 || area_size.z <= 0) {
|
|
// Degenerate area, we'll not copy anything.
|
|
return;
|
|
}
|
|
fill_area(other_channel.defval, dst_min, dst_min + area_size, channel_index);
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::duplicate_to(VoxelBufferInternal &dst, bool include_metadata) const {
|
|
dst.create(_size);
|
|
for (unsigned int i = 0; i < _channels.size(); ++i) {
|
|
dst.set_channel_depth(i, _channels[i].depth);
|
|
}
|
|
dst.copy_from(*this);
|
|
if (include_metadata) {
|
|
dst.copy_voxel_metadata(*this);
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::move_to(VoxelBufferInternal &dst) {
|
|
if (this == &dst) {
|
|
return;
|
|
}
|
|
|
|
dst.clear();
|
|
|
|
dst._channels = _channels;
|
|
dst._size = _size;
|
|
|
|
// TODO Optimization: Godot needs move semantics
|
|
dst._block_metadata = _block_metadata;
|
|
_block_metadata = BlockMetadata();
|
|
|
|
// TODO Optimization: Godot needs move semantics
|
|
dst._voxel_metadata = _voxel_metadata;
|
|
_voxel_metadata.clear();
|
|
|
|
for (unsigned int i = 0; i < _channels.size(); ++i) {
|
|
Channel &channel = _channels[i];
|
|
channel.data = nullptr;
|
|
channel.size_in_bytes = 0;
|
|
}
|
|
}
|
|
|
|
bool VoxelBufferInternal::get_channel_raw(unsigned int channel_index, Span<uint8_t> &slice) const {
|
|
const Channel &channel = _channels[channel_index];
|
|
if (channel.data != nullptr) {
|
|
slice = Span<uint8_t>(channel.data, 0, channel.size_in_bytes);
|
|
return true;
|
|
}
|
|
slice = Span<uint8_t>();
|
|
return false;
|
|
}
|
|
|
|
bool VoxelBufferInternal::create_channel(int i, uint64_t defval) {
|
|
if (!create_channel_noinit(i, _size)) {
|
|
return false;
|
|
}
|
|
fill(defval, i);
|
|
return true;
|
|
}
|
|
|
|
size_t VoxelBufferInternal::get_size_in_bytes_for_volume(Vector3i size, Depth depth) {
|
|
// Calculate appropriate size based on bit depth
|
|
const size_t volume = size.x * size.y * size.z;
|
|
const size_t bits = volume * get_depth_bit_count(depth);
|
|
const size_t size_in_bytes = (bits >> 3);
|
|
return size_in_bytes;
|
|
}
|
|
|
|
bool VoxelBufferInternal::create_channel_noinit(int i, Vector3i size) {
|
|
Channel &channel = _channels[i];
|
|
const size_t size_in_bytes = get_size_in_bytes_for_volume(size, channel.depth);
|
|
ZN_ASSERT_RETURN_V_MSG(size_in_bytes <= Channel::MAX_SIZE_IN_BYTES, false, "Buffer is too big");
|
|
CRASH_COND(channel.data != nullptr); // The channel must not already be allocated
|
|
channel.data = allocate_channel_data(size_in_bytes);
|
|
ZN_ASSERT_RETURN_V(channel.data != nullptr, false);
|
|
channel.size_in_bytes = size_in_bytes;
|
|
return true;
|
|
}
|
|
|
|
void VoxelBufferInternal::delete_channel(int i) {
|
|
Channel &channel = _channels[i];
|
|
delete_channel(channel);
|
|
}
|
|
|
|
void VoxelBufferInternal::delete_channel(Channel &channel) {
|
|
ZN_ASSERT_RETURN(channel.data != nullptr);
|
|
// Don't use `_size` to obtain `data` byte count, since we could have changed `_size` up-front during a create().
|
|
// `size_in_bytes` reflects what is currently allocated inside `data`, regardless of anything else.
|
|
free_channel_data(channel.data, channel.size_in_bytes);
|
|
channel.data = nullptr;
|
|
channel.size_in_bytes = 0;
|
|
}
|
|
|
|
void VoxelBufferInternal::downscale_to(
|
|
VoxelBufferInternal &dst, Vector3i src_min, Vector3i src_max, Vector3i dst_min) const {
|
|
// TODO Align input to multiple of two
|
|
|
|
src_min = src_min.clamp(Vector3i(), _size - Vector3i(1, 1, 1));
|
|
src_max = src_max.clamp(Vector3i(), _size);
|
|
|
|
Vector3i dst_max = dst_min + ((src_max - src_min) >> 1);
|
|
|
|
// TODO This will be wrong if it overlaps the border?
|
|
dst_min = dst_min.clamp(Vector3i(), dst._size - Vector3i(1, 1, 1));
|
|
dst_max = dst_max.clamp(Vector3i(), dst._size);
|
|
|
|
for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) {
|
|
const Channel &src_channel = _channels[channel_index];
|
|
const Channel &dst_channel = dst._channels[channel_index];
|
|
|
|
if (src_channel.data == nullptr && dst_channel.data == nullptr && src_channel.defval == dst_channel.defval) {
|
|
// No action needed
|
|
continue;
|
|
}
|
|
|
|
// Nearest-neighbor downscaling
|
|
|
|
Vector3i pos;
|
|
for (pos.z = dst_min.z; pos.z < dst_max.z; ++pos.z) {
|
|
for (pos.x = dst_min.x; pos.x < dst_max.x; ++pos.x) {
|
|
for (pos.y = dst_min.y; pos.y < dst_max.y; ++pos.y) {
|
|
const Vector3i src_pos = src_min + ((pos - dst_min) << 1);
|
|
|
|
// TODO Remove check once it works
|
|
ZN_ASSERT(is_position_valid(src_pos.x, src_pos.y, src_pos.z));
|
|
|
|
uint64_t v;
|
|
if (src_channel.data) {
|
|
// TODO Optimized version?
|
|
v = get_voxel(src_pos, channel_index);
|
|
} else {
|
|
v = src_channel.defval;
|
|
}
|
|
|
|
dst.set_voxel(v, pos, channel_index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VoxelBufferInternal::equals(const VoxelBufferInternal &p_other) const {
|
|
if (p_other._size != _size) {
|
|
return false;
|
|
}
|
|
|
|
for (int channel_index = 0; channel_index < MAX_CHANNELS; ++channel_index) {
|
|
const Channel &channel = _channels[channel_index];
|
|
const Channel &other_channel = p_other._channels[channel_index];
|
|
|
|
if ((channel.data == nullptr) != (other_channel.data == nullptr)) {
|
|
// Note: they could still logically be equal if one channel contains uniform voxel memory
|
|
return false;
|
|
}
|
|
|
|
if (channel.depth != other_channel.depth) {
|
|
return false;
|
|
}
|
|
|
|
if (channel.data == nullptr) {
|
|
if (channel.defval != other_channel.defval) {
|
|
return false;
|
|
}
|
|
|
|
} else {
|
|
ZN_ASSERT_RETURN_V(channel.size_in_bytes == other_channel.size_in_bytes, false);
|
|
for (size_t i = 0; i < channel.size_in_bytes; ++i) {
|
|
if (channel.data[i] != other_channel.data[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void VoxelBufferInternal::set_channel_depth(unsigned int channel_index, Depth new_depth) {
|
|
ZN_ASSERT_RETURN(channel_index < MAX_CHANNELS);
|
|
ZN_ASSERT_RETURN(new_depth, DEPTH_COUNT);
|
|
Channel &channel = _channels[channel_index];
|
|
if (channel.depth == new_depth) {
|
|
return;
|
|
}
|
|
if (channel.data != nullptr) {
|
|
// TODO Implement conversion and do it when specified
|
|
WARN_PRINT("Changing VoxelBuffer depth with present data, this will reset the channel");
|
|
delete_channel(channel_index);
|
|
}
|
|
channel.depth = new_depth;
|
|
}
|
|
|
|
VoxelBufferInternal::Depth VoxelBufferInternal::get_channel_depth(unsigned int channel_index) const {
|
|
ZN_ASSERT_RETURN_V(channel_index < MAX_CHANNELS, DEPTH_8_BIT);
|
|
return _channels[channel_index].depth;
|
|
}
|
|
|
|
float VoxelBufferInternal::get_sdf_quantization_scale(Depth d) {
|
|
switch (d) {
|
|
// Normalized
|
|
case DEPTH_8_BIT:
|
|
return constants::QUANTIZED_SDF_8_BITS_SCALE;
|
|
case DEPTH_16_BIT:
|
|
return constants::QUANTIZED_SDF_16_BITS_SCALE;
|
|
// Direct
|
|
default:
|
|
return 1.f;
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::set_block_metadata(Variant meta) {
|
|
_block_metadata.user_data = meta;
|
|
}
|
|
|
|
Variant VoxelBufferInternal::get_voxel_metadata(Vector3i pos) const {
|
|
ZN_ASSERT_RETURN_V(is_position_valid(pos), Variant());
|
|
Variant metadata;
|
|
_voxel_metadata.find(pos, metadata);
|
|
return metadata;
|
|
}
|
|
|
|
void VoxelBufferInternal::set_voxel_metadata(Vector3i pos, Variant meta) {
|
|
ZN_ASSERT_RETURN_V(is_position_valid(pos));
|
|
if (meta.get_type() == Variant::NIL) {
|
|
_voxel_metadata.erase(pos);
|
|
} else {
|
|
_voxel_metadata.insert_or_assign(pos, meta);
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::clear_and_set_voxel_metadata(Span<FlatMap<Vector3i, Variant>::Pair> pairs) {
|
|
#ifdef DEBUG_ENABLED
|
|
for (size_t i = 0; i < pairs.size(); ++i) {
|
|
ZN_ASSERT_CONTINUE(is_position_valid(pairs[i].key));
|
|
}
|
|
#endif
|
|
_voxel_metadata.clear_and_insert(pairs);
|
|
}
|
|
|
|
/*#ifdef ZN_GODOT
|
|
|
|
void VoxelBufferInternal::for_each_voxel_metadata(const Callable &callback) const {
|
|
ERR_FAIL_COND(callback.is_null());
|
|
|
|
for (FlatMap<Vector3i, Variant>::ConstIterator it = _voxel_metadata.begin(); it != _voxel_metadata.end(); ++it) {
|
|
const Variant key = it->key;
|
|
const Variant *args[2] = { &key, &it->value };
|
|
Callable::CallError err;
|
|
Variant retval; // We don't care about the return value, Callable API requires it
|
|
callback.call(args, 2, retval, err);
|
|
|
|
ERR_FAIL_COND_MSG(
|
|
err.error != Callable::CallError::CALL_OK, String("Callable failed at {0}").format(varray(key)));
|
|
// TODO Can't provide detailed error because FuncRef doesn't give us access to the object
|
|
// ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, false,
|
|
// Variant::get_call_error_text(callback->get_object(), method_name, nullptr, 0, err));
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::for_each_voxel_metadata_in_area(const Callable &callback, Box3i box) const {
|
|
ERR_FAIL_COND(callback.is_null());
|
|
for_each_voxel_metadata_in_area(box, [&callback](Vector3i pos, Variant meta) {
|
|
const Variant key = pos;
|
|
const Variant *args[2] = { &key, &meta };
|
|
Callable::CallError err;
|
|
Variant retval; // We don't care about the return value, Callable API requires it
|
|
callback.call(args, 2, retval, err);
|
|
|
|
ERR_FAIL_COND_MSG(
|
|
err.error != Callable::CallError::CALL_OK, String("Callable failed at {0}").format(varray(key)));
|
|
// TODO Can't provide detailed error because FuncRef doesn't give us access to the object
|
|
// ERR_FAIL_COND_MSG(err.error != Variant::CallError::CALL_OK, false,
|
|
// Variant::get_call_error_text(callback->get_object(), method_name, nullptr, 0, err));
|
|
});
|
|
}
|
|
|
|
#endif*/
|
|
|
|
void VoxelBufferInternal::clear_voxel_metadata() {
|
|
_voxel_metadata.clear();
|
|
}
|
|
|
|
void VoxelBufferInternal::clear_voxel_metadata_in_area(Box3i box) {
|
|
_voxel_metadata.remove_if([&box](const FlatMap<Vector3i, Variant>::Pair &p) { //
|
|
return box.contains(p.key);
|
|
});
|
|
}
|
|
|
|
void VoxelBufferInternal::copy_voxel_metadata_in_area(
|
|
const VoxelBufferInternal &src_buffer, Box3i src_box, Vector3i dst_origin) {
|
|
ZN_ASSERT_RETURN(src_buffer.is_box_valid(src_box));
|
|
|
|
const Box3i clipped_src_box = src_box.clipped(Box3i(src_box.pos - dst_origin, _size));
|
|
const Vector3i clipped_dst_offset = dst_origin + clipped_src_box.pos - src_box.pos;
|
|
|
|
for (FlatMap<Vector3i, Variant>::ConstIterator src_it = src_buffer._voxel_metadata.begin();
|
|
src_it != src_buffer._voxel_metadata.end(); ++src_it) {
|
|
if (src_box.contains(src_it->key)) {
|
|
const Vector3i dst_pos = src_it->key + clipped_dst_offset;
|
|
ZN_ASSERT(is_position_valid(dst_pos));
|
|
_voxel_metadata.insert_or_assign(dst_pos, src_it->value.duplicate());
|
|
}
|
|
}
|
|
}
|
|
|
|
void VoxelBufferInternal::copy_voxel_metadata(const VoxelBufferInternal &src_buffer) {
|
|
ZN_ASSERT_RETURN(src_buffer.get_size() == _size);
|
|
|
|
for (FlatMap<Vector3i, Variant>::ConstIterator src_it = src_buffer._voxel_metadata.begin();
|
|
src_it != src_buffer._voxel_metadata.end(); ++src_it) {
|
|
_voxel_metadata.insert_or_assign(src_it->key, src_it->value.duplicate());
|
|
}
|
|
|
|
_block_metadata.user_data = src_buffer._block_metadata.user_data.duplicate();
|
|
}
|
|
|
|
Ref<Image> VoxelBufferInternal::debug_print_sdf_to_image_top_down() {
|
|
Ref<Image> im;
|
|
im.instantiate();
|
|
im->create(_size.x, _size.z, false, Image::FORMAT_RGB8);
|
|
Vector3i pos;
|
|
for (pos.z = 0; pos.z < _size.z; ++pos.z) {
|
|
for (pos.x = 0; pos.x < _size.x; ++pos.x) {
|
|
for (pos.y = _size.y - 1; pos.y >= 0; --pos.y) {
|
|
float v = get_voxel_f(pos.x, pos.y, pos.z, CHANNEL_SDF);
|
|
if (v < 0.0) {
|
|
break;
|
|
}
|
|
}
|
|
float h = pos.y;
|
|
float c = h / _size.y;
|
|
im->set_pixel(pos.x, pos.z, Color(c, c, c));
|
|
}
|
|
}
|
|
return im;
|
|
}
|
|
|
|
} // namespace zylann::voxel
|