godot_voxel/tests/noise_tests.cpp
Marc Gilleron e0008d3335 Fix compilation now Godot comes with its own FastNoiseLite.
The version shipped with the module is now prefixed.
Removed usages of OpenSimplexNoise.
2022-04-03 20:07:17 +01:00

323 lines
10 KiB
C++

#include "../util/math/funcs.h"
#include "../util/noise/fast_noise_lite/fast_noise_lite.h"
#include "tests.h"
#include <core/io/image.h>
namespace zylann::voxel::noise_tests {
const int ITERATIONS = 1000000;
const int STEP_RESOLUTION_COUNT = 100;
const double STEP_MIN = 0.0001;
const double STEP_MAX = 0.01;
enum Tests { //
TEST_MIN_MAX = 1,
TEST_DERIVATIVES = 2
};
// Sample a maximum change across the given step.
// The result is not normalized for performance.
template <typename F2, typename FloatT>
FloatT get_derivative(FloatT x, FloatT y, FloatT step, F2 noise_func_2d) {
FloatT n0, n1, d;
FloatT max_derivative = 0.0;
n0 = noise_func_2d(x, y);
n1 = noise_func_2d(x + step, y);
d = Math::abs(n1 - n0);
if (d > max_derivative) {
max_derivative = d;
}
n1 = noise_func_2d(x, y + step);
d = Math::abs(n1 - n0);
if (d > max_derivative) {
max_derivative = d;
}
return max_derivative;
}
template <typename F3, typename FloatT>
FloatT get_derivative(FloatT x, FloatT y, FloatT z, FloatT step, F3 noise_func_3d) {
FloatT n0, n1, d;
FloatT max_derivative = 0.0;
n0 = noise_func_3d(x, y, z);
n1 = noise_func_3d(x + step, y, z);
d = Math::abs(n1 - n0);
if (d > max_derivative) {
max_derivative = d;
}
n1 = noise_func_3d(x, y + step, z);
d = Math::abs(n1 - n0);
if (d > max_derivative) {
max_derivative = d;
}
n1 = noise_func_3d(x, y, z + step);
d = Math::abs(n1 - n0);
if (d > max_derivative) {
max_derivative = d;
}
return max_derivative;
}
template <typename F2, typename F3, typename FloatT>
void test_min_max(F2 noise_func_2d, F3 noise_func_3d) {
FloatT min_value_2d = std::numeric_limits<FloatT>::max();
FloatT max_value_2d = std::numeric_limits<FloatT>::min();
FloatT min_value_3d = std::numeric_limits<FloatT>::max();
FloatT max_value_3d = std::numeric_limits<FloatT>::min();
for (int i = 0; i < ITERATIONS; ++i) {
FloatT x = Math::randd() * 2000.0 - 1000.0;
FloatT y = Math::randd() * 2000.0 - 1000.0;
FloatT z = Math::randd() * 2000.0 - 1000.0;
FloatT n = noise_func_2d(x, y);
min_value_2d = math::min(n, min_value_2d);
max_value_2d = math::max(n, max_value_2d);
n = noise_func_3d(x, y, z);
min_value_3d = math::min(n, min_value_3d);
max_value_3d = math::max(n, max_value_3d);
}
print_line(String("2D | Min: {0}, Max: {1}").format(varray(min_value_2d, max_value_2d)));
print_line(String("3D | Min: {0}, Max: {1}").format(varray(min_value_3d, max_value_3d)));
}
// Generic analysis for noise functions
template <typename F2, typename F3, typename FloatT>
void test_derivatives_tpl(F2 noise_func_2d, F3 noise_func_3d) {
const int iterations = ITERATIONS;
const int step_resolution_count = STEP_RESOLUTION_COUNT;
const FloatT step_min = STEP_MIN;
const FloatT step_max = STEP_MAX;
print_line(String("Derivatives across step from {0} to {1}").format(varray(step_min, step_max)));
const FloatT step_resolution_count_f = step_resolution_count;
print_line(String("2D:").format(varray(step_min, step_max)));
FloatT min_max_derivative = std::numeric_limits<FloatT>::max();
for (int j = 0; j < step_resolution_count; ++j) {
FloatT max_derivative = 0.0;
const FloatT step = Math::lerp(0.0001, 0.001, static_cast<FloatT>(j) / step_resolution_count_f);
for (int i = 0; i < iterations; ++i) {
const FloatT x = Math::randd() * 2000.0 - 1000.0;
const FloatT y = Math::randd() * 2000.0 - 1000.0;
FloatT d = get_derivative(x, y, step, noise_func_2d);
if (d > max_derivative) {
max_derivative = d;
}
}
max_derivative /= step;
print_line(String::num_real(max_derivative));
if (max_derivative < min_max_derivative) {
min_max_derivative = max_derivative;
}
}
print_line(String("Min max derivative: {0}").format(varray(min_max_derivative)));
print_line(String("3D:").format(varray(step_min, step_max)));
min_max_derivative = std::numeric_limits<FloatT>::max();
for (int j = 0; j < step_resolution_count; ++j) {
FloatT max_derivative = 0.0;
const FloatT step = Math::lerp(0.0001, 0.001, static_cast<FloatT>(j) / step_resolution_count_f);
for (int i = 0; i < iterations; ++i) {
const FloatT x = Math::randd() * 2000.0 - 1000.0;
const FloatT y = Math::randd() * 2000.0 - 1000.0;
const FloatT z = Math::randd() * 2000.0 - 1000.0;
FloatT d = get_derivative(x, y, z, step, noise_func_3d);
if (d > max_derivative) {
max_derivative = d;
}
}
max_derivative /= step;
print_line(String::num_real(max_derivative));
if (max_derivative < min_max_derivative) {
min_max_derivative = max_derivative;
}
}
print_line(String("Min max derivative: {0}").format(varray(min_max_derivative)));
}
template <typename F3>
void test_derivatives_with_image(String fpath, double step, F3 noise_func_3d) {
const double x_min = 500.0;
const double y = 500.0;
const double z_min = 500.0;
const int size_x = 512;
const int size_z = 512;
const double image_step = 1.0;
const double x_max = x_min + image_step;
const double z_max = z_min + image_step;
const double min_value = 0.0;
const double max_value = 10.0;
Ref<Image> im;
im.instantiate();
im->create(size_x, size_z, false, Image::FORMAT_RGB8);
for (int py = 0; py < size_z; ++py) {
for (int px = 0; px < size_x; ++px) {
const double x = Math::lerp(x_min, x_max, static_cast<double>(px) / static_cast<double>(size_x));
const double z = Math::lerp(z_min, z_max, static_cast<double>(py) / static_cast<double>(size_z));
const double d = get_derivative(x, y, z, step, noise_func_3d) / step;
const double g = (d - min_value) / (max_value - min_value);
im->set_pixel(px, py, Color(g, g, g));
}
}
print_line(String("Saving {0}").format(varray(fpath)));
im->save_png(fpath);
}
template <typename F3>
void test_derivatives_with_image(String fname, int steps_resolution, F3 noise_func_3d) {
for (int i = 0; i < steps_resolution; ++i) {
const double step =
Math::lerp(STEP_MIN, STEP_MAX, static_cast<double>(i) / static_cast<double>(steps_resolution));
String fpath = String("{0}_{1}.png").format(varray(fname, i));
test_derivatives_with_image(fpath, step, noise_func_3d);
}
}
template <typename F2, typename F3>
void test_noise(String name, int tests, F2 noise_func_2d, F3 noise_func_3d) {
print_line(String("--- {0}:").format(varray(name)));
if (tests & TEST_MIN_MAX) {
test_min_max<F2, F3, double>(noise_func_2d, noise_func_3d);
}
if (tests & TEST_DERIVATIVES) {
test_derivatives_tpl<F2, F3, double>(noise_func_2d, noise_func_3d);
test_derivatives_with_image(name + "_3D", 10, noise_func_3d);
}
}
void test_fnl_noise(fast_noise_lite::FastNoiseLite &fnl, String name, int tests) {
test_noise(
name, tests, [&fnl](double x, double y) { return fnl.GetNoise(x, y); },
[&fnl](double x, double y, double z) { return fnl.GetNoise(x, y, z); });
}
void test_noises() {
fast_noise_lite::FastNoiseLite fn;
fn.SetFractalType(fast_noise_lite::FastNoiseLite::FractalType_None);
fn.SetFrequency(1.f);
// According to OpenSimplex2 author, the 3D version is supposed to have a max derivative around 4.23718
// https://www.wolframalpha.com/input/?i=max+d%2Fdx+32.69428253173828125+*+x+*+%28%280.6-x%5E2%29%5E4%29+from+-0.6+to+0.6
// But empiric measures have shown it around 8. Discontinuities do exist in this noise though,
// which makes this measuring harder (and the reason why multiple step sizes are used)
fn.SetNoiseType(fast_noise_lite::FastNoiseLite::NoiseType_OpenSimplex2);
test_fnl_noise(fn, "FNL_OpenSimplex2", TEST_MIN_MAX | TEST_DERIVATIVES);
fn.SetNoiseType(fast_noise_lite::FastNoiseLite::NoiseType_OpenSimplex2S);
test_fnl_noise(fn, "FNL_OpenSimplex2S", TEST_MIN_MAX | TEST_DERIVATIVES);
fn.SetNoiseType(fast_noise_lite::FastNoiseLite::NoiseType_Perlin);
test_fnl_noise(fn, "FNL_Perlin", TEST_MIN_MAX | TEST_DERIVATIVES);
fn.SetNoiseType(fast_noise_lite::FastNoiseLite::NoiseType_Value);
test_fnl_noise(fn, "FNL Value", TEST_MIN_MAX | TEST_DERIVATIVES);
// ValueCubic seems to be below -1..1
// 2D | Min: -0.714547, Max: 0.742197
// 3D | Min: -0.542093, Max: 0.499036
fn.SetNoiseType(fast_noise_lite::FastNoiseLite::NoiseType_ValueCubic);
test_fnl_noise(fn, "FNL_ValueCubic", TEST_MIN_MAX | TEST_DERIVATIVES);
fn.SetNoiseType(fast_noise_lite::FastNoiseLite::NoiseType_Cellular);
const char *cell_distance_function_names[] = {
"Euclidean", //
"EuclideanSq", //
"Manhattan", //
"Hybrid" //
};
const char *cell_return_type_names[] = {
"CellValue", //
"Distance", //
"Distance2", //
"Distance2Add", //
"Distance2Sub", //
"Distance2Mul", //
"Distance2Div" //
};
for (int cell_distance_function = 0; cell_distance_function < 4; ++cell_distance_function) {
for (int cell_return_type = 0; cell_return_type < 7; ++cell_return_type) {
fn.SetCellularDistanceFunction(
static_cast<fast_noise_lite::FastNoiseLite::CellularDistanceFunction>(cell_distance_function));
fn.SetCellularReturnType(static_cast<fast_noise_lite::FastNoiseLite::CellularReturnType>(cell_return_type));
const char *cell_distance_function_name = cell_distance_function_names[cell_distance_function];
const char *cell_return_type_name = cell_return_type_names[cell_return_type];
String noise_name =
String("FNL_Cellular_{0}_{1}").format(varray(cell_distance_function_name, cell_return_type_name));
const int jitter_resolution = 10;
for (int i = 0; i < jitter_resolution; ++i) {
const double jitter =
Math::lerp(0.0, 1.0, static_cast<double>(i) / static_cast<double>(jitter_resolution));
fn.SetCellularJitter(jitter);
print_line(String("Cell jitter: {0}").format(varray(jitter)));
test_fnl_noise(fn, noise_name, TEST_MIN_MAX);
}
}
}
// Spreadsheet helper:
print_line("Steps:");
for (int i = 0; i < STEP_RESOLUTION_COUNT; ++i) {
const double step =
Math::lerp(STEP_MIN, STEP_MAX, static_cast<double>(i) / static_cast<double>(STEP_RESOLUTION_COUNT));
print_line(String::num_real(step));
}
}
// These are not actually unit tests, but rather analysis. They could be used with tests in the future, but
// it can be relatively hard for derivatives because empiric tests may bump on irregularities causing false-positives,
// so for now derivative ranges are estimated manually from the results
void run_noise_tests() {
test_noises();
}
} //namespace zylann::voxel::noise_tests