Optimize mesher: access channel directly and remove some push_backs

master
Marc Gilleron 2018-09-30 01:55:09 +01:00
parent ef92e5f144
commit 8ffa7110c8
6 changed files with 151 additions and 31 deletions

View File

@ -26,6 +26,7 @@ namespace CubeTables {
// o----0----o
//
// Sides are ordered according to the Voxel::Side enum.
// Edges are ordered according to the Voxel::Edge enum (only g_edge_inormals!).
//
//static const unsigned int CORNER_COUNT = 8;

View File

@ -5,6 +5,7 @@
#include "vector3i.h"
#include "voxel.h"
// TODO Rename Cube, as we may move enums in there because they are related
namespace CubeTables {
const unsigned int CORNER_COUNT = 8;

35
voxel.h
View File

@ -12,6 +12,9 @@ class Voxel : public Resource {
GDCLASS(Voxel, Resource)
public:
// TODO Move enums to CubeTables
// Index convention used in some lookup tables
enum Side {
SIDE_LEFT = 0,
SIDE_RIGHT,
@ -23,6 +26,38 @@ public:
SIDE_COUNT
};
// Index convention used in some lookup tables
enum Edge {
EDGE_BOTTOM_BACK,
EDGE_BOTTOM_RIGHT,
EDGE_BOTTOM_FRONT,
EDGE_BOTTOM_LEFT,
EDGE_BACK_LEFT,
EDGE_BACK_RIGHT,
EDGE_FRONT_RIGHT,
EDGE_FRONT_LEFT,
EDGE_TOP_BACK,
EDGE_TOP_RIGHT,
EDGE_TOP_FRONT,
EDGE_TOP_LEFT,
EDGE_COUNT
};
// Index convention used in some lookup tables
enum Corner {
CORNER_BOTTOM_BACK_LEFT,
CORNER_BOTTOM_BACK_RIGHT,
CORNER_BOTTOM_FRONT_RIGHT,
CORNER_BOTTOM_FRONT_LEFT,
CORNER_TOP_BACK_LEFT,
CORNER_TOP_BACK_RIGHT,
CORNER_TOP_FRONT_RIGHT,
CORNER_TOP_FRONT_LEFT,
CORNER_COUNT
};
enum ChannelMode {
// For mapping to a Voxel type
CHANNEL_TYPE = 0,

View File

@ -1,4 +1,5 @@
#include "voxel_buffer.h"
#include <core/math/math_funcs.h>
#include <string.h>
@ -225,6 +226,12 @@ void VoxelBuffer::copy_from(const VoxelBuffer &other, Vector3i src_min, Vector3i
}
}
uint8_t *VoxelBuffer::get_channel_raw(unsigned int channel_index) const {
ERR_FAIL_INDEX_V(channel_index, MAX_CHANNELS, NULL);
const Channel &channel = _channels[channel_index];
return channel.data;
}
void VoxelBuffer::create_channel(int i, Vector3i size, uint8_t defval) {
create_channel_noinit(i, size);
memset(_channels[i].data, defval, get_volume() * sizeof(uint8_t));

View File

@ -78,6 +78,8 @@ public:
return _size.x * _size.y * _size.z;
}
uint8_t *get_channel_raw(unsigned int channel_index) const;
private:
void create_channel_noinit(int i, Vector3i size);
void create_channel(int i, Vector3i size, uint8_t defval = 0);

View File

@ -113,18 +113,67 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
int index_offset = 0;
// Iterate 3D padded data to extract voxel faces.
// This is the most intensive job in this class, so all required data should be as fit as possible.
// The buffer we receive MUST be dense (i.e not compressed, and channels allocated).
// That means we can use raw pointers to voxel data inside instead of using the higher-level getters,
// and then save a lot of time.
uint8_t *type_buffer = buffer.get_channel_raw(Voxel::CHANNEL_TYPE);
CRASH_COND(type_buffer == NULL); // *italian pointy hand*
//CRASH_COND(memarr_len(type_buffer) != buffer.get_volume() * sizeof(uint8_t));
// Build lookup tables so to speed up voxel access.
// These are values to add to an address in order to get given neighbor.
int row_size = buffer.get_size().y;
int deck_size = buffer.get_size().x * row_size;
int side_neighbor_lut[Voxel::SIDE_COUNT];
side_neighbor_lut[Voxel::SIDE_LEFT] = -row_size;
side_neighbor_lut[Voxel::SIDE_RIGHT] = row_size;
side_neighbor_lut[Voxel::SIDE_BACK] = -deck_size;
side_neighbor_lut[Voxel::SIDE_FRONT] = deck_size;
side_neighbor_lut[Voxel::SIDE_BOTTOM] = -1;
side_neighbor_lut[Voxel::SIDE_TOP] = 1;
int edge_neighbor_lut[Voxel::EDGE_COUNT];
edge_neighbor_lut[Voxel::EDGE_BOTTOM_BACK] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_BACK];
edge_neighbor_lut[Voxel::EDGE_BOTTOM_FRONT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_FRONT];
edge_neighbor_lut[Voxel::EDGE_BOTTOM_LEFT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_LEFT];
edge_neighbor_lut[Voxel::EDGE_BOTTOM_RIGHT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_RIGHT];
edge_neighbor_lut[Voxel::EDGE_BACK_LEFT] = side_neighbor_lut[Voxel::SIDE_BACK] + side_neighbor_lut[Voxel::SIDE_LEFT];
edge_neighbor_lut[Voxel::EDGE_BACK_RIGHT] = side_neighbor_lut[Voxel::SIDE_BACK] + side_neighbor_lut[Voxel::SIDE_RIGHT];
edge_neighbor_lut[Voxel::EDGE_FRONT_LEFT] = side_neighbor_lut[Voxel::SIDE_FRONT] + side_neighbor_lut[Voxel::SIDE_LEFT];
edge_neighbor_lut[Voxel::EDGE_FRONT_RIGHT] = side_neighbor_lut[Voxel::SIDE_FRONT] + side_neighbor_lut[Voxel::SIDE_RIGHT];
edge_neighbor_lut[Voxel::EDGE_TOP_BACK] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_BACK];
edge_neighbor_lut[Voxel::EDGE_TOP_FRONT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_FRONT];
edge_neighbor_lut[Voxel::EDGE_TOP_LEFT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_LEFT];
edge_neighbor_lut[Voxel::EDGE_TOP_RIGHT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_RIGHT];
int corner_neighbor_lut[Voxel::CORNER_COUNT];
corner_neighbor_lut[Voxel::CORNER_BOTTOM_BACK_LEFT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_BACK] + side_neighbor_lut[Voxel::SIDE_LEFT];
corner_neighbor_lut[Voxel::CORNER_BOTTOM_BACK_RIGHT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_BACK] + side_neighbor_lut[Voxel::SIDE_RIGHT];
corner_neighbor_lut[Voxel::CORNER_BOTTOM_FRONT_RIGHT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_FRONT] + side_neighbor_lut[Voxel::SIDE_RIGHT];
corner_neighbor_lut[Voxel::CORNER_BOTTOM_FRONT_LEFT] = side_neighbor_lut[Voxel::SIDE_BOTTOM] + side_neighbor_lut[Voxel::SIDE_FRONT] + side_neighbor_lut[Voxel::SIDE_LEFT];
corner_neighbor_lut[Voxel::CORNER_TOP_BACK_LEFT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_BACK] + side_neighbor_lut[Voxel::SIDE_LEFT];
corner_neighbor_lut[Voxel::CORNER_TOP_BACK_RIGHT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_BACK] + side_neighbor_lut[Voxel::SIDE_RIGHT];
corner_neighbor_lut[Voxel::CORNER_TOP_FRONT_RIGHT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_FRONT] + side_neighbor_lut[Voxel::SIDE_RIGHT];
corner_neighbor_lut[Voxel::CORNER_TOP_FRONT_LEFT] = side_neighbor_lut[Voxel::SIDE_TOP] + side_neighbor_lut[Voxel::SIDE_FRONT] + side_neighbor_lut[Voxel::SIDE_LEFT];
uint64_t time_prep = OS::get_singleton()->get_ticks_usec() - time_before;
time_before = OS::get_singleton()->get_ticks_usec();
// Iterate 3D padded data to extract voxel faces.
// This is the most intensive job in this class, so all required data should be as fit as possible.
for (unsigned int z = min.z; z < max.z; ++z) {
for (unsigned int x = min.x; x < max.x; ++x) {
for (unsigned int y = min.y; y < max.y; ++y) {
// min and max are chosen such that you can visit 1 neighbor away from the current voxel without size check
// TODO In this intensive routine, there is a way to make voxel access fastest by getting a pointer to the channel,
// and using offset lookup to get neighbors rather than going through get_voxel validations
int voxel_id = buffer.get_voxel(x, y, z, 0);
int voxel_index = y + x * row_size + z * deck_size;
int voxel_id = type_buffer[voxel_index];
if (voxel_id != 0 && library.has_voxel(voxel_id)) {
@ -143,12 +192,8 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
if (vertex_count != 0) {
Vector3i normal = CubeTables::g_side_normals[side];
unsigned nx = x + normal.x;
unsigned ny = y + normal.y;
unsigned nz = z + normal.z;
int neighbor_voxel_id = type_buffer[voxel_index + side_neighbor_lut[side]];
int neighbor_voxel_id = buffer.get_voxel(nx, ny, nz, channel);
// TODO Better face visibility test
if (is_face_visible(library, voxel, neighbor_voxel_id)) {
@ -162,11 +207,8 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
for (unsigned int j = 0; j < 4; ++j) {
unsigned int edge = CubeTables::g_side_edges[side][j];
Vector3i edge_normal = CubeTables::g_edge_inormals[edge];
unsigned ex = x + edge_normal.x;
unsigned ey = y + edge_normal.y;
unsigned ez = z + edge_normal.z;
if (!is_transparent(library, buffer.get_voxel(ex, ey, ez))) {
int edge_neighbor_id = type_buffer[voxel_index + edge_neighbor_lut[edge]];
if (!is_transparent(library, edge_neighbor_id)) {
shaded_corner[CubeTables::g_edge_corners[edge][0]] += 1;
shaded_corner[CubeTables::g_edge_corners[edge][1]] += 1;
}
@ -176,11 +218,8 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
if (shaded_corner[corner] == 2) {
shaded_corner[corner] = 3;
} else {
Vector3i corner_normal = CubeTables::g_corner_inormals[corner];
unsigned int cx = x + corner_normal.x;
unsigned int cy = y + corner_normal.y;
unsigned int cz = z + corner_normal.z;
if (!is_transparent(library, buffer.get_voxel(cx, cy, cz))) {
int corner_neigbor_id = type_buffer[voxel_index + corner_neighbor_lut[corner]];
if (!is_transparent(library, corner_neigbor_id)) {
shaded_corner[corner] += 1;
}
}
@ -190,15 +229,48 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
PoolVector<Vector3>::Read rv = positions.read();
PoolVector<Vector2>::Read rt = voxel.get_model_side_uv(side).read();
// Subtracting 1 because the data is padded
Vector3 pos(x - 1, y - 1, z - 1);
for (unsigned int i = 0; i < vertex_count; ++i) {
Vector3 v = rv[i];
// Append vertices of the faces in one go, don't use push_back
{
int append_index = arrays.positions.size();
arrays.positions.resize(arrays.positions.size() + vertex_count);
Vector3 *w = arrays.positions.ptrw() + append_index;
for (unsigned int i = 0; i < vertex_count; ++i) {
w[i] = rv[i] + pos;
}
}
{
int append_index = arrays.uvs.size();
arrays.uvs.resize(arrays.uvs.size() + vertex_count);
memcpy(arrays.uvs.ptrw() + append_index, rt.ptr(), vertex_count * sizeof(Vector2));
}
{
int append_index = arrays.normals.size();
arrays.normals.resize(arrays.normals.size() + vertex_count);
Vector3 *w = arrays.normals.ptrw() + append_index;
for (unsigned int i = 0; i < vertex_count; ++i) {
w[i] = CubeTables::g_side_normals[side].to_vec3();
}
}
if (_bake_occlusion) {
// Use color array
int append_index = arrays.colors.size();
arrays.colors.resize(arrays.colors.size() + vertex_count);
Color *w = arrays.colors.ptrw() + append_index;
for (unsigned int i = 0; i < vertex_count; ++i) {
Vector3 v = rv[i];
if (_bake_occlusion) {
// General purpose occlusion colouring.
// TODO Optimize for cubes
// TODO Fix occlusion inconsistency caused by triangles orientation
// TODO Fix occlusion inconsistency caused by triangles orientation? Not sure if worth it
float shade = 0;
for (unsigned int j = 0; j < 4; ++j) {
unsigned int corner = CubeTables::g_side_corners[side][j];
@ -213,22 +285,21 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
}
}
float gs = 1.0 - shade;
arrays.colors.push_back(Color(gs, gs, gs));
w[i] = Color(gs, gs, gs);
}
// TODO Investigate wether those vectors can be replaced by a simpler, faster one for PODs
// TODO Resize beforehands rather than push_back (even if the vector is preallocated)
arrays.normals.push_back(Vector3(normal.x, normal.y, normal.z));
arrays.uvs.push_back(rt[i]);
arrays.positions.push_back(v + pos);
}
const PoolVector<int> &side_indices = voxel.get_model_side_indices(side);
PoolVector<int>::Read ri = side_indices.read();
unsigned int index_count = side_indices.size();
for(unsigned int i = 0; i < index_count; ++i) {
arrays.indices.push_back(index_offset + ri[i]);
{
int i = arrays.indices.size();
arrays.indices.resize(arrays.indices.size() + index_count);
int *w = arrays.indices.ptrw();
for(unsigned int j = 0; j < index_count; ++j) {
w[i++] = index_offset + ri[j];
}
}
index_offset += vertex_count;
@ -238,6 +309,7 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
// Inside
if (voxel.get_model_positions().size() != 0) {
// TODO Get rid of push_backs
const PoolVector<Vector3> &vertices = voxel.get_model_positions();
int vertex_count = vertices.size();
@ -284,6 +356,8 @@ Array VoxelMesher::build(const VoxelBuffer &buffer, unsigned int channel, Vector
Array surfaces;
// TODO We could return a single byte array and use Mesh::add_surface down the line?
for (int i = 0; i < MAX_MATERIALS; ++i) {
const Arrays &arrays = _arrays[i];