Split VoxelGraphRuntime into several files

This commit is contained in:
Marc Gilleron 2022-04-15 16:09:35 +01:00
parent 0ebf8f764e
commit 824a2955a9
9 changed files with 1076 additions and 1029 deletions

View File

@ -1346,18 +1346,8 @@ void VoxelGeneratorGraph::bake_sphere_normalmap(Ref<Image> im, float ref_radius,
String VoxelGeneratorGraph::generate_shader() {
ZN_PROFILE_SCOPE();
std::shared_ptr<const Runtime> runtime_ptr;
{
RWLockRead rlock(_runtime_lock);
runtime_ptr = _runtime;
}
ZN_ASSERT_RETURN_V(runtime_ptr != nullptr, "");
ZN_ASSERT_RETURN_V_MSG(
runtime_ptr->sdf_output_buffer_index != -1, "", "This function only works with an SDF output.");
std::string code_utf8;
VoxelGraphRuntime::CompilationResult result = runtime_ptr->runtime.generate_shader(_graph, code_utf8);
VoxelGraphRuntime::CompilationResult result = zylann::voxel::generate_shader(_graph, code_utf8);
ERR_FAIL_COND_V_MSG(!result.success, "", result.message);

View File

@ -0,0 +1,692 @@
#include "voxel_graph_compiler.h"
#include "../../util/container_funcs.h"
#include "../../util/expression_parser.h"
#include "../../util/macros.h"
#include "../../util/profiling.h"
#include "../../util/string_funcs.h"
#include "voxel_graph_node_db.h"
#include <unordered_set>
namespace zylann::voxel {
struct ToConnect {
std::string_view var_name;
ProgramGraph::PortLocation dst;
};
static uint32_t expand_node(ProgramGraph &graph, const ExpressionParser::Node &ep_node, const VoxelGraphNodeDB &db,
std::vector<ToConnect> &to_connect, std::vector<uint32_t> &expanded_node_ids,
Span<const ExpressionParser::Function> functions);
static bool expand_input(ProgramGraph &graph, const ExpressionParser::Node &arg, ProgramGraph::Node &pg_node,
uint32_t pg_node_input_index, const VoxelGraphNodeDB &db, std::vector<ToConnect> &to_connect,
std::vector<uint32_t> &expanded_node_ids, Span<const ExpressionParser::Function> functions) {
switch (arg.type) {
case ExpressionParser::Node::NUMBER: {
const ExpressionParser::NumberNode &arg_nn = reinterpret_cast<const ExpressionParser::NumberNode &>(arg);
pg_node.default_inputs[pg_node_input_index] = arg_nn.value;
} break;
case ExpressionParser::Node::VARIABLE: {
const ExpressionParser::VariableNode &arg_vn =
reinterpret_cast<const ExpressionParser::VariableNode &>(arg);
to_connect.push_back({ arg_vn.name, { pg_node.id, pg_node_input_index } });
} break;
case ExpressionParser::Node::OPERATOR:
case ExpressionParser::Node::FUNCTION: {
const uint32_t dependency_pg_node_id =
expand_node(graph, arg, db, to_connect, expanded_node_ids, functions);
ERR_FAIL_COND_V(dependency_pg_node_id == ProgramGraph::NULL_ID, false);
graph.connect({ dependency_pg_node_id, 0 }, { pg_node.id, pg_node_input_index });
} break;
default:
return false;
}
return true;
}
static ProgramGraph::Node &create_node(
ProgramGraph &graph, const VoxelGraphNodeDB &db, VoxelGeneratorGraph::NodeTypeID node_type_id) {
ProgramGraph::Node *node = create_node_internal(graph, node_type_id, Vector2(), ProgramGraph::NULL_ID);
CRASH_COND(node == nullptr);
return *node;
}
static uint32_t expand_node(ProgramGraph &graph, const ExpressionParser::Node &ep_node, const VoxelGraphNodeDB &db,
std::vector<ToConnect> &to_connect, std::vector<uint32_t> &expanded_node_ids,
Span<const ExpressionParser::Function> functions) {
switch (ep_node.type) {
case ExpressionParser::Node::NUMBER: {
// Note, this code should only run if the whole expression is only a number.
// Constant node inputs don't create a constant node, they just set the default value of the input.
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NODE_CONSTANT);
const ExpressionParser::NumberNode &nn = reinterpret_cast<const ExpressionParser::NumberNode &>(ep_node);
CRASH_COND(pg_node.params.size() != 1);
pg_node.params[0] = nn.value;
expanded_node_ids.push_back(pg_node.id);
return pg_node.id;
}
case ExpressionParser::Node::VARIABLE: {
// Note, this code should only run if the whole expression is only a variable.
// Variable node inputs don't create a node each time, they are turned into connections in a later pass.
// Here we need a pass-through node, so let's use `var + 0`. It's not a common case anyways.
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NODE_ADD);
const ExpressionParser::VariableNode &vn =
reinterpret_cast<const ExpressionParser::VariableNode &>(ep_node);
to_connect.push_back({ vn.name, { pg_node.id, 0 } });
CRASH_COND(pg_node.default_inputs.size() != 2);
pg_node.default_inputs[1] = 0;
expanded_node_ids.push_back(pg_node.id);
return pg_node.id;
}
case ExpressionParser::Node::OPERATOR: {
const ExpressionParser::OperatorNode &on =
reinterpret_cast<const ExpressionParser::OperatorNode &>(ep_node);
CRASH_COND(on.n0 == nullptr);
CRASH_COND(on.n1 == nullptr);
VoxelGeneratorGraph::NodeTypeID node_type_id;
switch (on.op) {
case ExpressionParser::OperatorNode::ADD:
node_type_id = VoxelGeneratorGraph::NODE_ADD;
break;
case ExpressionParser::OperatorNode::SUBTRACT:
node_type_id = VoxelGeneratorGraph::NODE_SUBTRACT;
break;
case ExpressionParser::OperatorNode::MULTIPLY:
node_type_id = VoxelGeneratorGraph::NODE_MULTIPLY;
break;
case ExpressionParser::OperatorNode::DIVIDE:
node_type_id = VoxelGeneratorGraph::NODE_DIVIDE;
break;
case ExpressionParser::OperatorNode::POWER:
if (on.n1->type == ExpressionParser::Node::NUMBER) {
// Attempt to use an optimized node if the power is constant
const ExpressionParser::NumberNode &arg1 =
static_cast<const ExpressionParser::NumberNode &>(*on.n1);
const int pi = int(arg1.value);
if (Math::is_equal_approx(arg1.value, pi) && pi >= 0) {
// Constant positive integer
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NODE_POWI);
expanded_node_ids.push_back(pg_node.id);
CRASH_COND(pg_node.params.size() != 1);
pg_node.params[0] = pi;
ERR_FAIL_COND_V(!expand_input(graph, *on.n0, pg_node, 0, db, to_connect, expanded_node_ids,
functions),
ProgramGraph::NULL_ID);
return pg_node.id;
}
}
// Fallback on generic power function
node_type_id = VoxelGeneratorGraph::NODE_POW;
break;
default:
CRASH_NOW();
break;
}
ProgramGraph::Node &pg_node = create_node(graph, db, node_type_id);
expanded_node_ids.push_back(pg_node.id);
ERR_FAIL_COND_V(!expand_input(graph, *on.n0, pg_node, 0, db, to_connect, expanded_node_ids, functions),
ProgramGraph::NULL_ID);
ERR_FAIL_COND_V(!expand_input(graph, *on.n1, pg_node, 1, db, to_connect, expanded_node_ids, functions),
ProgramGraph::NULL_ID);
return pg_node.id;
}
case ExpressionParser::Node::FUNCTION: {
const ExpressionParser::FunctionNode &fn =
reinterpret_cast<const ExpressionParser::FunctionNode &>(ep_node);
const ExpressionParser::Function *f = ExpressionParser::find_function_by_id(fn.function_id, functions);
CRASH_COND(f == nullptr);
const unsigned int arg_count = f->argument_count;
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NodeTypeID(fn.function_id));
// TODO Optimization: per-function shortcuts
for (unsigned int arg_index = 0; arg_index < arg_count; ++arg_index) {
const ExpressionParser::Node *arg = fn.args[arg_index].get();
CRASH_COND(arg == nullptr);
ERR_FAIL_COND_V(
!expand_input(graph, *arg, pg_node, arg_index, db, to_connect, expanded_node_ids, functions),
ProgramGraph::NULL_ID);
}
return pg_node.id;
}
default:
return ProgramGraph::NULL_ID;
}
}
static VoxelGraphRuntime::CompilationResult expand_expression_node(ProgramGraph &graph, uint32_t original_node_id,
ProgramGraph::PortLocation &expanded_output_port, std::vector<uint32_t> &expanded_nodes,
const VoxelGraphNodeDB &type_db) {
ZN_PROFILE_SCOPE();
const ProgramGraph::Node &original_node = graph.get_node(original_node_id);
CRASH_COND(original_node.params.size() == 0);
const String code = original_node.params[0];
const CharString code_utf8 = code.utf8();
Span<const ExpressionParser::Function> functions = type_db.get_expression_parser_functions();
// Extract the AST, so we can convert it into graph nodes,
// and benefit from all features of range analysis and buffer processing
ExpressionParser::Result parse_result = ExpressionParser::parse(code_utf8.get_data(), functions);
if (parse_result.error.id != ExpressionParser::ERROR_NONE) {
// Error in expression
const std::string error_message_utf8 = ExpressionParser::to_string(parse_result.error);
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = String(error_message_utf8.c_str());
return result;
}
if (parse_result.root == nullptr) {
// Expression is empty
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = "Expression is empty";
return result;
}
std::vector<ToConnect> to_connect;
// Create nodes from the expression's AST and connect them together
const uint32_t expanded_root_node_id = expand_node(
graph, *parse_result.root, VoxelGraphNodeDB::get_singleton(), to_connect, expanded_nodes, functions);
if (expanded_root_node_id == ProgramGraph::NULL_ID) {
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = "Internal error";
return result;
}
expanded_output_port = { expanded_root_node_id, 0 };
// Add connections from outside the expression to entry nodes of the expression
for (const ToConnect tc : to_connect) {
unsigned int original_port_index;
if (!original_node.find_input_port_by_name(tc.var_name, original_port_index)) {
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = "Could not resolve expression variable from input ports";
return result;
}
const ProgramGraph::Port &original_port = original_node.inputs[original_port_index];
for (unsigned int j = 0; j < original_port.connections.size(); ++j) {
const ProgramGraph::PortLocation src = original_port.connections[j];
graph.connect(src, tc.dst);
}
}
// Copy first because we'll remove the original node
CRASH_COND(original_node.outputs.size() == 0);
const ProgramGraph::Port original_output_port_copy = original_node.outputs[0];
// Remove the original expression node
graph.remove_node(original_node_id);
// Add connections from the expression's final node.
// Must be done at the end because adding two connections to the same input (old and new) is not allowed.
for (const ProgramGraph::PortLocation dst : original_output_port_copy.connections) {
graph.connect(expanded_output_port, dst);
}
VoxelGraphRuntime::CompilationResult result;
result.success = true;
return result;
}
VoxelGraphRuntime::CompilationResult expand_expression_nodes(
ProgramGraph &graph, const VoxelGraphNodeDB &type_db, GraphRemappingInfo *remap_info) {
ZN_PROFILE_SCOPE();
// Gather expression node IDs first, as expansion could invalidate the iterator
std::vector<uint32_t> expression_node_ids;
graph.for_each_node([&expression_node_ids](ProgramGraph::Node &node) {
if (node.type_id == VoxelGeneratorGraph::NODE_EXPRESSION) {
expression_node_ids.push_back(node.id);
}
});
std::vector<uint32_t> expanded_node_ids;
for (const uint32_t node_id : expression_node_ids) {
ProgramGraph::PortLocation expanded_output_port;
expanded_node_ids.clear();
const VoxelGraphRuntime::CompilationResult result =
expand_expression_node(graph, node_id, expanded_output_port, expanded_node_ids, type_db);
if (!result.success) {
return result;
}
if (remap_info != nullptr) {
remap_info->user_to_expanded_ports.push_back({ { node_id, 0 }, expanded_output_port });
for (const uint32_t expanded_node_id : expanded_node_ids) {
remap_info->expanded_to_user_node_ids.push_back({ expanded_node_id, node_id });
}
}
}
VoxelGraphRuntime::CompilationResult result;
result.success = true;
return result;
}
VoxelGraphRuntime::CompilationResult VoxelGraphRuntime::compile(const ProgramGraph &p_graph, bool debug) {
ZN_PROFILE_SCOPE();
const VoxelGraphNodeDB &type_db = VoxelGraphNodeDB::get_singleton();
ProgramGraph expanded_graph;
expanded_graph.copy_from(p_graph, false);
// TODO Store a remapping to allow debugging with the expanded graph
GraphRemappingInfo remap_info;
const VoxelGraphRuntime::CompilationResult expand_result =
expand_expression_nodes(expanded_graph, type_db, &remap_info);
if (!expand_result.success) {
return expand_result;
}
// Expanding a graph may produce more nodes, not remove any
ERR_FAIL_COND_V(expanded_graph.get_nodes_count() < p_graph.get_nodes_count(),
CompilationResult::make_error("Internal error"));
const VoxelGraphRuntime::CompilationResult result = _compile(expanded_graph, debug, type_db);
if (!result.success) {
clear();
}
for (PortRemap r : remap_info.user_to_expanded_ports) {
_program.user_port_to_expanded_port.insert({ r.original, r.expanded });
}
for (ExpandedNodeRemap r : remap_info.expanded_to_user_node_ids) {
_program.expanded_node_id_to_user_node_id.insert({ r.expanded_node_id, r.original_node_id });
}
// Remap debug nodes from the execution map to user-facing ones
for (uint32_t &debug_node_id : _program.default_execution_map.debug_nodes) {
auto it = _program.expanded_node_id_to_user_node_id.find(debug_node_id);
if (it != _program.expanded_node_id_to_user_node_id.end()) {
debug_node_id = it->second;
}
}
return result;
}
VoxelGraphRuntime::CompilationResult VoxelGraphRuntime::_compile(
const ProgramGraph &graph, bool debug, const VoxelGraphNodeDB &type_db) {
ZN_PROFILE_SCOPE();
clear();
std::vector<uint32_t> order;
std::vector<uint32_t> terminal_nodes;
std::unordered_map<uint32_t, uint32_t> node_id_to_dependency_graph;
// Not using the generic `get_terminal_nodes` function because our terminal nodes do have outputs
graph.for_each_node_const([&terminal_nodes, &type_db](const ProgramGraph::Node &node) {
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
if (type.category == VoxelGraphNodeDB::CATEGORY_OUTPUT) {
terminal_nodes.push_back(node.id);
}
});
if (!debug) {
// Exclude debug nodes
unordered_remove_if(terminal_nodes, [&graph, &type_db](uint32_t node_id) {
const ProgramGraph::Node &node = graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
return type.debug_only;
});
}
graph.find_dependencies(terminal_nodes, order);
uint32_t xzy_start_index = 0;
// Optimize parts of the graph that only depend on X and Z,
// so they can be moved in the outer loop when blocks are generated, running less times.
// Moves them all at the beginning.
{
std::vector<uint32_t> immediate_deps;
std::unordered_set<uint32_t> nodes_depending_on_y;
std::vector<uint32_t> order_xz;
std::vector<uint32_t> order_xzy;
for (size_t i = 0; i < order.size(); ++i) {
const uint32_t node_id = order[i];
const ProgramGraph::Node &node = graph.get_node(node_id);
bool depends_on_y = false;
if (node.type_id == VoxelGeneratorGraph::NODE_INPUT_Y) {
nodes_depending_on_y.insert(node_id);
depends_on_y = true;
}
if (!depends_on_y) {
immediate_deps.clear();
graph.find_immediate_dependencies(node_id, immediate_deps);
for (size_t j = 0; j < immediate_deps.size(); ++j) {
const uint32_t dep_node_id = immediate_deps[j];
if (nodes_depending_on_y.find(dep_node_id) != nodes_depending_on_y.end()) {
depends_on_y = true;
nodes_depending_on_y.insert(node_id);
break;
}
}
}
if (depends_on_y) {
order_xzy.push_back(node_id);
} else {
order_xz.push_back(node_id);
}
}
xzy_start_index = order_xz.size();
//#ifdef DEBUG_ENABLED
// const uint32_t order_xz_raw_size = order_xz.size();
// const uint32_t *order_xz_raw = order_xz.data();
// const uint32_t order_xzy_raw_size = order_xzy.size();
// const uint32_t *order_xzy_raw = order_xzy.data();
//#endif
size_t i = 0;
for (size_t j = 0; j < order_xz.size(); ++j) {
order[i++] = order_xz[j];
}
for (size_t j = 0; j < order_xzy.size(); ++j) {
order[i++] = order_xzy[j];
}
}
//#ifdef DEBUG_ENABLED
// const uint32_t order_raw_size = order.size();
// const uint32_t *order_raw = order.data();
//#endif
struct MemoryHelper {
std::vector<BufferSpec> &buffer_specs;
unsigned int next_address = 0;
uint16_t add_binding() {
const unsigned int a = next_address;
++next_address;
BufferSpec bs;
bs.address = a;
bs.is_binding = true;
bs.is_constant = false;
bs.users_count = 0;
buffer_specs.push_back(bs);
return a;
}
uint16_t add_var() {
const unsigned int a = next_address;
++next_address;
BufferSpec bs;
bs.address = a;
bs.is_binding = false;
bs.is_constant = false;
bs.users_count = 0;
buffer_specs.push_back(bs);
return a;
}
uint16_t add_constant(float v) {
const unsigned int a = next_address;
++next_address;
BufferSpec bs;
bs.address = a;
bs.constant_value = v;
bs.is_binding = false;
bs.is_constant = true;
bs.users_count = 0;
buffer_specs.push_back(bs);
return a;
}
};
MemoryHelper mem{ _program.buffer_specs };
// Main inputs X, Y, Z
_program.x_input_address = mem.add_binding();
_program.y_input_address = mem.add_binding();
_program.z_input_address = mem.add_binding();
std::vector<uint16_t> &operations = _program.operations;
// Run through each node in order, and turn them into program instructions
for (size_t order_index = 0; order_index < order.size(); ++order_index) {
const uint32_t node_id = order[order_index];
const ProgramGraph::Node &node = graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
CRASH_COND(node.inputs.size() != type.inputs.size());
CRASH_COND(node.outputs.size() != type.outputs.size());
if (order_index == xzy_start_index) {
_program.xzy_start_op_address = operations.size();
}
const unsigned int dg_node_index = _program.dependency_graph.nodes.size();
_program.dependency_graph.nodes.push_back(DependencyGraph::Node());
DependencyGraph::Node &dg_node = _program.dependency_graph.nodes.back();
dg_node.is_input = false;
dg_node.op_address = operations.size();
dg_node.first_dependency = _program.dependency_graph.dependencies.size();
dg_node.end_dependency = dg_node.first_dependency;
dg_node.debug_node_id = node_id;
node_id_to_dependency_graph.insert(std::make_pair(node_id, dg_node_index));
// We still hardcode some of the nodes. Maybe we can abstract them too one day.
switch (node.type_id) {
case VoxelGeneratorGraph::NODE_CONSTANT: {
CRASH_COND(type.outputs.size() != 1);
CRASH_COND(type.params.size() != 1);
const uint16_t a = mem.add_constant(node.params[0].operator float());
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = a;
// Technically not an input or an output, but is a dependency regardless so treat it like an input
dg_node.is_input = true;
continue;
}
// Input nodes can appear multiple times in the graph, for convenience.
// Multiple instances of the same node will refer to the same data.
case VoxelGeneratorGraph::NODE_INPUT_X:
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = _program.x_input_address;
dg_node.is_input = true;
continue;
case VoxelGeneratorGraph::NODE_INPUT_Y:
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = _program.y_input_address;
dg_node.is_input = true;
continue;
case VoxelGeneratorGraph::NODE_INPUT_Z:
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = _program.z_input_address;
dg_node.is_input = true;
continue;
case VoxelGeneratorGraph::NODE_SDF_PREVIEW:
continue;
}
// Add actual operation
CRASH_COND(node.type_id > 0xff);
if (order_index == xzy_start_index) {
_program.default_execution_map.xzy_start_index = _program.default_execution_map.operation_adresses.size();
}
_program.default_execution_map.operation_adresses.push_back(operations.size());
if (debug) {
// Will be remapped later if the node is an expanded one
_program.default_execution_map.debug_nodes.push_back(node_id);
}
operations.push_back(node.type_id);
// Inputs and outputs use a convention so we can have generic code for them.
// Parameters are more specific, and may be affected by alignment so better just do them by hand
// Add inputs
for (size_t j = 0; j < type.inputs.size(); ++j) {
uint16_t a;
if (node.inputs[j].connections.size() == 0) {
// No input, default it
CRASH_COND(j >= node.default_inputs.size());
float defval = node.default_inputs[j];
a = mem.add_constant(defval);
} else {
ProgramGraph::PortLocation src_port = node.inputs[j].connections[0];
const uint16_t *aptr = _program.output_port_addresses.getptr(src_port);
// Previous node ports must have been registered
CRASH_COND(aptr == nullptr);
a = *aptr;
// Register dependency
auto it = node_id_to_dependency_graph.find(src_port.node_id);
CRASH_COND(it == node_id_to_dependency_graph.end());
CRASH_COND(it->second >= _program.dependency_graph.nodes.size());
_program.dependency_graph.dependencies.push_back(it->second);
++dg_node.end_dependency;
}
operations.push_back(a);
BufferSpec &bs = _program.buffer_specs[a];
++bs.users_count;
}
// Add outputs
for (size_t j = 0; j < type.outputs.size(); ++j) {
const uint16_t a = mem.add_var();
// This will be used by next nodes
const ProgramGraph::PortLocation op{ node_id, static_cast<uint32_t>(j) };
_program.output_port_addresses[op] = a;
operations.push_back(a);
}
// Add space for params size, default is no params so size is 0
size_t params_size_index = operations.size();
operations.push_back(0);
// Get params, copy resources when used, and hold a reference to them
std::vector<Variant> params_copy;
params_copy.resize(node.params.size());
for (size_t i = 0; i < node.params.size(); ++i) {
Variant v = node.params[i];
if (v.get_type() == Variant::OBJECT) {
Ref<Resource> res = v;
if (res.is_null()) {
// duplicate() is only available in Resource,
// so we have to limit to this instead of Reference or Object
CompilationResult result;
result.success = false;
result.message = ZN_TTR("A parameter is an object but does not inherit Resource");
result.node_id = node_id;
return result;
}
res = res->duplicate();
_program.ref_resources.push_back(res);
v = res;
}
params_copy[i] = v;
}
if (type.compile_func != nullptr) {
CompileContext ctx(/**node,*/ operations, _program.heap_resources, params_copy);
type.compile_func(ctx);
if (ctx.has_error()) {
CompilationResult result;
result.success = false;
result.message = ctx.get_error_message();
result.node_id = node_id;
return result;
}
const size_t params_size = ctx.get_params_size_in_words();
CRASH_COND(params_size > std::numeric_limits<uint16_t>::max());
operations[params_size_index] = params_size;
}
if (type.category == VoxelGraphNodeDB::CATEGORY_OUTPUT) {
CRASH_COND(node.outputs.size() != 1);
if (_program.outputs_count == _program.outputs.size()) {
CompilationResult result;
result.success = false;
result.message = ZN_TTR("Maximum number of outputs has been reached");
result.node_id = node_id;
return result;
}
{
const uint16_t *aptr = _program.output_port_addresses.getptr(ProgramGraph::PortLocation{ node_id, 0 });
// Previous node ports must have been registered
CRASH_COND(aptr == nullptr);
OutputInfo &output_info = _program.outputs[_program.outputs_count];
output_info.buffer_address = *aptr;
output_info.dependency_graph_node_index = dg_node_index;
output_info.node_id = node_id;
++_program.outputs_count;
}
// Add fake user for output ports so they can pass the local users check in optimizations
for (unsigned int j = 0; j < type.outputs.size(); ++j) {
const ProgramGraph::PortLocation loc{ node_id, j };
const uint16_t *aptr = _program.output_port_addresses.getptr(loc);
CRASH_COND(aptr == nullptr);
BufferSpec &bs = _program.buffer_specs[*aptr];
// Not expecting existing users on that port
ERR_FAIL_COND_V(bs.users_count != 0, CompilationResult());
++bs.users_count;
}
}
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
// Append a special value after each operation
append(operations, VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
#endif
}
_program.buffer_count = mem.next_address;
ZN_PRINT_VERBOSE(format("Compiled voxel graph. Program size: {}b, buffers: {}",
_program.operations.size() * sizeof(uint16_t), _program.buffer_count));
CompilationResult result;
result.success = true;
return result;
}
} // namespace zylann::voxel

View File

@ -0,0 +1,116 @@
#ifndef VOXEL_GRAPH_COMPILER_H
#define VOXEL_GRAPH_COMPILER_H
#include "voxel_graph_runtime.h"
namespace zylann::voxel {
struct PortRemap {
ProgramGraph::PortLocation original;
ProgramGraph::PortLocation expanded;
};
struct ExpandedNodeRemap {
uint32_t expanded_node_id;
uint32_t original_node_id;
};
struct GraphRemappingInfo {
std::vector<PortRemap> user_to_expanded_ports;
std::vector<ExpandedNodeRemap> expanded_to_user_node_ids;
};
VoxelGraphRuntime::CompilationResult expand_expression_nodes(
ProgramGraph &graph, const VoxelGraphNodeDB &type_db, GraphRemappingInfo *remap_info);
// Functions usable by node implementations during the compilation stage
class CompileContext {
public:
CompileContext(/*const ProgramGraph::Node &node,*/ std::vector<uint16_t> &program,
std::vector<VoxelGraphRuntime::HeapResource> &heap_resources, std::vector<Variant> &params) :
/*_node(node),*/ _program(program), _heap_resources(heap_resources), _params(params) {}
Variant get_param(size_t i) const {
CRASH_COND(i > _params.size());
return _params[i];
}
// Typical use is to pass a struct containing all compile-time arguments the operation will need
template <typename T>
void set_params(T params) {
// Can be called only once per node
CRASH_COND(_params_added);
// We will need to align memory, so the struct will not be immediately stored here.
// Instead we put a header that tells how much to advance in order to reach the beginning of the struct,
// which will be at an aligned position.
// We align to the maximum alignment between the struct,
// and the type of word we store inside the program buffer, which is uint16.
const size_t params_alignment = math::max(alignof(T), alignof(uint16_t));
const size_t params_offset_index = _program.size();
// Prepare space to store the offset (at least 1 since that header is one word)
_program.push_back(1);
// Align memory for the struct.
// Note, we index with words, not bytes.
const size_t struct_offset =
math::alignup(_program.size() * sizeof(uint16_t), params_alignment) / sizeof(uint16_t);
if (struct_offset > _program.size()) {
_program.resize(struct_offset);
}
// Write offset in header
_program[params_offset_index] = struct_offset - params_offset_index;
// Allocate space for the struct. It is measured in words, so it can be up to 1 byte larger.
_params_size_in_words = (sizeof(T) + sizeof(uint16_t) - 1) / sizeof(uint16_t);
_program.resize(_program.size() + _params_size_in_words);
// Write struct
T &p = *reinterpret_cast<T *>(&_program[struct_offset]);
p = params;
_params_added = true;
}
// In case the compilation step produces a resource to be deleted
template <typename T>
void add_memdelete_cleanup(T *ptr) {
VoxelGraphRuntime::HeapResource hr;
hr.ptr = ptr;
hr.deleter = [](void *p) {
// TODO We have no guarantee it was allocated with memnew :|
T *tp = reinterpret_cast<T *>(p);
memdelete(tp);
};
_heap_resources.push_back(hr);
}
void make_error(String message) {
_error_message = message;
_has_error = true;
}
bool has_error() const {
return _has_error;
}
const String &get_error_message() const {
return _error_message;
}
size_t get_params_size_in_words() const {
return _params_size_in_words;
}
private:
//const ProgramGraph::Node &_node;
std::vector<uint16_t> &_program;
std::vector<VoxelGraphRuntime::HeapResource> &_heap_resources;
std::vector<Variant> &_params;
String _error_message;
size_t _params_size_in_words = 0;
bool _has_error = false;
bool _params_added = false;
};
typedef void (*CompileFunc)(CompileContext &);
} // namespace zylann::voxel
#endif // VOXEL_GRAPH_COMPILER_H

View File

@ -255,10 +255,10 @@ const char *VoxelGraphNodeDB::get_category_name(Category category) {
}
VoxelGraphNodeDB::VoxelGraphNodeDB() {
typedef VoxelGraphRuntime::CompileContext CompileContext;
//typedef VoxelGraphRuntime::CompileContext CompileContext;
typedef VoxelGraphRuntime::ProcessBufferContext ProcessBufferContext;
typedef VoxelGraphRuntime::RangeAnalysisContext RangeAnalysisContext;
typedef VoxelGraphRuntime::ShaderGenContext ShaderGenContext;
//typedef VoxelGraphRuntime::ShaderGenContext ShaderGenContext;
FixedArray<NodeType, VoxelGeneratorGraph::NODE_TYPE_COUNT> &types = _types;

View File

@ -3,6 +3,8 @@
#include "../../util/expression_parser.h"
#include "voxel_generator_graph.h"
#include "voxel_graph_compiler.h"
#include "voxel_graph_shader_generator.h"
namespace zylann::voxel {
@ -57,12 +59,12 @@ public:
std::vector<Param> params;
HashMap<String, uint32_t> param_name_to_index;
HashMap<String, uint32_t> input_name_to_index;
VoxelGraphRuntime::CompileFunc compile_func = nullptr;
CompileFunc compile_func = nullptr;
VoxelGraphRuntime::ProcessBufferFunc process_buffer_func = nullptr;
VoxelGraphRuntime::RangeAnalysisFunc range_analysis_func = nullptr;
const char *expression_func_name = nullptr;
ExpressionParser::FunctionCallback expression_func = nullptr;
VoxelGraphRuntime::ShaderGenFunc shader_gen_func = nullptr;
ShaderGenFunc shader_gen_func = nullptr;
};
VoxelGraphNodeDB();

View File

@ -1,6 +1,5 @@
#include "voxel_graph_runtime.h"
#include "../../util/container_funcs.h"
#include "../../util/expression_parser.h"
#include "../../util/log.h"
#include "../../util/macros.h"
#include "../../util/profiling.h"
@ -31,706 +30,6 @@ void VoxelGraphRuntime::clear() {
_program.clear();
}
struct ToConnect {
std::string_view var_name;
ProgramGraph::PortLocation dst;
};
static uint32_t expand_node(ProgramGraph &graph, const ExpressionParser::Node &ep_node, const VoxelGraphNodeDB &db,
std::vector<ToConnect> &to_connect, std::vector<uint32_t> &expanded_node_ids,
Span<const ExpressionParser::Function> functions);
static bool expand_input(ProgramGraph &graph, const ExpressionParser::Node &arg, ProgramGraph::Node &pg_node,
uint32_t pg_node_input_index, const VoxelGraphNodeDB &db, std::vector<ToConnect> &to_connect,
std::vector<uint32_t> &expanded_node_ids, Span<const ExpressionParser::Function> functions) {
switch (arg.type) {
case ExpressionParser::Node::NUMBER: {
const ExpressionParser::NumberNode &arg_nn = reinterpret_cast<const ExpressionParser::NumberNode &>(arg);
pg_node.default_inputs[pg_node_input_index] = arg_nn.value;
} break;
case ExpressionParser::Node::VARIABLE: {
const ExpressionParser::VariableNode &arg_vn =
reinterpret_cast<const ExpressionParser::VariableNode &>(arg);
to_connect.push_back({ arg_vn.name, { pg_node.id, pg_node_input_index } });
} break;
case ExpressionParser::Node::OPERATOR:
case ExpressionParser::Node::FUNCTION: {
const uint32_t dependency_pg_node_id =
expand_node(graph, arg, db, to_connect, expanded_node_ids, functions);
ERR_FAIL_COND_V(dependency_pg_node_id == ProgramGraph::NULL_ID, false);
graph.connect({ dependency_pg_node_id, 0 }, { pg_node.id, pg_node_input_index });
} break;
default:
return false;
}
return true;
}
static ProgramGraph::Node &create_node(
ProgramGraph &graph, const VoxelGraphNodeDB &db, VoxelGeneratorGraph::NodeTypeID node_type_id) {
ProgramGraph::Node *node = create_node_internal(graph, node_type_id, Vector2(), ProgramGraph::NULL_ID);
CRASH_COND(node == nullptr);
return *node;
}
static uint32_t expand_node(ProgramGraph &graph, const ExpressionParser::Node &ep_node, const VoxelGraphNodeDB &db,
std::vector<ToConnect> &to_connect, std::vector<uint32_t> &expanded_node_ids,
Span<const ExpressionParser::Function> functions) {
switch (ep_node.type) {
case ExpressionParser::Node::NUMBER: {
// Note, this code should only run if the whole expression is only a number.
// Constant node inputs don't create a constant node, they just set the default value of the input.
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NODE_CONSTANT);
const ExpressionParser::NumberNode &nn = reinterpret_cast<const ExpressionParser::NumberNode &>(ep_node);
CRASH_COND(pg_node.params.size() != 1);
pg_node.params[0] = nn.value;
expanded_node_ids.push_back(pg_node.id);
return pg_node.id;
}
case ExpressionParser::Node::VARIABLE: {
// Note, this code should only run if the whole expression is only a variable.
// Variable node inputs don't create a node each time, they are turned into connections in a later pass.
// Here we need a pass-through node, so let's use `var + 0`. It's not a common case anyways.
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NODE_ADD);
const ExpressionParser::VariableNode &vn =
reinterpret_cast<const ExpressionParser::VariableNode &>(ep_node);
to_connect.push_back({ vn.name, { pg_node.id, 0 } });
CRASH_COND(pg_node.default_inputs.size() != 2);
pg_node.default_inputs[1] = 0;
expanded_node_ids.push_back(pg_node.id);
return pg_node.id;
}
case ExpressionParser::Node::OPERATOR: {
const ExpressionParser::OperatorNode &on =
reinterpret_cast<const ExpressionParser::OperatorNode &>(ep_node);
CRASH_COND(on.n0 == nullptr);
CRASH_COND(on.n1 == nullptr);
VoxelGeneratorGraph::NodeTypeID node_type_id;
switch (on.op) {
case ExpressionParser::OperatorNode::ADD:
node_type_id = VoxelGeneratorGraph::NODE_ADD;
break;
case ExpressionParser::OperatorNode::SUBTRACT:
node_type_id = VoxelGeneratorGraph::NODE_SUBTRACT;
break;
case ExpressionParser::OperatorNode::MULTIPLY:
node_type_id = VoxelGeneratorGraph::NODE_MULTIPLY;
break;
case ExpressionParser::OperatorNode::DIVIDE:
node_type_id = VoxelGeneratorGraph::NODE_DIVIDE;
break;
case ExpressionParser::OperatorNode::POWER:
if (on.n1->type == ExpressionParser::Node::NUMBER) {
// Attempt to use an optimized node if the power is constant
const ExpressionParser::NumberNode &arg1 =
static_cast<const ExpressionParser::NumberNode &>(*on.n1);
const int pi = int(arg1.value);
if (Math::is_equal_approx(arg1.value, pi) && pi >= 0) {
// Constant positive integer
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NODE_POWI);
expanded_node_ids.push_back(pg_node.id);
CRASH_COND(pg_node.params.size() != 1);
pg_node.params[0] = pi;
ERR_FAIL_COND_V(!expand_input(graph, *on.n0, pg_node, 0, db, to_connect, expanded_node_ids,
functions),
ProgramGraph::NULL_ID);
return pg_node.id;
}
}
// Fallback on generic power function
node_type_id = VoxelGeneratorGraph::NODE_POW;
break;
default:
CRASH_NOW();
break;
}
ProgramGraph::Node &pg_node = create_node(graph, db, node_type_id);
expanded_node_ids.push_back(pg_node.id);
ERR_FAIL_COND_V(!expand_input(graph, *on.n0, pg_node, 0, db, to_connect, expanded_node_ids, functions),
ProgramGraph::NULL_ID);
ERR_FAIL_COND_V(!expand_input(graph, *on.n1, pg_node, 1, db, to_connect, expanded_node_ids, functions),
ProgramGraph::NULL_ID);
return pg_node.id;
}
case ExpressionParser::Node::FUNCTION: {
const ExpressionParser::FunctionNode &fn =
reinterpret_cast<const ExpressionParser::FunctionNode &>(ep_node);
const ExpressionParser::Function *f = ExpressionParser::find_function_by_id(fn.function_id, functions);
CRASH_COND(f == nullptr);
const unsigned int arg_count = f->argument_count;
ProgramGraph::Node &pg_node = create_node(graph, db, VoxelGeneratorGraph::NodeTypeID(fn.function_id));
// TODO Optimization: per-function shortcuts
for (unsigned int arg_index = 0; arg_index < arg_count; ++arg_index) {
const ExpressionParser::Node *arg = fn.args[arg_index].get();
CRASH_COND(arg == nullptr);
ERR_FAIL_COND_V(
!expand_input(graph, *arg, pg_node, arg_index, db, to_connect, expanded_node_ids, functions),
ProgramGraph::NULL_ID);
}
return pg_node.id;
}
default:
return ProgramGraph::NULL_ID;
}
}
static VoxelGraphRuntime::CompilationResult expand_expression_node(ProgramGraph &graph, uint32_t original_node_id,
ProgramGraph::PortLocation &expanded_output_port, std::vector<uint32_t> &expanded_nodes) {
ZN_PROFILE_SCOPE();
const ProgramGraph::Node &original_node = graph.get_node(original_node_id);
CRASH_COND(original_node.params.size() == 0);
const String code = original_node.params[0];
const CharString code_utf8 = code.utf8();
Span<const ExpressionParser::Function> functions =
VoxelGraphNodeDB::get_singleton().get_expression_parser_functions();
// Extract the AST, so we can convert it into graph nodes,
// and benefit from all features of range analysis and buffer processing
ExpressionParser::Result parse_result = ExpressionParser::parse(code_utf8.get_data(), functions);
if (parse_result.error.id != ExpressionParser::ERROR_NONE) {
// Error in expression
const std::string error_message_utf8 = ExpressionParser::to_string(parse_result.error);
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = String(error_message_utf8.c_str());
return result;
}
if (parse_result.root == nullptr) {
// Expression is empty
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = "Expression is empty";
return result;
}
std::vector<ToConnect> to_connect;
// Create nodes from the expression's AST and connect them together
const uint32_t expanded_root_node_id = expand_node(
graph, *parse_result.root, VoxelGraphNodeDB::get_singleton(), to_connect, expanded_nodes, functions);
if (expanded_root_node_id == ProgramGraph::NULL_ID) {
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = "Internal error";
return result;
}
expanded_output_port = { expanded_root_node_id, 0 };
// Add connections from outside the expression to entry nodes of the expression
for (const ToConnect tc : to_connect) {
unsigned int original_port_index;
if (!original_node.find_input_port_by_name(tc.var_name, original_port_index)) {
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.node_id = original_node_id;
result.message = "Could not resolve expression variable from input ports";
return result;
}
const ProgramGraph::Port &original_port = original_node.inputs[original_port_index];
for (unsigned int j = 0; j < original_port.connections.size(); ++j) {
const ProgramGraph::PortLocation src = original_port.connections[j];
graph.connect(src, tc.dst);
}
}
// Copy first because we'll remove the original node
CRASH_COND(original_node.outputs.size() == 0);
const ProgramGraph::Port original_output_port_copy = original_node.outputs[0];
// Remove the original expression node
graph.remove_node(original_node_id);
// Add connections from the expression's final node.
// Must be done at the end because adding two connections to the same input (old and new) is not allowed.
for (const ProgramGraph::PortLocation dst : original_output_port_copy.connections) {
graph.connect(expanded_output_port, dst);
}
VoxelGraphRuntime::CompilationResult result;
result.success = true;
return result;
}
struct PortRemap {
ProgramGraph::PortLocation original;
ProgramGraph::PortLocation expanded;
};
struct ExpandedNodeRemap {
uint32_t expanded_node_id;
uint32_t original_node_id;
};
struct GraphRemappingInfo {
std::vector<PortRemap> user_to_expanded_ports;
std::vector<ExpandedNodeRemap> expanded_to_user_node_ids;
};
static VoxelGraphRuntime::CompilationResult expand_expression_nodes(
ProgramGraph &graph, GraphRemappingInfo *remap_info) {
ZN_PROFILE_SCOPE();
// Gather expression node IDs first, as expansion could invalidate the iterator
std::vector<uint32_t> expression_node_ids;
graph.for_each_node([&expression_node_ids](ProgramGraph::Node &node) {
if (node.type_id == VoxelGeneratorGraph::NODE_EXPRESSION) {
expression_node_ids.push_back(node.id);
}
});
std::vector<uint32_t> expanded_node_ids;
for (const uint32_t node_id : expression_node_ids) {
ProgramGraph::PortLocation expanded_output_port;
expanded_node_ids.clear();
const VoxelGraphRuntime::CompilationResult result =
expand_expression_node(graph, node_id, expanded_output_port, expanded_node_ids);
if (!result.success) {
return result;
}
if (remap_info != nullptr) {
remap_info->user_to_expanded_ports.push_back({ { node_id, 0 }, expanded_output_port });
for (const uint32_t expanded_node_id : expanded_node_ids) {
remap_info->expanded_to_user_node_ids.push_back({ expanded_node_id, node_id });
}
}
}
VoxelGraphRuntime::CompilationResult result;
result.success = true;
return result;
}
static VoxelGraphRuntime::CompilationResult make_error(const char *p_message, int p_node_id = -1) {
VoxelGraphRuntime::CompilationResult res;
res.success = false;
res.node_id = p_node_id;
res.message = p_message;
return res;
}
VoxelGraphRuntime::CompilationResult VoxelGraphRuntime::compile(const ProgramGraph &p_graph, bool debug) {
ZN_PROFILE_SCOPE();
ProgramGraph expanded_graph;
expanded_graph.copy_from(p_graph, false);
// TODO Store a remapping to allow debugging with the expanded graph
GraphRemappingInfo remap_info;
const VoxelGraphRuntime::CompilationResult expand_result = expand_expression_nodes(expanded_graph, &remap_info);
if (!expand_result.success) {
return expand_result;
}
// Expanding a graph may produce more nodes, not remove any
ERR_FAIL_COND_V(expanded_graph.get_nodes_count() < p_graph.get_nodes_count(), make_error("Internal error"));
const VoxelGraphRuntime::CompilationResult result = _compile(expanded_graph, debug);
if (!result.success) {
clear();
}
for (PortRemap r : remap_info.user_to_expanded_ports) {
_program.user_port_to_expanded_port.insert({ r.original, r.expanded });
}
for (ExpandedNodeRemap r : remap_info.expanded_to_user_node_ids) {
_program.expanded_node_id_to_user_node_id.insert({ r.expanded_node_id, r.original_node_id });
}
// Remap debug nodes from the execution map to user-facing ones
for (uint32_t &debug_node_id : _program.default_execution_map.debug_nodes) {
auto it = _program.expanded_node_id_to_user_node_id.find(debug_node_id);
if (it != _program.expanded_node_id_to_user_node_id.end()) {
debug_node_id = it->second;
}
}
return result;
}
VoxelGraphRuntime::CompilationResult VoxelGraphRuntime::_compile(const ProgramGraph &graph, bool debug) {
ZN_PROFILE_SCOPE();
clear();
std::vector<uint32_t> order;
std::vector<uint32_t> terminal_nodes;
std::unordered_map<uint32_t, uint32_t> node_id_to_dependency_graph;
const VoxelGraphNodeDB &type_db = VoxelGraphNodeDB::get_singleton();
// Not using the generic `get_terminal_nodes` function because our terminal nodes do have outputs
graph.for_each_node_const([&terminal_nodes, &type_db](const ProgramGraph::Node &node) {
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
if (type.category == VoxelGraphNodeDB::CATEGORY_OUTPUT) {
terminal_nodes.push_back(node.id);
}
});
if (!debug) {
// Exclude debug nodes
unordered_remove_if(terminal_nodes, [&graph, &type_db](uint32_t node_id) {
const ProgramGraph::Node &node = graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
return type.debug_only;
});
}
graph.find_dependencies(terminal_nodes, order);
uint32_t xzy_start_index = 0;
// Optimize parts of the graph that only depend on X and Z,
// so they can be moved in the outer loop when blocks are generated, running less times.
// Moves them all at the beginning.
{
std::vector<uint32_t> immediate_deps;
std::unordered_set<uint32_t> nodes_depending_on_y;
std::vector<uint32_t> order_xz;
std::vector<uint32_t> order_xzy;
for (size_t i = 0; i < order.size(); ++i) {
const uint32_t node_id = order[i];
const ProgramGraph::Node &node = graph.get_node(node_id);
bool depends_on_y = false;
if (node.type_id == VoxelGeneratorGraph::NODE_INPUT_Y) {
nodes_depending_on_y.insert(node_id);
depends_on_y = true;
}
if (!depends_on_y) {
immediate_deps.clear();
graph.find_immediate_dependencies(node_id, immediate_deps);
for (size_t j = 0; j < immediate_deps.size(); ++j) {
const uint32_t dep_node_id = immediate_deps[j];
if (nodes_depending_on_y.find(dep_node_id) != nodes_depending_on_y.end()) {
depends_on_y = true;
nodes_depending_on_y.insert(node_id);
break;
}
}
}
if (depends_on_y) {
order_xzy.push_back(node_id);
} else {
order_xz.push_back(node_id);
}
}
xzy_start_index = order_xz.size();
//#ifdef DEBUG_ENABLED
// const uint32_t order_xz_raw_size = order_xz.size();
// const uint32_t *order_xz_raw = order_xz.data();
// const uint32_t order_xzy_raw_size = order_xzy.size();
// const uint32_t *order_xzy_raw = order_xzy.data();
//#endif
size_t i = 0;
for (size_t j = 0; j < order_xz.size(); ++j) {
order[i++] = order_xz[j];
}
for (size_t j = 0; j < order_xzy.size(); ++j) {
order[i++] = order_xzy[j];
}
}
//#ifdef DEBUG_ENABLED
// const uint32_t order_raw_size = order.size();
// const uint32_t *order_raw = order.data();
//#endif
struct MemoryHelper {
std::vector<BufferSpec> &buffer_specs;
unsigned int next_address = 0;
uint16_t add_binding() {
const unsigned int a = next_address;
++next_address;
BufferSpec bs;
bs.address = a;
bs.is_binding = true;
bs.is_constant = false;
bs.users_count = 0;
buffer_specs.push_back(bs);
return a;
}
uint16_t add_var() {
const unsigned int a = next_address;
++next_address;
BufferSpec bs;
bs.address = a;
bs.is_binding = false;
bs.is_constant = false;
bs.users_count = 0;
buffer_specs.push_back(bs);
return a;
}
uint16_t add_constant(float v) {
const unsigned int a = next_address;
++next_address;
BufferSpec bs;
bs.address = a;
bs.constant_value = v;
bs.is_binding = false;
bs.is_constant = true;
bs.users_count = 0;
buffer_specs.push_back(bs);
return a;
}
};
MemoryHelper mem{ _program.buffer_specs };
// Main inputs X, Y, Z
_program.x_input_address = mem.add_binding();
_program.y_input_address = mem.add_binding();
_program.z_input_address = mem.add_binding();
std::vector<uint16_t> &operations = _program.operations;
// Run through each node in order, and turn them into program instructions
for (size_t order_index = 0; order_index < order.size(); ++order_index) {
const uint32_t node_id = order[order_index];
const ProgramGraph::Node &node = graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
CRASH_COND(node.inputs.size() != type.inputs.size());
CRASH_COND(node.outputs.size() != type.outputs.size());
if (order_index == xzy_start_index) {
_program.xzy_start_op_address = operations.size();
}
const unsigned int dg_node_index = _program.dependency_graph.nodes.size();
_program.dependency_graph.nodes.push_back(DependencyGraph::Node());
DependencyGraph::Node &dg_node = _program.dependency_graph.nodes.back();
dg_node.is_input = false;
dg_node.op_address = operations.size();
dg_node.first_dependency = _program.dependency_graph.dependencies.size();
dg_node.end_dependency = dg_node.first_dependency;
dg_node.debug_node_id = node_id;
node_id_to_dependency_graph.insert(std::make_pair(node_id, dg_node_index));
// We still hardcode some of the nodes. Maybe we can abstract them too one day.
switch (node.type_id) {
case VoxelGeneratorGraph::NODE_CONSTANT: {
CRASH_COND(type.outputs.size() != 1);
CRASH_COND(type.params.size() != 1);
const uint16_t a = mem.add_constant(node.params[0].operator float());
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = a;
// Technically not an input or an output, but is a dependency regardless so treat it like an input
dg_node.is_input = true;
continue;
}
// Input nodes can appear multiple times in the graph, for convenience.
// Multiple instances of the same node will refer to the same data.
case VoxelGeneratorGraph::NODE_INPUT_X:
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = _program.x_input_address;
dg_node.is_input = true;
continue;
case VoxelGeneratorGraph::NODE_INPUT_Y:
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = _program.y_input_address;
dg_node.is_input = true;
continue;
case VoxelGeneratorGraph::NODE_INPUT_Z:
_program.output_port_addresses[ProgramGraph::PortLocation{ node_id, 0 }] = _program.z_input_address;
dg_node.is_input = true;
continue;
case VoxelGeneratorGraph::NODE_SDF_PREVIEW:
continue;
}
// Add actual operation
CRASH_COND(node.type_id > 0xff);
if (order_index == xzy_start_index) {
_program.default_execution_map.xzy_start_index = _program.default_execution_map.operation_adresses.size();
}
_program.default_execution_map.operation_adresses.push_back(operations.size());
if (debug) {
// Will be remapped later if the node is an expanded one
_program.default_execution_map.debug_nodes.push_back(node_id);
}
operations.push_back(node.type_id);
// Inputs and outputs use a convention so we can have generic code for them.
// Parameters are more specific, and may be affected by alignment so better just do them by hand
// Add inputs
for (size_t j = 0; j < type.inputs.size(); ++j) {
uint16_t a;
if (node.inputs[j].connections.size() == 0) {
// No input, default it
CRASH_COND(j >= node.default_inputs.size());
float defval = node.default_inputs[j];
a = mem.add_constant(defval);
} else {
ProgramGraph::PortLocation src_port = node.inputs[j].connections[0];
const uint16_t *aptr = _program.output_port_addresses.getptr(src_port);
// Previous node ports must have been registered
CRASH_COND(aptr == nullptr);
a = *aptr;
// Register dependency
auto it = node_id_to_dependency_graph.find(src_port.node_id);
CRASH_COND(it == node_id_to_dependency_graph.end());
CRASH_COND(it->second >= _program.dependency_graph.nodes.size());
_program.dependency_graph.dependencies.push_back(it->second);
++dg_node.end_dependency;
}
operations.push_back(a);
BufferSpec &bs = _program.buffer_specs[a];
++bs.users_count;
}
// Add outputs
for (size_t j = 0; j < type.outputs.size(); ++j) {
const uint16_t a = mem.add_var();
// This will be used by next nodes
const ProgramGraph::PortLocation op{ node_id, static_cast<uint32_t>(j) };
_program.output_port_addresses[op] = a;
operations.push_back(a);
}
// Add space for params size, default is no params so size is 0
size_t params_size_index = operations.size();
operations.push_back(0);
// Get params, copy resources when used, and hold a reference to them
std::vector<Variant> params_copy;
params_copy.resize(node.params.size());
for (size_t i = 0; i < node.params.size(); ++i) {
Variant v = node.params[i];
if (v.get_type() == Variant::OBJECT) {
Ref<Resource> res = v;
if (res.is_null()) {
// duplicate() is only available in Resource,
// so we have to limit to this instead of Reference or Object
CompilationResult result;
result.success = false;
result.message = ZN_TTR("A parameter is an object but does not inherit Resource");
result.node_id = node_id;
return result;
}
res = res->duplicate();
_program.ref_resources.push_back(res);
v = res;
}
params_copy[i] = v;
}
if (type.compile_func != nullptr) {
CompileContext ctx(/**node,*/ operations, _program.heap_resources, params_copy);
type.compile_func(ctx);
if (ctx.has_error()) {
CompilationResult result;
result.success = false;
result.message = ctx.get_error_message();
result.node_id = node_id;
return result;
}
const size_t params_size = ctx.get_params_size_in_words();
CRASH_COND(params_size > std::numeric_limits<uint16_t>::max());
operations[params_size_index] = params_size;
}
if (type.category == VoxelGraphNodeDB::CATEGORY_OUTPUT) {
CRASH_COND(node.outputs.size() != 1);
if (_program.outputs_count == _program.outputs.size()) {
CompilationResult result;
result.success = false;
result.message = ZN_TTR("Maximum number of outputs has been reached");
result.node_id = node_id;
return result;
}
{
const uint16_t *aptr = _program.output_port_addresses.getptr(ProgramGraph::PortLocation{ node_id, 0 });
// Previous node ports must have been registered
CRASH_COND(aptr == nullptr);
OutputInfo &output_info = _program.outputs[_program.outputs_count];
output_info.buffer_address = *aptr;
output_info.dependency_graph_node_index = dg_node_index;
output_info.node_id = node_id;
++_program.outputs_count;
}
// Add fake user for output ports so they can pass the local users check in optimizations
for (unsigned int j = 0; j < type.outputs.size(); ++j) {
const ProgramGraph::PortLocation loc{ node_id, j };
const uint16_t *aptr = _program.output_port_addresses.getptr(loc);
CRASH_COND(aptr == nullptr);
BufferSpec &bs = _program.buffer_specs[*aptr];
// Not expecting existing users on that port
ERR_FAIL_COND_V(bs.users_count != 0, CompilationResult());
++bs.users_count;
}
}
#ifdef VOXEL_DEBUG_GRAPH_PROG_SENTINEL
// Append a special value after each operation
append(operations, VOXEL_DEBUG_GRAPH_PROG_SENTINEL);
#endif
}
_program.buffer_count = mem.next_address;
ZN_PRINT_VERBOSE(format("Compiled voxel graph. Program size: {}b, buffers: {}",
_program.operations.size() * sizeof(uint16_t), _program.buffer_count));
CompilationResult result;
result.success = true;
return result;
}
static Span<const uint16_t> get_outputs_from_op_address(Span<const uint16_t> operations, uint16_t op_address) {
const uint16_t opid = operations[op_address];
const VoxelGraphNodeDB::NodeType &node_type = VoxelGraphNodeDB::get_singleton().get_type(opid);
@ -1250,176 +549,4 @@ bool VoxelGraphRuntime::try_get_output_port_address(ProgramGraph::PortLocation p
return true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void VoxelGraphRuntime::ShaderGenContext::require_lib_code(const char *lib_name, const char *code) {
_code_gen.require_lib_code(lib_name, code);
}
void VoxelGraphRuntime::ShaderGenContext::require_lib_code(const char *lib_name, const char **code) {
_code_gen.require_lib_code(lib_name, code);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
VoxelGraphRuntime::CompilationResult VoxelGraphRuntime::generate_shader(
const ProgramGraph &p_graph, FwdMutableStdString output) {
ZN_PROFILE_SCOPE();
ProgramGraph expanded_graph;
expanded_graph.copy_from(p_graph, false);
const VoxelGraphRuntime::CompilationResult expand_result = expand_expression_nodes(expanded_graph, nullptr);
if (!expand_result.success) {
return expand_result;
}
// Expanding a graph may produce more nodes, not remove any
ZN_ASSERT_RETURN_V(expanded_graph.get_nodes_count() >= p_graph.get_nodes_count(), make_error("Internal error"));
std::vector<uint32_t> order;
std::vector<uint32_t> terminal_nodes;
const VoxelGraphNodeDB &type_db = VoxelGraphNodeDB::get_singleton();
// Only getting SDF for now, as this is the first use case I want to test this feature with
expanded_graph.for_each_node_const([&terminal_nodes, &type_db](const ProgramGraph::Node &node) {
if (node.type_id == VoxelGeneratorGraph::NODE_OUTPUT_SDF) {
terminal_nodes.push_back(node.id);
}
});
if (terminal_nodes.size() == 0) {
return make_error("The graph must contain an SDF output.");
}
// Exclude debug nodes
// unordered_remove_if(terminal_nodes, [&expanded_graph, &type_db](uint32_t node_id) {
// const ProgramGraph::Node &node = expanded_graph.get_node(node_id);
// const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
// return type.debug_only;
// });
expanded_graph.find_dependencies(terminal_nodes, order);
std::stringstream main_ss;
std::stringstream lib_ss;
CodeGenHelper codegen(main_ss, lib_ss);
codegen.add("float get_sdf(vec3 pos) {\n");
codegen.indent();
std::unordered_map<ProgramGraph::PortLocation, std::string> port_to_var;
FixedArray<const char *, 8> input_names;
FixedArray<const char *, 8> output_names;
for (const uint32_t node_id : order) {
const ProgramGraph::Node &node = expanded_graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType node_type = type_db.get_type(node.type_id);
switch (node.type_id) {
case VoxelGeneratorGraph::NODE_INPUT_X: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
port_to_var.insert({ output_port, "pos.x" });
continue;
}
case VoxelGeneratorGraph::NODE_INPUT_Y: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
port_to_var.insert({ output_port, "pos.y" });
continue;
}
case VoxelGeneratorGraph::NODE_INPUT_Z: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
port_to_var.insert({ output_port, "pos.z" });
continue;
}
case VoxelGeneratorGraph::NODE_CONSTANT: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
std::string name;
codegen.generate_var_name(name);
port_to_var.insert({ output_port, name });
ZN_ASSERT(node.params.size() == 1);
codegen.add_format("float {} = {};\n", name, float(node.params[0]));
continue;
}
case VoxelGeneratorGraph::NODE_OUTPUT_SDF: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::Port &input_port = node.inputs[0];
if (input_port.connections.size() > 0) {
ZN_ASSERT(input_port.connections.size() == 1);
auto it = port_to_var.find(input_port.connections[0]);
ZN_ASSERT(it != port_to_var.end());
codegen.add_format("return {};\n", it->second);
} else {
codegen.add("return 0.0;\n");
}
continue;
}
default:
break;
}
if (node_type.shader_gen_func == nullptr) {
return make_error("A node does not support conversion to shader.", node_id);
}
for (unsigned int port_index = 0; port_index < node.inputs.size(); ++port_index) {
const ProgramGraph::Port &input_port = node.inputs[port_index];
if (input_port.connections.size() > 0) {
ZN_ASSERT(input_port.connections.size() == 1);
auto it = port_to_var.find(input_port.connections[0]);
ZN_ASSERT(it != port_to_var.end());
input_names[port_index] = it->second.c_str();
} else {
std::string var_name;
codegen.generate_var_name(var_name);
auto p = port_to_var.insert({ { node_id, port_index }, var_name });
ZN_ASSERT(p.second);
const std::string &name = p.first->second;
input_names[port_index] = name.c_str();
codegen.add_format("float {} = {};\n", name, float(node.default_inputs[port_index]));
}
}
for (unsigned int port_index = 0; port_index < node.outputs.size(); ++port_index) {
const ProgramGraph::Port &output_port = node.outputs[port_index];
std::string var_name;
codegen.generate_var_name(var_name);
auto p = port_to_var.insert({ { node_id, port_index }, var_name });
ZN_ASSERT(p.second);
output_names[port_index] = p.first->second.c_str();
codegen.add_format("float {};\n", var_name.c_str());
}
codegen.add("{\n");
codegen.indent();
ShaderGenContext ctx(node.params, to_span(input_names, node.inputs.size()),
to_span(output_names, node.outputs.size()), codegen);
node_type.shader_gen_func(ctx);
if (ctx.has_error()) {
CompilationResult result;
result.success = false;
result.message = ctx.get_error_message();
result.node_id = node_id;
return result;
}
codegen.dedent();
codegen.add("}\n");
}
codegen.dedent();
codegen.add("}\n");
codegen.print(output);
CompilationResult result;
result.success = true;
return result;
}
} // namespace zylann::voxel

View File

@ -5,13 +5,14 @@
#include "../../util/math/vector3f.h"
#include "../../util/math/vector3i.h"
#include "../../util/span.h"
#include "code_gen_helper.h"
#include "program_graph.h"
#include <core/object/ref_counted.h>
namespace zylann::voxel {
class VoxelGraphNodeDB;
// CPU VM to execute a voxel graph generator.
// This is a more generic class implementing the core of a 3D expression processing system.
// Some of the logic dedicated to voxel data is moved in other classes.
@ -23,6 +24,14 @@ public:
bool success = false;
int node_id = -1;
String message;
static CompilationResult make_error(const char *p_message, int p_node_id = -1) {
VoxelGraphRuntime::CompilationResult res;
res.success = false;
res.node_id = p_node_id;
res.message = p_message;
return res;
}
};
// Contains values of a node output
@ -178,99 +187,11 @@ public:
// Gets the buffer address of a specific output port
bool try_get_output_port_address(ProgramGraph::PortLocation port, uint16_t &out_address) const;
static CompilationResult generate_shader(const ProgramGraph &p_graph, FwdMutableStdString output);
struct HeapResource {
void *ptr;
void (*deleter)(void *p);
};
// Functions usable by node implementations during the compilation stage
class CompileContext {
public:
CompileContext(/*const ProgramGraph::Node &node,*/ std::vector<uint16_t> &program,
std::vector<HeapResource> &heap_resources, std::vector<Variant> &params) :
/*_node(node),*/ _program(program), _heap_resources(heap_resources), _params(params) {}
Variant get_param(size_t i) const {
CRASH_COND(i > _params.size());
return _params[i];
}
// Typical use is to pass a struct containing all compile-time arguments the operation will need
template <typename T>
void set_params(T params) {
// Can be called only once per node
CRASH_COND(_params_added);
// We will need to align memory, so the struct will not be immediately stored here.
// Instead we put a header that tells how much to advance in order to reach the beginning of the struct,
// which will be at an aligned position.
// We align to the maximum alignment between the struct,
// and the type of word we store inside the program buffer, which is uint16.
const size_t params_alignment = math::max(alignof(T), alignof(uint16_t));
const size_t params_offset_index = _program.size();
// Prepare space to store the offset (at least 1 since that header is one word)
_program.push_back(1);
// Align memory for the struct.
// Note, we index with words, not bytes.
const size_t struct_offset =
math::alignup(_program.size() * sizeof(uint16_t), params_alignment) / sizeof(uint16_t);
if (struct_offset > _program.size()) {
_program.resize(struct_offset);
}
// Write offset in header
_program[params_offset_index] = struct_offset - params_offset_index;
// Allocate space for the struct. It is measured in words, so it can be up to 1 byte larger.
_params_size_in_words = (sizeof(T) + sizeof(uint16_t) - 1) / sizeof(uint16_t);
_program.resize(_program.size() + _params_size_in_words);
// Write struct
T &p = *reinterpret_cast<T *>(&_program[struct_offset]);
p = params;
_params_added = true;
}
// In case the compilation step produces a resource to be deleted
template <typename T>
void add_memdelete_cleanup(T *ptr) {
HeapResource hr;
hr.ptr = ptr;
hr.deleter = [](void *p) {
// TODO We have no guarantee it was allocated with memnew :|
T *tp = reinterpret_cast<T *>(p);
memdelete(tp);
};
_heap_resources.push_back(hr);
}
void make_error(String message) {
_error_message = message;
_has_error = true;
}
bool has_error() const {
return _has_error;
}
const String &get_error_message() const {
return _error_message;
}
size_t get_params_size_in_words() const {
return _params_size_in_words;
}
private:
//const ProgramGraph::Node &_node;
std::vector<uint16_t> &_program;
std::vector<HeapResource> &_heap_resources;
std::vector<Variant> &_params;
String _error_message;
size_t _params_size_in_words = 0;
bool _has_error = false;
bool _params_added = false;
};
class _ProcessContext {
public:
inline _ProcessContext(const Span<const uint16_t> inputs, const Span<const uint16_t> outputs,
@ -369,62 +290,11 @@ public:
Span<Buffer> _buffers;
};
class ShaderGenContext {
public:
ShaderGenContext(const std::vector<Variant> &params, Span<const char *> input_names,
Span<const char *> output_names, CodeGenHelper &code_gen) :
_params(params), _input_names(input_names), _output_names(output_names), _code_gen(code_gen) {}
Variant get_param(size_t i) const {
CRASH_COND(i > _params.size());
return _params[i];
}
const char *get_input_name(unsigned int i) const {
return _input_names[i];
}
const char *get_output_name(unsigned int i) const {
return _output_names[i];
}
void make_error(String message) {
_error_message = message;
_has_error = true;
}
bool has_error() const {
return _has_error;
}
const String &get_error_message() const {
return _error_message;
}
template <typename... TN>
void add_format(const char *fmt, const TN &...an) {
_code_gen.add_format(fmt, an...);
}
void require_lib_code(const char *lib_name, const char *code);
void require_lib_code(const char *lib_name, const char **code);
private:
const std::vector<Variant> &_params;
Span<const char *> _input_names;
Span<const char *> _output_names;
CodeGenHelper &_code_gen;
String _error_message;
bool _has_error;
};
typedef void (*CompileFunc)(CompileContext &);
typedef void (*ProcessBufferFunc)(ProcessBufferContext &);
typedef void (*RangeAnalysisFunc)(RangeAnalysisContext &);
typedef void (*ShaderGenFunc)(ShaderGenContext &);
private:
CompilationResult _compile(const ProgramGraph &graph, bool debug);
CompilationResult _compile(const ProgramGraph &graph, bool debug, const VoxelGraphNodeDB &type_db);
bool is_operation_constant(const State &state, uint16_t op_address) const;
@ -441,6 +311,7 @@ private:
bool is_binding;
};
// Pre-processed, read-only graph used for runtime optimizations.
struct DependencyGraph {
struct Node {
uint16_t first_dependency;

View File

@ -0,0 +1,181 @@
#include "voxel_graph_shader_generator.h"
#include "../../util/profiling.h"
#include "../../util/string_funcs.h"
#include "voxel_graph_compiler.h"
#include "voxel_graph_node_db.h"
namespace zylann::voxel {
void ShaderGenContext::require_lib_code(const char *lib_name, const char *code) {
_code_gen.require_lib_code(lib_name, code);
}
void ShaderGenContext::require_lib_code(const char *lib_name, const char **code) {
_code_gen.require_lib_code(lib_name, code);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
VoxelGraphRuntime::CompilationResult generate_shader(const ProgramGraph &p_graph, FwdMutableStdString output) {
ZN_PROFILE_SCOPE();
const VoxelGraphNodeDB &type_db = VoxelGraphNodeDB::get_singleton();
ProgramGraph expanded_graph;
expanded_graph.copy_from(p_graph, false);
const VoxelGraphRuntime::CompilationResult expand_result =
expand_expression_nodes(expanded_graph, type_db, nullptr);
if (!expand_result.success) {
return expand_result;
}
// Expanding a graph may produce more nodes, not remove any
ZN_ASSERT_RETURN_V(expanded_graph.get_nodes_count() >= p_graph.get_nodes_count(),
VoxelGraphRuntime::CompilationResult::make_error("Internal error"));
std::vector<uint32_t> order;
std::vector<uint32_t> terminal_nodes;
// Only getting SDF for now, as this is the first use case I want to test this feature with
expanded_graph.for_each_node_const([&terminal_nodes, &type_db](const ProgramGraph::Node &node) {
if (node.type_id == VoxelGeneratorGraph::NODE_OUTPUT_SDF) {
terminal_nodes.push_back(node.id);
}
});
if (terminal_nodes.size() == 0) {
return VoxelGraphRuntime::CompilationResult::make_error("The graph must contain an SDF output.");
}
// Exclude debug nodes
// unordered_remove_if(terminal_nodes, [&expanded_graph, &type_db](uint32_t node_id) {
// const ProgramGraph::Node &node = expanded_graph.get_node(node_id);
// const VoxelGraphNodeDB::NodeType &type = type_db.get_type(node.type_id);
// return type.debug_only;
// });
expanded_graph.find_dependencies(terminal_nodes, order);
std::stringstream main_ss;
std::stringstream lib_ss;
CodeGenHelper codegen(main_ss, lib_ss);
codegen.add("float get_sdf(vec3 pos) {\n");
codegen.indent();
std::unordered_map<ProgramGraph::PortLocation, std::string> port_to_var;
FixedArray<const char *, 8> input_names;
FixedArray<const char *, 8> output_names;
for (const uint32_t node_id : order) {
const ProgramGraph::Node &node = expanded_graph.get_node(node_id);
const VoxelGraphNodeDB::NodeType node_type = type_db.get_type(node.type_id);
switch (node.type_id) {
case VoxelGeneratorGraph::NODE_INPUT_X: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
port_to_var.insert({ output_port, "pos.x" });
continue;
}
case VoxelGeneratorGraph::NODE_INPUT_Y: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
port_to_var.insert({ output_port, "pos.y" });
continue;
}
case VoxelGeneratorGraph::NODE_INPUT_Z: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
port_to_var.insert({ output_port, "pos.z" });
continue;
}
case VoxelGeneratorGraph::NODE_CONSTANT: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::PortLocation output_port{ node_id, 0 };
std::string name;
codegen.generate_var_name(name);
port_to_var.insert({ output_port, name });
ZN_ASSERT(node.params.size() == 1);
codegen.add_format("float {} = {};\n", name, float(node.params[0]));
continue;
}
case VoxelGeneratorGraph::NODE_OUTPUT_SDF: {
ZN_ASSERT(node.outputs.size() == 1);
const ProgramGraph::Port &input_port = node.inputs[0];
if (input_port.connections.size() > 0) {
ZN_ASSERT(input_port.connections.size() == 1);
auto it = port_to_var.find(input_port.connections[0]);
ZN_ASSERT(it != port_to_var.end());
codegen.add_format("return {};\n", it->second);
} else {
codegen.add("return 0.0;\n");
}
continue;
}
default:
break;
}
if (node_type.shader_gen_func == nullptr) {
return VoxelGraphRuntime::CompilationResult::make_error(
"A node does not support conversion to shader.", node_id);
}
for (unsigned int port_index = 0; port_index < node.inputs.size(); ++port_index) {
const ProgramGraph::Port &input_port = node.inputs[port_index];
if (input_port.connections.size() > 0) {
ZN_ASSERT(input_port.connections.size() == 1);
auto it = port_to_var.find(input_port.connections[0]);
ZN_ASSERT(it != port_to_var.end());
input_names[port_index] = it->second.c_str();
} else {
std::string var_name;
codegen.generate_var_name(var_name);
auto p = port_to_var.insert({ { node_id, port_index }, var_name });
ZN_ASSERT(p.second);
const std::string &name = p.first->second;
input_names[port_index] = name.c_str();
codegen.add_format("float {} = {};\n", name, float(node.default_inputs[port_index]));
}
}
for (unsigned int port_index = 0; port_index < node.outputs.size(); ++port_index) {
const ProgramGraph::Port &output_port = node.outputs[port_index];
std::string var_name;
codegen.generate_var_name(var_name);
auto p = port_to_var.insert({ { node_id, port_index }, var_name });
ZN_ASSERT(p.second);
output_names[port_index] = p.first->second.c_str();
codegen.add_format("float {};\n", var_name.c_str());
}
codegen.add("{\n");
codegen.indent();
ShaderGenContext ctx(node.params, to_span(input_names, node.inputs.size()),
to_span(output_names, node.outputs.size()), codegen);
node_type.shader_gen_func(ctx);
if (ctx.has_error()) {
VoxelGraphRuntime::CompilationResult result;
result.success = false;
result.message = ctx.get_error_message();
result.node_id = node_id;
return result;
}
codegen.dedent();
codegen.add("}\n");
}
codegen.dedent();
codegen.add("}\n");
codegen.print(output);
VoxelGraphRuntime::CompilationResult result;
result.success = true;
return result;
}
} // namespace zylann::voxel

View File

@ -0,0 +1,68 @@
#ifndef VOXEL_GRAPH_SHADER_GENERATOR_H
#define VOXEL_GRAPH_SHADER_GENERATOR_H
#include "../../util/errors.h"
#include "../../util/span.h"
#include "code_gen_helper.h"
#include "voxel_graph_runtime.h"
#include <core/variant/variant.h>
namespace zylann::voxel {
VoxelGraphRuntime::CompilationResult generate_shader(const ProgramGraph &p_graph, FwdMutableStdString output);
// Sent as argument to functions implementing generator nodes, in order to generate shader code.
class ShaderGenContext {
public:
ShaderGenContext(const std::vector<Variant> &params, Span<const char *> input_names,
Span<const char *> output_names, CodeGenHelper &code_gen) :
_params(params), _input_names(input_names), _output_names(output_names), _code_gen(code_gen) {}
Variant get_param(size_t i) const {
ZN_ASSERT(i < _params.size());
return _params[i];
}
const char *get_input_name(unsigned int i) const {
return _input_names[i];
}
const char *get_output_name(unsigned int i) const {
return _output_names[i];
}
void make_error(String message) {
_error_message = message;
_has_error = true;
}
bool has_error() const {
return _has_error;
}
const String &get_error_message() const {
return _error_message;
}
template <typename... TN>
void add_format(const char *fmt, const TN &...an) {
_code_gen.add_format(fmt, an...);
}
void require_lib_code(const char *lib_name, const char *code);
void require_lib_code(const char *lib_name, const char **code);
private:
const std::vector<Variant> &_params;
Span<const char *> _input_names;
Span<const char *> _output_names;
CodeGenHelper &_code_gen;
String _error_message;
bool _has_error;
};
typedef void (*ShaderGenFunc)(ShaderGenContext &);
} // namespace zylann::voxel
#endif // VOXEL_GRAPH_SHADER_GENERATOR_H