1725 lines
58 KiB
JavaScript
1725 lines
58 KiB
JavaScript
|
/*!
|
||
|
Copyright (C) 2010-2013 Raymond Hill: https://github.com/gorhill/Javascript-Voronoi
|
||
|
MIT License: See https://github.com/gorhill/Javascript-Voronoi/LICENSE.md
|
||
|
*/
|
||
|
/*
|
||
|
Author: Raymond Hill (rhill@raymondhill.net)
|
||
|
Contributor: Jesse Morgan (morgajel@gmail.com)
|
||
|
File: rhill-voronoi-core.js
|
||
|
Version: 0.98
|
||
|
Date: January 21, 2013
|
||
|
Description: This is my personal Javascript implementation of
|
||
|
Steven Fortune's algorithm to compute Voronoi diagrams.
|
||
|
|
||
|
License: See https://github.com/gorhill/Javascript-Voronoi/LICENSE.md
|
||
|
Credits: See https://github.com/gorhill/Javascript-Voronoi/CREDITS.md
|
||
|
History: See https://github.com/gorhill/Javascript-Voronoi/CHANGELOG.md
|
||
|
|
||
|
## Usage:
|
||
|
|
||
|
var sites = [{x:300,y:300}, {x:100,y:100}, {x:200,y:500}, {x:250,y:450}, {x:600,y:150}];
|
||
|
// xl, xr means x left, x right
|
||
|
// yt, yb means y top, y bottom
|
||
|
var bbox = {xl:0, xr:800, yt:0, yb:600};
|
||
|
var voronoi = new Voronoi();
|
||
|
// pass an object which exhibits xl, xr, yt, yb properties. The bounding
|
||
|
// box will be used to connect unbound edges, and to close open cells
|
||
|
result = voronoi.compute(sites, bbox);
|
||
|
// render, further analyze, etc.
|
||
|
|
||
|
Return value:
|
||
|
An object with the following properties:
|
||
|
|
||
|
result.vertices = an array of unordered, unique Voronoi.Vertex objects making
|
||
|
up the Voronoi diagram.
|
||
|
result.edges = an array of unordered, unique Voronoi.Edge objects making up
|
||
|
the Voronoi diagram.
|
||
|
result.cells = an array of Voronoi.Cell object making up the Voronoi diagram.
|
||
|
A Cell object might have an empty array of halfedges, meaning no Voronoi
|
||
|
cell could be computed for a particular cell.
|
||
|
result.execTime = the time it took to compute the Voronoi diagram, in
|
||
|
milliseconds.
|
||
|
|
||
|
Voronoi.Vertex object:
|
||
|
x: The x position of the vertex.
|
||
|
y: The y position of the vertex.
|
||
|
|
||
|
Voronoi.Edge object:
|
||
|
lSite: the Voronoi site object at the left of this Voronoi.Edge object.
|
||
|
rSite: the Voronoi site object at the right of this Voronoi.Edge object (can
|
||
|
be null).
|
||
|
va: an object with an 'x' and a 'y' property defining the start point
|
||
|
(relative to the Voronoi site on the left) of this Voronoi.Edge object.
|
||
|
vb: an object with an 'x' and a 'y' property defining the end point
|
||
|
(relative to Voronoi site on the left) of this Voronoi.Edge object.
|
||
|
|
||
|
For edges which are used to close open cells (using the supplied bounding
|
||
|
box), the rSite property will be null.
|
||
|
|
||
|
Voronoi.Cell object:
|
||
|
site: the Voronoi site object associated with the Voronoi cell.
|
||
|
halfedges: an array of Voronoi.Halfedge objects, ordered counterclockwise,
|
||
|
defining the polygon for this Voronoi cell.
|
||
|
|
||
|
Voronoi.Halfedge object:
|
||
|
site: the Voronoi site object owning this Voronoi.Halfedge object.
|
||
|
edge: a reference to the unique Voronoi.Edge object underlying this
|
||
|
Voronoi.Halfedge object.
|
||
|
getStartpoint(): a method returning an object with an 'x' and a 'y' property
|
||
|
for the start point of this halfedge. Keep in mind halfedges are always
|
||
|
countercockwise.
|
||
|
getEndpoint(): a method returning an object with an 'x' and a 'y' property
|
||
|
for the end point of this halfedge. Keep in mind halfedges are always
|
||
|
countercockwise.
|
||
|
|
||
|
TODO: Identify opportunities for performance improvement.
|
||
|
|
||
|
TODO: Let the user close the Voronoi cells, do not do it automatically. Not only let
|
||
|
him close the cells, but also allow him to close more than once using a different
|
||
|
bounding box for the same Voronoi diagram.
|
||
|
*/
|
||
|
|
||
|
/*global Math */
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
|
||
|
function Voronoi() {
|
||
|
this.vertices = null;
|
||
|
this.edges = null;
|
||
|
this.cells = null;
|
||
|
this.toRecycle = null;
|
||
|
this.beachsectionJunkyard = [];
|
||
|
this.circleEventJunkyard = [];
|
||
|
this.vertexJunkyard = [];
|
||
|
this.edgeJunkyard = [];
|
||
|
this.cellJunkyard = [];
|
||
|
}
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
|
||
|
Voronoi.prototype.reset = function() {
|
||
|
if (!this.beachline) {
|
||
|
this.beachline = new this.RBTree();
|
||
|
}
|
||
|
// Move leftover beachsections to the beachsection junkyard.
|
||
|
if (this.beachline.root) {
|
||
|
var beachsection = this.beachline.getFirst(this.beachline.root);
|
||
|
while (beachsection) {
|
||
|
this.beachsectionJunkyard.push(beachsection); // mark for reuse
|
||
|
beachsection = beachsection.rbNext;
|
||
|
}
|
||
|
}
|
||
|
this.beachline.root = null;
|
||
|
if (!this.circleEvents) {
|
||
|
this.circleEvents = new this.RBTree();
|
||
|
}
|
||
|
this.circleEvents.root = this.firstCircleEvent = null;
|
||
|
this.vertices = [];
|
||
|
this.edges = [];
|
||
|
this.cells = [];
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.sqrt = Math.sqrt;
|
||
|
Voronoi.prototype.abs = Math.abs;
|
||
|
Voronoi.prototype.ε = Voronoi.ε = 1e-9;
|
||
|
Voronoi.prototype.invε = Voronoi.invε = 1.0 / Voronoi.ε;
|
||
|
Voronoi.prototype.equalWithEpsilon = function(a,b){return this.abs(a-b)<1e-9;};
|
||
|
Voronoi.prototype.greaterThanWithEpsilon = function(a,b){return a-b>1e-9;};
|
||
|
Voronoi.prototype.greaterThanOrEqualWithEpsilon = function(a,b){return b-a<1e-9;};
|
||
|
Voronoi.prototype.lessThanWithEpsilon = function(a,b){return b-a>1e-9;};
|
||
|
Voronoi.prototype.lessThanOrEqualWithEpsilon = function(a,b){return a-b<1e-9;};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Red-Black tree code (based on C version of "rbtree" by Franck Bui-Huu
|
||
|
// https://github.com/fbuihuu/libtree/blob/master/rb.c
|
||
|
|
||
|
Voronoi.prototype.RBTree = function() {
|
||
|
this.root = null;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.RBTree.prototype.rbInsertSuccessor = function(node, successor) {
|
||
|
var parent;
|
||
|
if (node) {
|
||
|
// >>> rhill 2011-05-27: Performance: cache previous/next nodes
|
||
|
successor.rbPrevious = node;
|
||
|
successor.rbNext = node.rbNext;
|
||
|
if (node.rbNext) {
|
||
|
node.rbNext.rbPrevious = successor;
|
||
|
}
|
||
|
node.rbNext = successor;
|
||
|
// <<<
|
||
|
if (node.rbRight) {
|
||
|
// in-place expansion of node.rbRight.getFirst();
|
||
|
node = node.rbRight;
|
||
|
while (node.rbLeft) {node = node.rbLeft;}
|
||
|
node.rbLeft = successor;
|
||
|
}
|
||
|
else {
|
||
|
node.rbRight = successor;
|
||
|
}
|
||
|
parent = node;
|
||
|
}
|
||
|
// rhill 2011-06-07: if node is null, successor must be inserted
|
||
|
// to the left-most part of the tree
|
||
|
else if (this.root) {
|
||
|
node = this.getFirst(this.root);
|
||
|
// >>> Performance: cache previous/next nodes
|
||
|
successor.rbPrevious = null;
|
||
|
successor.rbNext = node;
|
||
|
node.rbPrevious = successor;
|
||
|
// <<<
|
||
|
node.rbLeft = successor;
|
||
|
parent = node;
|
||
|
}
|
||
|
else {
|
||
|
// >>> Performance: cache previous/next nodes
|
||
|
successor.rbPrevious = successor.rbNext = null;
|
||
|
// <<<
|
||
|
this.root = successor;
|
||
|
parent = null;
|
||
|
}
|
||
|
successor.rbLeft = successor.rbRight = null;
|
||
|
successor.rbParent = parent;
|
||
|
successor.rbRed = true;
|
||
|
// Fixup the modified tree by recoloring nodes and performing
|
||
|
// rotations (2 at most) hence the red-black tree properties are
|
||
|
// preserved.
|
||
|
var grandpa, uncle;
|
||
|
node = successor;
|
||
|
while (parent && parent.rbRed) {
|
||
|
grandpa = parent.rbParent;
|
||
|
if (parent === grandpa.rbLeft) {
|
||
|
uncle = grandpa.rbRight;
|
||
|
if (uncle && uncle.rbRed) {
|
||
|
parent.rbRed = uncle.rbRed = false;
|
||
|
grandpa.rbRed = true;
|
||
|
node = grandpa;
|
||
|
}
|
||
|
else {
|
||
|
if (node === parent.rbRight) {
|
||
|
this.rbRotateLeft(parent);
|
||
|
node = parent;
|
||
|
parent = node.rbParent;
|
||
|
}
|
||
|
parent.rbRed = false;
|
||
|
grandpa.rbRed = true;
|
||
|
this.rbRotateRight(grandpa);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
uncle = grandpa.rbLeft;
|
||
|
if (uncle && uncle.rbRed) {
|
||
|
parent.rbRed = uncle.rbRed = false;
|
||
|
grandpa.rbRed = true;
|
||
|
node = grandpa;
|
||
|
}
|
||
|
else {
|
||
|
if (node === parent.rbLeft) {
|
||
|
this.rbRotateRight(parent);
|
||
|
node = parent;
|
||
|
parent = node.rbParent;
|
||
|
}
|
||
|
parent.rbRed = false;
|
||
|
grandpa.rbRed = true;
|
||
|
this.rbRotateLeft(grandpa);
|
||
|
}
|
||
|
}
|
||
|
parent = node.rbParent;
|
||
|
}
|
||
|
this.root.rbRed = false;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.RBTree.prototype.rbRemoveNode = function(node) {
|
||
|
// >>> rhill 2011-05-27: Performance: cache previous/next nodes
|
||
|
if (node.rbNext) {
|
||
|
node.rbNext.rbPrevious = node.rbPrevious;
|
||
|
}
|
||
|
if (node.rbPrevious) {
|
||
|
node.rbPrevious.rbNext = node.rbNext;
|
||
|
}
|
||
|
node.rbNext = node.rbPrevious = null;
|
||
|
// <<<
|
||
|
var parent = node.rbParent,
|
||
|
left = node.rbLeft,
|
||
|
right = node.rbRight,
|
||
|
next;
|
||
|
if (!left) {
|
||
|
next = right;
|
||
|
}
|
||
|
else if (!right) {
|
||
|
next = left;
|
||
|
}
|
||
|
else {
|
||
|
next = this.getFirst(right);
|
||
|
}
|
||
|
if (parent) {
|
||
|
if (parent.rbLeft === node) {
|
||
|
parent.rbLeft = next;
|
||
|
}
|
||
|
else {
|
||
|
parent.rbRight = next;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
this.root = next;
|
||
|
}
|
||
|
// enforce red-black rules
|
||
|
var isRed;
|
||
|
if (left && right) {
|
||
|
isRed = next.rbRed;
|
||
|
next.rbRed = node.rbRed;
|
||
|
next.rbLeft = left;
|
||
|
left.rbParent = next;
|
||
|
if (next !== right) {
|
||
|
parent = next.rbParent;
|
||
|
next.rbParent = node.rbParent;
|
||
|
node = next.rbRight;
|
||
|
parent.rbLeft = node;
|
||
|
next.rbRight = right;
|
||
|
right.rbParent = next;
|
||
|
}
|
||
|
else {
|
||
|
next.rbParent = parent;
|
||
|
parent = next;
|
||
|
node = next.rbRight;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
isRed = node.rbRed;
|
||
|
node = next;
|
||
|
}
|
||
|
// 'node' is now the sole successor's child and 'parent' its
|
||
|
// new parent (since the successor can have been moved)
|
||
|
if (node) {
|
||
|
node.rbParent = parent;
|
||
|
}
|
||
|
// the 'easy' cases
|
||
|
if (isRed) {return;}
|
||
|
if (node && node.rbRed) {
|
||
|
node.rbRed = false;
|
||
|
return;
|
||
|
}
|
||
|
// the other cases
|
||
|
var sibling;
|
||
|
do {
|
||
|
if (node === this.root) {
|
||
|
break;
|
||
|
}
|
||
|
if (node === parent.rbLeft) {
|
||
|
sibling = parent.rbRight;
|
||
|
if (sibling.rbRed) {
|
||
|
sibling.rbRed = false;
|
||
|
parent.rbRed = true;
|
||
|
this.rbRotateLeft(parent);
|
||
|
sibling = parent.rbRight;
|
||
|
}
|
||
|
if ((sibling.rbLeft && sibling.rbLeft.rbRed) || (sibling.rbRight && sibling.rbRight.rbRed)) {
|
||
|
if (!sibling.rbRight || !sibling.rbRight.rbRed) {
|
||
|
sibling.rbLeft.rbRed = false;
|
||
|
sibling.rbRed = true;
|
||
|
this.rbRotateRight(sibling);
|
||
|
sibling = parent.rbRight;
|
||
|
}
|
||
|
sibling.rbRed = parent.rbRed;
|
||
|
parent.rbRed = sibling.rbRight.rbRed = false;
|
||
|
this.rbRotateLeft(parent);
|
||
|
node = this.root;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
sibling = parent.rbLeft;
|
||
|
if (sibling.rbRed) {
|
||
|
sibling.rbRed = false;
|
||
|
parent.rbRed = true;
|
||
|
this.rbRotateRight(parent);
|
||
|
sibling = parent.rbLeft;
|
||
|
}
|
||
|
if ((sibling.rbLeft && sibling.rbLeft.rbRed) || (sibling.rbRight && sibling.rbRight.rbRed)) {
|
||
|
if (!sibling.rbLeft || !sibling.rbLeft.rbRed) {
|
||
|
sibling.rbRight.rbRed = false;
|
||
|
sibling.rbRed = true;
|
||
|
this.rbRotateLeft(sibling);
|
||
|
sibling = parent.rbLeft;
|
||
|
}
|
||
|
sibling.rbRed = parent.rbRed;
|
||
|
parent.rbRed = sibling.rbLeft.rbRed = false;
|
||
|
this.rbRotateRight(parent);
|
||
|
node = this.root;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
sibling.rbRed = true;
|
||
|
node = parent;
|
||
|
parent = parent.rbParent;
|
||
|
} while (!node.rbRed);
|
||
|
if (node) {node.rbRed = false;}
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.RBTree.prototype.rbRotateLeft = function(node) {
|
||
|
var p = node,
|
||
|
q = node.rbRight, // can't be null
|
||
|
parent = p.rbParent;
|
||
|
if (parent) {
|
||
|
if (parent.rbLeft === p) {
|
||
|
parent.rbLeft = q;
|
||
|
}
|
||
|
else {
|
||
|
parent.rbRight = q;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
this.root = q;
|
||
|
}
|
||
|
q.rbParent = parent;
|
||
|
p.rbParent = q;
|
||
|
p.rbRight = q.rbLeft;
|
||
|
if (p.rbRight) {
|
||
|
p.rbRight.rbParent = p;
|
||
|
}
|
||
|
q.rbLeft = p;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.RBTree.prototype.rbRotateRight = function(node) {
|
||
|
var p = node,
|
||
|
q = node.rbLeft, // can't be null
|
||
|
parent = p.rbParent;
|
||
|
if (parent) {
|
||
|
if (parent.rbLeft === p) {
|
||
|
parent.rbLeft = q;
|
||
|
}
|
||
|
else {
|
||
|
parent.rbRight = q;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
this.root = q;
|
||
|
}
|
||
|
q.rbParent = parent;
|
||
|
p.rbParent = q;
|
||
|
p.rbLeft = q.rbRight;
|
||
|
if (p.rbLeft) {
|
||
|
p.rbLeft.rbParent = p;
|
||
|
}
|
||
|
q.rbRight = p;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.RBTree.prototype.getFirst = function(node) {
|
||
|
while (node.rbLeft) {
|
||
|
node = node.rbLeft;
|
||
|
}
|
||
|
return node;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.RBTree.prototype.getLast = function(node) {
|
||
|
while (node.rbRight) {
|
||
|
node = node.rbRight;
|
||
|
}
|
||
|
return node;
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Diagram methods
|
||
|
|
||
|
Voronoi.prototype.Diagram = function(site) {
|
||
|
this.site = site;
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Cell methods
|
||
|
|
||
|
Voronoi.prototype.Cell = function(site) {
|
||
|
this.site = site;
|
||
|
this.halfedges = [];
|
||
|
this.closeMe = false;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.Cell.prototype.init = function(site) {
|
||
|
this.site = site;
|
||
|
this.halfedges = [];
|
||
|
this.closeMe = false;
|
||
|
return this;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.createCell = function(site) {
|
||
|
var cell = this.cellJunkyard.pop();
|
||
|
if ( cell ) {
|
||
|
return cell.init(site);
|
||
|
}
|
||
|
return new this.Cell(site);
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.Cell.prototype.prepareHalfedges = function() {
|
||
|
var halfedges = this.halfedges,
|
||
|
iHalfedge = halfedges.length,
|
||
|
edge;
|
||
|
// get rid of unused halfedges
|
||
|
// rhill 2011-05-27: Keep it simple, no point here in trying
|
||
|
// to be fancy: dangling edges are a typically a minority.
|
||
|
while (iHalfedge--) {
|
||
|
edge = halfedges[iHalfedge].edge;
|
||
|
if (!edge.vb || !edge.va) {
|
||
|
halfedges.splice(iHalfedge,1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// rhill 2011-05-26: I tried to use a binary search at insertion
|
||
|
// time to keep the array sorted on-the-fly (in Cell.addHalfedge()).
|
||
|
// There was no real benefits in doing so, performance on
|
||
|
// Firefox 3.6 was improved marginally, while performance on
|
||
|
// Opera 11 was penalized marginally.
|
||
|
halfedges.sort(function(a,b){return b.angle-a.angle;});
|
||
|
return halfedges.length;
|
||
|
};
|
||
|
|
||
|
// Return a list of the neighbor Ids
|
||
|
Voronoi.prototype.Cell.prototype.getNeighborIds = function() {
|
||
|
var neighbors = [],
|
||
|
iHalfedge = this.halfedges.length,
|
||
|
edge;
|
||
|
while (iHalfedge--){
|
||
|
edge = this.halfedges[iHalfedge].edge;
|
||
|
if (edge.lSite !== null && edge.lSite.voronoiId != this.site.voronoiId) {
|
||
|
neighbors.push(edge.lSite.voronoiId);
|
||
|
}
|
||
|
else if (edge.rSite !== null && edge.rSite.voronoiId != this.site.voronoiId){
|
||
|
neighbors.push(edge.rSite.voronoiId);
|
||
|
}
|
||
|
}
|
||
|
return neighbors;
|
||
|
};
|
||
|
|
||
|
// Compute bounding box
|
||
|
//
|
||
|
Voronoi.prototype.Cell.prototype.getBbox = function() {
|
||
|
var halfedges = this.halfedges,
|
||
|
iHalfedge = halfedges.length,
|
||
|
xmin = Infinity,
|
||
|
ymin = Infinity,
|
||
|
xmax = -Infinity,
|
||
|
ymax = -Infinity,
|
||
|
v, vx, vy;
|
||
|
while (iHalfedge--) {
|
||
|
v = halfedges[iHalfedge].getStartpoint();
|
||
|
vx = v.x;
|
||
|
vy = v.y;
|
||
|
if (vx < xmin) {xmin = vx;}
|
||
|
if (vy < ymin) {ymin = vy;}
|
||
|
if (vx > xmax) {xmax = vx;}
|
||
|
if (vy > ymax) {ymax = vy;}
|
||
|
// we dont need to take into account end point,
|
||
|
// since each end point matches a start point
|
||
|
}
|
||
|
return {
|
||
|
x: xmin,
|
||
|
y: ymin,
|
||
|
width: xmax-xmin,
|
||
|
height: ymax-ymin
|
||
|
};
|
||
|
};
|
||
|
|
||
|
// Return whether a point is inside, on, or outside the cell:
|
||
|
// -1: point is outside the perimeter of the cell
|
||
|
// 0: point is on the perimeter of the cell
|
||
|
// 1: point is inside the perimeter of the cell
|
||
|
//
|
||
|
Voronoi.prototype.Cell.prototype.pointIntersection = function(x, y) {
|
||
|
// Check if point in polygon. Since all polygons of a Voronoi
|
||
|
// diagram are convex, then:
|
||
|
// http://paulbourke.net/geometry/polygonmesh/
|
||
|
// Solution 3 (2D):
|
||
|
// "If the polygon is convex then one can consider the polygon
|
||
|
// "as a 'path' from the first vertex. A point is on the interior
|
||
|
// "of this polygons if it is always on the same side of all the
|
||
|
// "line segments making up the path. ...
|
||
|
// "(y - y0) (x1 - x0) - (x - x0) (y1 - y0)
|
||
|
// "if it is less than 0 then P is to the right of the line segment,
|
||
|
// "if greater than 0 it is to the left, if equal to 0 then it lies
|
||
|
// "on the line segment"
|
||
|
var halfedges = this.halfedges,
|
||
|
iHalfedge = halfedges.length,
|
||
|
halfedge,
|
||
|
p0, p1, r;
|
||
|
while (iHalfedge--) {
|
||
|
halfedge = halfedges[iHalfedge];
|
||
|
p0 = halfedge.getStartpoint();
|
||
|
p1 = halfedge.getEndpoint();
|
||
|
r = (y-p0.y)*(p1.x-p0.x)-(x-p0.x)*(p1.y-p0.y);
|
||
|
if (!r) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (r > 0) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Edge methods
|
||
|
//
|
||
|
|
||
|
Voronoi.prototype.Vertex = function(x, y) {
|
||
|
this.x = x;
|
||
|
this.y = y;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.Edge = function(lSite, rSite) {
|
||
|
this.lSite = lSite;
|
||
|
this.rSite = rSite;
|
||
|
this.va = this.vb = null;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.Halfedge = function(edge, lSite, rSite) {
|
||
|
this.site = lSite;
|
||
|
this.edge = edge;
|
||
|
// 'angle' is a value to be used for properly sorting the
|
||
|
// halfsegments counterclockwise. By convention, we will
|
||
|
// use the angle of the line defined by the 'site to the left'
|
||
|
// to the 'site to the right'.
|
||
|
// However, border edges have no 'site to the right': thus we
|
||
|
// use the angle of line perpendicular to the halfsegment (the
|
||
|
// edge should have both end points defined in such case.)
|
||
|
if (rSite) {
|
||
|
this.angle = Math.atan2(rSite.y-lSite.y, rSite.x-lSite.x);
|
||
|
}
|
||
|
else {
|
||
|
var va = edge.va,
|
||
|
vb = edge.vb;
|
||
|
// rhill 2011-05-31: used to call getStartpoint()/getEndpoint(),
|
||
|
// but for performance purpose, these are expanded in place here.
|
||
|
this.angle = edge.lSite === lSite ?
|
||
|
Math.atan2(vb.x-va.x, va.y-vb.y) :
|
||
|
Math.atan2(va.x-vb.x, vb.y-va.y);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.createHalfedge = function(edge, lSite, rSite) {
|
||
|
return new this.Halfedge(edge, lSite, rSite);
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.Halfedge.prototype.getStartpoint = function() {
|
||
|
return this.edge.lSite === this.site ? this.edge.va : this.edge.vb;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.Halfedge.prototype.getEndpoint = function() {
|
||
|
return this.edge.lSite === this.site ? this.edge.vb : this.edge.va;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
// this create and add a vertex to the internal collection
|
||
|
|
||
|
Voronoi.prototype.createVertex = function(x, y) {
|
||
|
var v = this.vertexJunkyard.pop();
|
||
|
if ( !v ) {
|
||
|
v = new this.Vertex(x, y);
|
||
|
}
|
||
|
else {
|
||
|
v.x = x;
|
||
|
v.y = y;
|
||
|
}
|
||
|
this.vertices.push(v);
|
||
|
return v;
|
||
|
};
|
||
|
|
||
|
// this create and add an edge to internal collection, and also create
|
||
|
// two halfedges which are added to each site's counterclockwise array
|
||
|
// of halfedges.
|
||
|
|
||
|
Voronoi.prototype.createEdge = function(lSite, rSite, va, vb) {
|
||
|
var edge = this.edgeJunkyard.pop();
|
||
|
if ( !edge ) {
|
||
|
edge = new this.Edge(lSite, rSite);
|
||
|
}
|
||
|
else {
|
||
|
edge.lSite = lSite;
|
||
|
edge.rSite = rSite;
|
||
|
edge.va = edge.vb = null;
|
||
|
}
|
||
|
|
||
|
this.edges.push(edge);
|
||
|
if (va) {
|
||
|
this.setEdgeStartpoint(edge, lSite, rSite, va);
|
||
|
}
|
||
|
if (vb) {
|
||
|
this.setEdgeEndpoint(edge, lSite, rSite, vb);
|
||
|
}
|
||
|
this.cells[lSite.voronoiId].halfedges.push(this.createHalfedge(edge, lSite, rSite));
|
||
|
this.cells[rSite.voronoiId].halfedges.push(this.createHalfedge(edge, rSite, lSite));
|
||
|
return edge;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.createBorderEdge = function(lSite, va, vb) {
|
||
|
var edge = this.edgeJunkyard.pop();
|
||
|
if ( !edge ) {
|
||
|
edge = new this.Edge(lSite, null);
|
||
|
}
|
||
|
else {
|
||
|
edge.lSite = lSite;
|
||
|
edge.rSite = null;
|
||
|
}
|
||
|
edge.va = va;
|
||
|
edge.vb = vb;
|
||
|
this.edges.push(edge);
|
||
|
return edge;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.setEdgeStartpoint = function(edge, lSite, rSite, vertex) {
|
||
|
if (!edge.va && !edge.vb) {
|
||
|
edge.va = vertex;
|
||
|
edge.lSite = lSite;
|
||
|
edge.rSite = rSite;
|
||
|
}
|
||
|
else if (edge.lSite === rSite) {
|
||
|
edge.vb = vertex;
|
||
|
}
|
||
|
else {
|
||
|
edge.va = vertex;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.setEdgeEndpoint = function(edge, lSite, rSite, vertex) {
|
||
|
this.setEdgeStartpoint(edge, rSite, lSite, vertex);
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Beachline methods
|
||
|
|
||
|
// rhill 2011-06-07: For some reasons, performance suffers significantly
|
||
|
// when instanciating a literal object instead of an empty ctor
|
||
|
Voronoi.prototype.Beachsection = function() {
|
||
|
};
|
||
|
|
||
|
// rhill 2011-06-02: A lot of Beachsection instanciations
|
||
|
// occur during the computation of the Voronoi diagram,
|
||
|
// somewhere between the number of sites and twice the
|
||
|
// number of sites, while the number of Beachsections on the
|
||
|
// beachline at any given time is comparatively low. For this
|
||
|
// reason, we reuse already created Beachsections, in order
|
||
|
// to avoid new memory allocation. This resulted in a measurable
|
||
|
// performance gain.
|
||
|
|
||
|
Voronoi.prototype.createBeachsection = function(site) {
|
||
|
var beachsection = this.beachsectionJunkyard.pop();
|
||
|
if (!beachsection) {
|
||
|
beachsection = new this.Beachsection();
|
||
|
}
|
||
|
beachsection.site = site;
|
||
|
return beachsection;
|
||
|
};
|
||
|
|
||
|
// calculate the left break point of a particular beach section,
|
||
|
// given a particular sweep line
|
||
|
Voronoi.prototype.leftBreakPoint = function(arc, directrix) {
|
||
|
// http://en.wikipedia.org/wiki/Parabola
|
||
|
// http://en.wikipedia.org/wiki/Quadratic_equation
|
||
|
// h1 = x1,
|
||
|
// k1 = (y1+directrix)/2,
|
||
|
// h2 = x2,
|
||
|
// k2 = (y2+directrix)/2,
|
||
|
// p1 = k1-directrix,
|
||
|
// a1 = 1/(4*p1),
|
||
|
// b1 = -h1/(2*p1),
|
||
|
// c1 = h1*h1/(4*p1)+k1,
|
||
|
// p2 = k2-directrix,
|
||
|
// a2 = 1/(4*p2),
|
||
|
// b2 = -h2/(2*p2),
|
||
|
// c2 = h2*h2/(4*p2)+k2,
|
||
|
// x = (-(b2-b1) + Math.sqrt((b2-b1)*(b2-b1) - 4*(a2-a1)*(c2-c1))) / (2*(a2-a1))
|
||
|
// When x1 become the x-origin:
|
||
|
// h1 = 0,
|
||
|
// k1 = (y1+directrix)/2,
|
||
|
// h2 = x2-x1,
|
||
|
// k2 = (y2+directrix)/2,
|
||
|
// p1 = k1-directrix,
|
||
|
// a1 = 1/(4*p1),
|
||
|
// b1 = 0,
|
||
|
// c1 = k1,
|
||
|
// p2 = k2-directrix,
|
||
|
// a2 = 1/(4*p2),
|
||
|
// b2 = -h2/(2*p2),
|
||
|
// c2 = h2*h2/(4*p2)+k2,
|
||
|
// x = (-b2 + Math.sqrt(b2*b2 - 4*(a2-a1)*(c2-k1))) / (2*(a2-a1)) + x1
|
||
|
|
||
|
// change code below at your own risk: care has been taken to
|
||
|
// reduce errors due to computers' finite arithmetic precision.
|
||
|
// Maybe can still be improved, will see if any more of this
|
||
|
// kind of errors pop up again.
|
||
|
var site = arc.site,
|
||
|
rfocx = site.x,
|
||
|
rfocy = site.y,
|
||
|
pby2 = rfocy-directrix;
|
||
|
// parabola in degenerate case where focus is on directrix
|
||
|
if (!pby2) {
|
||
|
return rfocx;
|
||
|
}
|
||
|
var lArc = arc.rbPrevious;
|
||
|
if (!lArc) {
|
||
|
return -Infinity;
|
||
|
}
|
||
|
site = lArc.site;
|
||
|
var lfocx = site.x,
|
||
|
lfocy = site.y,
|
||
|
plby2 = lfocy-directrix;
|
||
|
// parabola in degenerate case where focus is on directrix
|
||
|
if (!plby2) {
|
||
|
return lfocx;
|
||
|
}
|
||
|
var hl = lfocx-rfocx,
|
||
|
aby2 = 1/pby2-1/plby2,
|
||
|
b = hl/plby2;
|
||
|
if (aby2) {
|
||
|
return (-b+this.sqrt(b*b-2*aby2*(hl*hl/(-2*plby2)-lfocy+plby2/2+rfocy-pby2/2)))/aby2+rfocx;
|
||
|
}
|
||
|
// both parabolas have same distance to directrix, thus break point is midway
|
||
|
return (rfocx+lfocx)/2;
|
||
|
};
|
||
|
|
||
|
// calculate the right break point of a particular beach section,
|
||
|
// given a particular directrix
|
||
|
Voronoi.prototype.rightBreakPoint = function(arc, directrix) {
|
||
|
var rArc = arc.rbNext;
|
||
|
if (rArc) {
|
||
|
return this.leftBreakPoint(rArc, directrix);
|
||
|
}
|
||
|
var site = arc.site;
|
||
|
return site.y === directrix ? site.x : Infinity;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.detachBeachsection = function(beachsection) {
|
||
|
this.detachCircleEvent(beachsection); // detach potentially attached circle event
|
||
|
this.beachline.rbRemoveNode(beachsection); // remove from RB-tree
|
||
|
this.beachsectionJunkyard.push(beachsection); // mark for reuse
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.removeBeachsection = function(beachsection) {
|
||
|
var circle = beachsection.circleEvent,
|
||
|
x = circle.x,
|
||
|
y = circle.ycenter,
|
||
|
vertex = this.createVertex(x, y),
|
||
|
previous = beachsection.rbPrevious,
|
||
|
next = beachsection.rbNext,
|
||
|
disappearingTransitions = [beachsection],
|
||
|
abs_fn = Math.abs;
|
||
|
|
||
|
// remove collapsed beachsection from beachline
|
||
|
this.detachBeachsection(beachsection);
|
||
|
|
||
|
// there could be more than one empty arc at the deletion point, this
|
||
|
// happens when more than two edges are linked by the same vertex,
|
||
|
// so we will collect all those edges by looking up both sides of
|
||
|
// the deletion point.
|
||
|
// by the way, there is *always* a predecessor/successor to any collapsed
|
||
|
// beach section, it's just impossible to have a collapsing first/last
|
||
|
// beach sections on the beachline, since they obviously are unconstrained
|
||
|
// on their left/right side.
|
||
|
|
||
|
// look left
|
||
|
var lArc = previous;
|
||
|
while (lArc.circleEvent && abs_fn(x-lArc.circleEvent.x)<1e-9 && abs_fn(y-lArc.circleEvent.ycenter)<1e-9) {
|
||
|
previous = lArc.rbPrevious;
|
||
|
disappearingTransitions.unshift(lArc);
|
||
|
this.detachBeachsection(lArc); // mark for reuse
|
||
|
lArc = previous;
|
||
|
}
|
||
|
// even though it is not disappearing, I will also add the beach section
|
||
|
// immediately to the left of the left-most collapsed beach section, for
|
||
|
// convenience, since we need to refer to it later as this beach section
|
||
|
// is the 'left' site of an edge for which a start point is set.
|
||
|
disappearingTransitions.unshift(lArc);
|
||
|
this.detachCircleEvent(lArc);
|
||
|
|
||
|
// look right
|
||
|
var rArc = next;
|
||
|
while (rArc.circleEvent && abs_fn(x-rArc.circleEvent.x)<1e-9 && abs_fn(y-rArc.circleEvent.ycenter)<1e-9) {
|
||
|
next = rArc.rbNext;
|
||
|
disappearingTransitions.push(rArc);
|
||
|
this.detachBeachsection(rArc); // mark for reuse
|
||
|
rArc = next;
|
||
|
}
|
||
|
// we also have to add the beach section immediately to the right of the
|
||
|
// right-most collapsed beach section, since there is also a disappearing
|
||
|
// transition representing an edge's start point on its left.
|
||
|
disappearingTransitions.push(rArc);
|
||
|
this.detachCircleEvent(rArc);
|
||
|
|
||
|
// walk through all the disappearing transitions between beach sections and
|
||
|
// set the start point of their (implied) edge.
|
||
|
var nArcs = disappearingTransitions.length,
|
||
|
iArc;
|
||
|
for (iArc=1; iArc<nArcs; iArc++) {
|
||
|
rArc = disappearingTransitions[iArc];
|
||
|
lArc = disappearingTransitions[iArc-1];
|
||
|
this.setEdgeStartpoint(rArc.edge, lArc.site, rArc.site, vertex);
|
||
|
}
|
||
|
|
||
|
// create a new edge as we have now a new transition between
|
||
|
// two beach sections which were previously not adjacent.
|
||
|
// since this edge appears as a new vertex is defined, the vertex
|
||
|
// actually define an end point of the edge (relative to the site
|
||
|
// on the left)
|
||
|
lArc = disappearingTransitions[0];
|
||
|
rArc = disappearingTransitions[nArcs-1];
|
||
|
rArc.edge = this.createEdge(lArc.site, rArc.site, undefined, vertex);
|
||
|
|
||
|
// create circle events if any for beach sections left in the beachline
|
||
|
// adjacent to collapsed sections
|
||
|
this.attachCircleEvent(lArc);
|
||
|
this.attachCircleEvent(rArc);
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.addBeachsection = function(site) {
|
||
|
var x = site.x,
|
||
|
directrix = site.y;
|
||
|
|
||
|
// find the left and right beach sections which will surround the newly
|
||
|
// created beach section.
|
||
|
// rhill 2011-06-01: This loop is one of the most often executed,
|
||
|
// hence we expand in-place the comparison-against-epsilon calls.
|
||
|
var lArc, rArc,
|
||
|
dxl, dxr,
|
||
|
node = this.beachline.root;
|
||
|
|
||
|
while (node) {
|
||
|
dxl = this.leftBreakPoint(node,directrix)-x;
|
||
|
// x lessThanWithEpsilon xl => falls somewhere before the left edge of the beachsection
|
||
|
if (dxl > 1e-9) {
|
||
|
// this case should never happen
|
||
|
// if (!node.rbLeft) {
|
||
|
// rArc = node.rbLeft;
|
||
|
// break;
|
||
|
// }
|
||
|
node = node.rbLeft;
|
||
|
}
|
||
|
else {
|
||
|
dxr = x-this.rightBreakPoint(node,directrix);
|
||
|
// x greaterThanWithEpsilon xr => falls somewhere after the right edge of the beachsection
|
||
|
if (dxr > 1e-9) {
|
||
|
if (!node.rbRight) {
|
||
|
lArc = node;
|
||
|
break;
|
||
|
}
|
||
|
node = node.rbRight;
|
||
|
}
|
||
|
else {
|
||
|
// x equalWithEpsilon xl => falls exactly on the left edge of the beachsection
|
||
|
if (dxl > -1e-9) {
|
||
|
lArc = node.rbPrevious;
|
||
|
rArc = node;
|
||
|
}
|
||
|
// x equalWithEpsilon xr => falls exactly on the right edge of the beachsection
|
||
|
else if (dxr > -1e-9) {
|
||
|
lArc = node;
|
||
|
rArc = node.rbNext;
|
||
|
}
|
||
|
// falls exactly somewhere in the middle of the beachsection
|
||
|
else {
|
||
|
lArc = rArc = node;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// at this point, keep in mind that lArc and/or rArc could be
|
||
|
// undefined or null.
|
||
|
|
||
|
// create a new beach section object for the site and add it to RB-tree
|
||
|
var newArc = this.createBeachsection(site);
|
||
|
this.beachline.rbInsertSuccessor(lArc, newArc);
|
||
|
|
||
|
// cases:
|
||
|
//
|
||
|
|
||
|
// [null,null]
|
||
|
// least likely case: new beach section is the first beach section on the
|
||
|
// beachline.
|
||
|
// This case means:
|
||
|
// no new transition appears
|
||
|
// no collapsing beach section
|
||
|
// new beachsection become root of the RB-tree
|
||
|
if (!lArc && !rArc) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// [lArc,rArc] where lArc == rArc
|
||
|
// most likely case: new beach section split an existing beach
|
||
|
// section.
|
||
|
// This case means:
|
||
|
// one new transition appears
|
||
|
// the left and right beach section might be collapsing as a result
|
||
|
// two new nodes added to the RB-tree
|
||
|
if (lArc === rArc) {
|
||
|
// invalidate circle event of split beach section
|
||
|
this.detachCircleEvent(lArc);
|
||
|
|
||
|
// split the beach section into two separate beach sections
|
||
|
rArc = this.createBeachsection(lArc.site);
|
||
|
this.beachline.rbInsertSuccessor(newArc, rArc);
|
||
|
|
||
|
// since we have a new transition between two beach sections,
|
||
|
// a new edge is born
|
||
|
newArc.edge = rArc.edge = this.createEdge(lArc.site, newArc.site);
|
||
|
|
||
|
// check whether the left and right beach sections are collapsing
|
||
|
// and if so create circle events, to be notified when the point of
|
||
|
// collapse is reached.
|
||
|
this.attachCircleEvent(lArc);
|
||
|
this.attachCircleEvent(rArc);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// [lArc,null]
|
||
|
// even less likely case: new beach section is the *last* beach section
|
||
|
// on the beachline -- this can happen *only* if *all* the previous beach
|
||
|
// sections currently on the beachline share the same y value as
|
||
|
// the new beach section.
|
||
|
// This case means:
|
||
|
// one new transition appears
|
||
|
// no collapsing beach section as a result
|
||
|
// new beach section become right-most node of the RB-tree
|
||
|
if (lArc && !rArc) {
|
||
|
newArc.edge = this.createEdge(lArc.site,newArc.site);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// [null,rArc]
|
||
|
// impossible case: because sites are strictly processed from top to bottom,
|
||
|
// and left to right, which guarantees that there will always be a beach section
|
||
|
// on the left -- except of course when there are no beach section at all on
|
||
|
// the beach line, which case was handled above.
|
||
|
// rhill 2011-06-02: No point testing in non-debug version
|
||
|
//if (!lArc && rArc) {
|
||
|
// throw "Voronoi.addBeachsection(): What is this I don't even";
|
||
|
// }
|
||
|
|
||
|
// [lArc,rArc] where lArc != rArc
|
||
|
// somewhat less likely case: new beach section falls *exactly* in between two
|
||
|
// existing beach sections
|
||
|
// This case means:
|
||
|
// one transition disappears
|
||
|
// two new transitions appear
|
||
|
// the left and right beach section might be collapsing as a result
|
||
|
// only one new node added to the RB-tree
|
||
|
if (lArc !== rArc) {
|
||
|
// invalidate circle events of left and right sites
|
||
|
this.detachCircleEvent(lArc);
|
||
|
this.detachCircleEvent(rArc);
|
||
|
|
||
|
// an existing transition disappears, meaning a vertex is defined at
|
||
|
// the disappearance point.
|
||
|
// since the disappearance is caused by the new beachsection, the
|
||
|
// vertex is at the center of the circumscribed circle of the left,
|
||
|
// new and right beachsections.
|
||
|
// http://mathforum.org/library/drmath/view/55002.html
|
||
|
// Except that I bring the origin at A to simplify
|
||
|
// calculation
|
||
|
var lSite = lArc.site,
|
||
|
ax = lSite.x,
|
||
|
ay = lSite.y,
|
||
|
bx=site.x-ax,
|
||
|
by=site.y-ay,
|
||
|
rSite = rArc.site,
|
||
|
cx=rSite.x-ax,
|
||
|
cy=rSite.y-ay,
|
||
|
d=2*(bx*cy-by*cx),
|
||
|
hb=bx*bx+by*by,
|
||
|
hc=cx*cx+cy*cy,
|
||
|
vertex = this.createVertex((cy*hb-by*hc)/d+ax, (bx*hc-cx*hb)/d+ay);
|
||
|
|
||
|
// one transition disappear
|
||
|
this.setEdgeStartpoint(rArc.edge, lSite, rSite, vertex);
|
||
|
|
||
|
// two new transitions appear at the new vertex location
|
||
|
newArc.edge = this.createEdge(lSite, site, undefined, vertex);
|
||
|
rArc.edge = this.createEdge(site, rSite, undefined, vertex);
|
||
|
|
||
|
// check whether the left and right beach sections are collapsing
|
||
|
// and if so create circle events, to handle the point of collapse.
|
||
|
this.attachCircleEvent(lArc);
|
||
|
this.attachCircleEvent(rArc);
|
||
|
return;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Circle event methods
|
||
|
|
||
|
// rhill 2011-06-07: For some reasons, performance suffers significantly
|
||
|
// when instanciating a literal object instead of an empty ctor
|
||
|
Voronoi.prototype.CircleEvent = function() {
|
||
|
// rhill 2013-10-12: it helps to state exactly what we are at ctor time.
|
||
|
this.arc = null;
|
||
|
this.rbLeft = null;
|
||
|
this.rbNext = null;
|
||
|
this.rbParent = null;
|
||
|
this.rbPrevious = null;
|
||
|
this.rbRed = false;
|
||
|
this.rbRight = null;
|
||
|
this.site = null;
|
||
|
this.x = this.y = this.ycenter = 0;
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.attachCircleEvent = function(arc) {
|
||
|
var lArc = arc.rbPrevious,
|
||
|
rArc = arc.rbNext;
|
||
|
if (!lArc || !rArc) {return;} // does that ever happen?
|
||
|
var lSite = lArc.site,
|
||
|
cSite = arc.site,
|
||
|
rSite = rArc.site;
|
||
|
|
||
|
// If site of left beachsection is same as site of
|
||
|
// right beachsection, there can't be convergence
|
||
|
if (lSite===rSite) {return;}
|
||
|
|
||
|
// Find the circumscribed circle for the three sites associated
|
||
|
// with the beachsection triplet.
|
||
|
// rhill 2011-05-26: It is more efficient to calculate in-place
|
||
|
// rather than getting the resulting circumscribed circle from an
|
||
|
// object returned by calling Voronoi.circumcircle()
|
||
|
// http://mathforum.org/library/drmath/view/55002.html
|
||
|
// Except that I bring the origin at cSite to simplify calculations.
|
||
|
// The bottom-most part of the circumcircle is our Fortune 'circle
|
||
|
// event', and its center is a vertex potentially part of the final
|
||
|
// Voronoi diagram.
|
||
|
var bx = cSite.x,
|
||
|
by = cSite.y,
|
||
|
ax = lSite.x-bx,
|
||
|
ay = lSite.y-by,
|
||
|
cx = rSite.x-bx,
|
||
|
cy = rSite.y-by;
|
||
|
|
||
|
// If points l->c->r are clockwise, then center beach section does not
|
||
|
// collapse, hence it can't end up as a vertex (we reuse 'd' here, which
|
||
|
// sign is reverse of the orientation, hence we reverse the test.
|
||
|
// http://en.wikipedia.org/wiki/Curve_orientation#Orientation_of_a_simple_polygon
|
||
|
// rhill 2011-05-21: Nasty finite precision error which caused circumcircle() to
|
||
|
// return infinites: 1e-12 seems to fix the problem.
|
||
|
var d = 2*(ax*cy-ay*cx);
|
||
|
if (d >= -2e-12){return;}
|
||
|
|
||
|
var ha = ax*ax+ay*ay,
|
||
|
hc = cx*cx+cy*cy,
|
||
|
x = (cy*ha-ay*hc)/d,
|
||
|
y = (ax*hc-cx*ha)/d,
|
||
|
ycenter = y+by;
|
||
|
|
||
|
// Important: ybottom should always be under or at sweep, so no need
|
||
|
// to waste CPU cycles by checking
|
||
|
|
||
|
// recycle circle event object if possible
|
||
|
var circleEvent = this.circleEventJunkyard.pop();
|
||
|
if (!circleEvent) {
|
||
|
circleEvent = new this.CircleEvent();
|
||
|
}
|
||
|
circleEvent.arc = arc;
|
||
|
circleEvent.site = cSite;
|
||
|
circleEvent.x = x+bx;
|
||
|
circleEvent.y = ycenter+this.sqrt(x*x+y*y); // y bottom
|
||
|
circleEvent.ycenter = ycenter;
|
||
|
arc.circleEvent = circleEvent;
|
||
|
|
||
|
// find insertion point in RB-tree: circle events are ordered from
|
||
|
// smallest to largest
|
||
|
var predecessor = null,
|
||
|
node = this.circleEvents.root;
|
||
|
while (node) {
|
||
|
if (circleEvent.y < node.y || (circleEvent.y === node.y && circleEvent.x <= node.x)) {
|
||
|
if (node.rbLeft) {
|
||
|
node = node.rbLeft;
|
||
|
}
|
||
|
else {
|
||
|
predecessor = node.rbPrevious;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (node.rbRight) {
|
||
|
node = node.rbRight;
|
||
|
}
|
||
|
else {
|
||
|
predecessor = node;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
this.circleEvents.rbInsertSuccessor(predecessor, circleEvent);
|
||
|
if (!predecessor) {
|
||
|
this.firstCircleEvent = circleEvent;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
Voronoi.prototype.detachCircleEvent = function(arc) {
|
||
|
var circleEvent = arc.circleEvent;
|
||
|
if (circleEvent) {
|
||
|
if (!circleEvent.rbPrevious) {
|
||
|
this.firstCircleEvent = circleEvent.rbNext;
|
||
|
}
|
||
|
this.circleEvents.rbRemoveNode(circleEvent); // remove from RB-tree
|
||
|
this.circleEventJunkyard.push(circleEvent);
|
||
|
arc.circleEvent = null;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Diagram completion methods
|
||
|
|
||
|
// connect dangling edges (not if a cursory test tells us
|
||
|
// it is not going to be visible.
|
||
|
// return value:
|
||
|
// false: the dangling endpoint couldn't be connected
|
||
|
// true: the dangling endpoint could be connected
|
||
|
Voronoi.prototype.connectEdge = function(edge, bbox) {
|
||
|
// skip if end point already connected
|
||
|
var vb = edge.vb;
|
||
|
if (!!vb) {return true;}
|
||
|
|
||
|
// make local copy for performance purpose
|
||
|
var va = edge.va,
|
||
|
xl = bbox.xl,
|
||
|
xr = bbox.xr,
|
||
|
yt = bbox.yt,
|
||
|
yb = bbox.yb,
|
||
|
lSite = edge.lSite,
|
||
|
rSite = edge.rSite,
|
||
|
lx = lSite.x,
|
||
|
ly = lSite.y,
|
||
|
rx = rSite.x,
|
||
|
ry = rSite.y,
|
||
|
fx = (lx+rx)/2,
|
||
|
fy = (ly+ry)/2,
|
||
|
fm, fb;
|
||
|
|
||
|
// if we reach here, this means cells which use this edge will need
|
||
|
// to be closed, whether because the edge was removed, or because it
|
||
|
// was connected to the bounding box.
|
||
|
this.cells[lSite.voronoiId].closeMe = true;
|
||
|
this.cells[rSite.voronoiId].closeMe = true;
|
||
|
|
||
|
// get the line equation of the bisector if line is not vertical
|
||
|
if (ry !== ly) {
|
||
|
fm = (lx-rx)/(ry-ly);
|
||
|
fb = fy-fm*fx;
|
||
|
}
|
||
|
|
||
|
// remember, direction of line (relative to left site):
|
||
|
// upward: left.x < right.x
|
||
|
// downward: left.x > right.x
|
||
|
// horizontal: left.x == right.x
|
||
|
// upward: left.x < right.x
|
||
|
// rightward: left.y < right.y
|
||
|
// leftward: left.y > right.y
|
||
|
// vertical: left.y == right.y
|
||
|
|
||
|
// depending on the direction, find the best side of the
|
||
|
// bounding box to use to determine a reasonable start point
|
||
|
|
||
|
// rhill 2013-12-02:
|
||
|
// While at it, since we have the values which define the line,
|
||
|
// clip the end of va if it is outside the bbox.
|
||
|
// https://github.com/gorhill/Javascript-Voronoi/issues/15
|
||
|
// TODO: Do all the clipping here rather than rely on Liang-Barsky
|
||
|
// which does not do well sometimes due to loss of arithmetic
|
||
|
// precision. The code here doesn't degrade if one of the vertex is
|
||
|
// at a huge distance.
|
||
|
|
||
|
// special case: vertical line
|
||
|
if (fm === undefined) {
|
||
|
// doesn't intersect with viewport
|
||
|
if (fx < xl || fx >= xr) {return false;}
|
||
|
// downward
|
||
|
if (lx > rx) {
|
||
|
if (!va || va.y < yt) {
|
||
|
va = this.createVertex(fx, yt);
|
||
|
}
|
||
|
else if (va.y >= yb) {
|
||
|
return false;
|
||
|
}
|
||
|
vb = this.createVertex(fx, yb);
|
||
|
}
|
||
|
// upward
|
||
|
else {
|
||
|
if (!va || va.y > yb) {
|
||
|
va = this.createVertex(fx, yb);
|
||
|
}
|
||
|
else if (va.y < yt) {
|
||
|
return false;
|
||
|
}
|
||
|
vb = this.createVertex(fx, yt);
|
||
|
}
|
||
|
}
|
||
|
// closer to vertical than horizontal, connect start point to the
|
||
|
// top or bottom side of the bounding box
|
||
|
else if (fm < -1 || fm > 1) {
|
||
|
// downward
|
||
|
if (lx > rx) {
|
||
|
if (!va || va.y < yt) {
|
||
|
va = this.createVertex((yt-fb)/fm, yt);
|
||
|
}
|
||
|
else if (va.y >= yb) {
|
||
|
return false;
|
||
|
}
|
||
|
vb = this.createVertex((yb-fb)/fm, yb);
|
||
|
}
|
||
|
// upward
|
||
|
else {
|
||
|
if (!va || va.y > yb) {
|
||
|
va = this.createVertex((yb-fb)/fm, yb);
|
||
|
}
|
||
|
else if (va.y < yt) {
|
||
|
return false;
|
||
|
}
|
||
|
vb = this.createVertex((yt-fb)/fm, yt);
|
||
|
}
|
||
|
}
|
||
|
// closer to horizontal than vertical, connect start point to the
|
||
|
// left or right side of the bounding box
|
||
|
else {
|
||
|
// rightward
|
||
|
if (ly < ry) {
|
||
|
if (!va || va.x < xl) {
|
||
|
va = this.createVertex(xl, fm*xl+fb);
|
||
|
}
|
||
|
else if (va.x >= xr) {
|
||
|
return false;
|
||
|
}
|
||
|
vb = this.createVertex(xr, fm*xr+fb);
|
||
|
}
|
||
|
// leftward
|
||
|
else {
|
||
|
if (!va || va.x > xr) {
|
||
|
va = this.createVertex(xr, fm*xr+fb);
|
||
|
}
|
||
|
else if (va.x < xl) {
|
||
|
return false;
|
||
|
}
|
||
|
vb = this.createVertex(xl, fm*xl+fb);
|
||
|
}
|
||
|
}
|
||
|
edge.va = va;
|
||
|
edge.vb = vb;
|
||
|
|
||
|
return true;
|
||
|
};
|
||
|
|
||
|
// line-clipping code taken from:
|
||
|
// Liang-Barsky function by Daniel White
|
||
|
// http://www.skytopia.com/project/articles/compsci/clipping.html
|
||
|
// Thanks!
|
||
|
// A bit modified to minimize code paths
|
||
|
Voronoi.prototype.clipEdge = function(edge, bbox) {
|
||
|
var ax = edge.va.x,
|
||
|
ay = edge.va.y,
|
||
|
bx = edge.vb.x,
|
||
|
by = edge.vb.y,
|
||
|
t0 = 0,
|
||
|
t1 = 1,
|
||
|
dx = bx-ax,
|
||
|
dy = by-ay;
|
||
|
// left
|
||
|
var q = ax-bbox.xl;
|
||
|
if (dx===0 && q<0) {return false;}
|
||
|
var r = -q/dx;
|
||
|
if (dx<0) {
|
||
|
if (r<t0) {return false;}
|
||
|
if (r<t1) {t1=r;}
|
||
|
}
|
||
|
else if (dx>0) {
|
||
|
if (r>t1) {return false;}
|
||
|
if (r>t0) {t0=r;}
|
||
|
}
|
||
|
// right
|
||
|
q = bbox.xr-ax;
|
||
|
if (dx===0 && q<0) {return false;}
|
||
|
r = q/dx;
|
||
|
if (dx<0) {
|
||
|
if (r>t1) {return false;}
|
||
|
if (r>t0) {t0=r;}
|
||
|
}
|
||
|
else if (dx>0) {
|
||
|
if (r<t0) {return false;}
|
||
|
if (r<t1) {t1=r;}
|
||
|
}
|
||
|
// top
|
||
|
q = ay-bbox.yt;
|
||
|
if (dy===0 && q<0) {return false;}
|
||
|
r = -q/dy;
|
||
|
if (dy<0) {
|
||
|
if (r<t0) {return false;}
|
||
|
if (r<t1) {t1=r;}
|
||
|
}
|
||
|
else if (dy>0) {
|
||
|
if (r>t1) {return false;}
|
||
|
if (r>t0) {t0=r;}
|
||
|
}
|
||
|
// bottom
|
||
|
q = bbox.yb-ay;
|
||
|
if (dy===0 && q<0) {return false;}
|
||
|
r = q/dy;
|
||
|
if (dy<0) {
|
||
|
if (r>t1) {return false;}
|
||
|
if (r>t0) {t0=r;}
|
||
|
}
|
||
|
else if (dy>0) {
|
||
|
if (r<t0) {return false;}
|
||
|
if (r<t1) {t1=r;}
|
||
|
}
|
||
|
|
||
|
// if we reach this point, Voronoi edge is within bbox
|
||
|
|
||
|
// if t0 > 0, va needs to change
|
||
|
// rhill 2011-06-03: we need to create a new vertex rather
|
||
|
// than modifying the existing one, since the existing
|
||
|
// one is likely shared with at least another edge
|
||
|
if (t0 > 0) {
|
||
|
edge.va = this.createVertex(ax+t0*dx, ay+t0*dy);
|
||
|
}
|
||
|
|
||
|
// if t1 < 1, vb needs to change
|
||
|
// rhill 2011-06-03: we need to create a new vertex rather
|
||
|
// than modifying the existing one, since the existing
|
||
|
// one is likely shared with at least another edge
|
||
|
if (t1 < 1) {
|
||
|
edge.vb = this.createVertex(ax+t1*dx, ay+t1*dy);
|
||
|
}
|
||
|
|
||
|
// va and/or vb were clipped, thus we will need to close
|
||
|
// cells which use this edge.
|
||
|
if ( t0 > 0 || t1 < 1 ) {
|
||
|
this.cells[edge.lSite.voronoiId].closeMe = true;
|
||
|
this.cells[edge.rSite.voronoiId].closeMe = true;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
};
|
||
|
|
||
|
// Connect/cut edges at bounding box
|
||
|
Voronoi.prototype.clipEdges = function(bbox) {
|
||
|
// connect all dangling edges to bounding box
|
||
|
// or get rid of them if it can't be done
|
||
|
var edges = this.edges,
|
||
|
iEdge = edges.length,
|
||
|
edge,
|
||
|
abs_fn = Math.abs;
|
||
|
|
||
|
// iterate backward so we can splice safely
|
||
|
while (iEdge--) {
|
||
|
edge = edges[iEdge];
|
||
|
// edge is removed if:
|
||
|
// it is wholly outside the bounding box
|
||
|
// it is looking more like a point than a line
|
||
|
if (!this.connectEdge(edge, bbox) ||
|
||
|
!this.clipEdge(edge, bbox) ||
|
||
|
(abs_fn(edge.va.x-edge.vb.x)<1e-9 && abs_fn(edge.va.y-edge.vb.y)<1e-9)) {
|
||
|
edge.va = edge.vb = null;
|
||
|
edges.splice(iEdge,1);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Close the cells.
|
||
|
// The cells are bound by the supplied bounding box.
|
||
|
// Each cell refers to its associated site, and a list
|
||
|
// of halfedges ordered counterclockwise.
|
||
|
Voronoi.prototype.closeCells = function(bbox) {
|
||
|
var xl = bbox.xl,
|
||
|
xr = bbox.xr,
|
||
|
yt = bbox.yt,
|
||
|
yb = bbox.yb,
|
||
|
cells = this.cells,
|
||
|
iCell = cells.length,
|
||
|
cell,
|
||
|
iLeft,
|
||
|
halfedges, nHalfedges,
|
||
|
edge,
|
||
|
va, vb, vz,
|
||
|
lastBorderSegment,
|
||
|
abs_fn = Math.abs;
|
||
|
|
||
|
while (iCell--) {
|
||
|
cell = cells[iCell];
|
||
|
// prune, order halfedges counterclockwise, then add missing ones
|
||
|
// required to close cells
|
||
|
if (!cell.prepareHalfedges()) {
|
||
|
continue;
|
||
|
}
|
||
|
if (!cell.closeMe) {
|
||
|
continue;
|
||
|
}
|
||
|
// find first 'unclosed' point.
|
||
|
// an 'unclosed' point will be the end point of a halfedge which
|
||
|
// does not match the start point of the following halfedge
|
||
|
halfedges = cell.halfedges;
|
||
|
nHalfedges = halfedges.length;
|
||
|
// special case: only one site, in which case, the viewport is the cell
|
||
|
// ...
|
||
|
|
||
|
// all other cases
|
||
|
iLeft = 0;
|
||
|
while (iLeft < nHalfedges) {
|
||
|
va = halfedges[iLeft].getEndpoint();
|
||
|
vz = halfedges[(iLeft+1) % nHalfedges].getStartpoint();
|
||
|
// if end point is not equal to start point, we need to add the missing
|
||
|
// halfedge(s) up to vz
|
||
|
if (abs_fn(va.x-vz.x)>=1e-9 || abs_fn(va.y-vz.y)>=1e-9) {
|
||
|
|
||
|
// rhill 2013-12-02:
|
||
|
// "Holes" in the halfedges are not necessarily always adjacent.
|
||
|
// https://github.com/gorhill/Javascript-Voronoi/issues/16
|
||
|
|
||
|
// find entry point:
|
||
|
switch (true) {
|
||
|
|
||
|
// walk downward along left side
|
||
|
case this.equalWithEpsilon(va.x,xl) && this.lessThanWithEpsilon(va.y,yb):
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.x,xl);
|
||
|
vb = this.createVertex(xl, lastBorderSegment ? vz.y : yb);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
va = vb;
|
||
|
// fall through
|
||
|
|
||
|
// walk rightward along bottom side
|
||
|
case this.equalWithEpsilon(va.y,yb) && this.lessThanWithEpsilon(va.x,xr):
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.y,yb);
|
||
|
vb = this.createVertex(lastBorderSegment ? vz.x : xr, yb);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
va = vb;
|
||
|
// fall through
|
||
|
|
||
|
// walk upward along right side
|
||
|
case this.equalWithEpsilon(va.x,xr) && this.greaterThanWithEpsilon(va.y,yt):
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.x,xr);
|
||
|
vb = this.createVertex(xr, lastBorderSegment ? vz.y : yt);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
va = vb;
|
||
|
// fall through
|
||
|
|
||
|
// walk leftward along top side
|
||
|
case this.equalWithEpsilon(va.y,yt) && this.greaterThanWithEpsilon(va.x,xl):
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.y,yt);
|
||
|
vb = this.createVertex(lastBorderSegment ? vz.x : xl, yt);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
va = vb;
|
||
|
// fall through
|
||
|
|
||
|
// walk downward along left side
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.x,xl);
|
||
|
vb = this.createVertex(xl, lastBorderSegment ? vz.y : yb);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
va = vb;
|
||
|
// fall through
|
||
|
|
||
|
// walk rightward along bottom side
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.y,yb);
|
||
|
vb = this.createVertex(lastBorderSegment ? vz.x : xr, yb);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
va = vb;
|
||
|
// fall through
|
||
|
|
||
|
// walk upward along right side
|
||
|
lastBorderSegment = this.equalWithEpsilon(vz.x,xr);
|
||
|
vb = this.createVertex(xr, lastBorderSegment ? vz.y : yt);
|
||
|
edge = this.createBorderEdge(cell.site, va, vb);
|
||
|
iLeft++;
|
||
|
halfedges.splice(iLeft, 0, this.createHalfedge(edge, cell.site, null));
|
||
|
nHalfedges++;
|
||
|
if ( lastBorderSegment ) { break; }
|
||
|
// fall through
|
||
|
|
||
|
default:
|
||
|
throw "Voronoi.closeCells() > this makes no sense!";
|
||
|
}
|
||
|
}
|
||
|
iLeft++;
|
||
|
}
|
||
|
cell.closeMe = false;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Debugging helper
|
||
|
/*
|
||
|
Voronoi.prototype.dumpBeachline = function(y) {
|
||
|
console.log('Voronoi.dumpBeachline(%f) > Beachsections, from left to right:', y);
|
||
|
if ( !this.beachline ) {
|
||
|
console.log(' None');
|
||
|
}
|
||
|
else {
|
||
|
var bs = this.beachline.getFirst(this.beachline.root);
|
||
|
while ( bs ) {
|
||
|
console.log(' site %d: xl: %f, xr: %f', bs.site.voronoiId, this.leftBreakPoint(bs, y), this.rightBreakPoint(bs, y));
|
||
|
bs = bs.rbNext;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
*/
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Helper: Quantize sites
|
||
|
|
||
|
// rhill 2013-10-12:
|
||
|
// This is to solve https://github.com/gorhill/Javascript-Voronoi/issues/15
|
||
|
// Since not all users will end up using the kind of coord values which would
|
||
|
// cause the issue to arise, I chose to let the user decide whether or not
|
||
|
// he should sanitize his coord values through this helper. This way, for
|
||
|
// those users who uses coord values which are known to be fine, no overhead is
|
||
|
// added.
|
||
|
|
||
|
Voronoi.prototype.quantizeSites = function(sites) {
|
||
|
var ε = this.ε,
|
||
|
n = sites.length,
|
||
|
site;
|
||
|
while ( n-- ) {
|
||
|
site = sites[n];
|
||
|
site.x = Math.floor(site.x / ε) * ε;
|
||
|
site.y = Math.floor(site.y / ε) * ε;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Helper: Recycle diagram: all vertex, edge and cell objects are
|
||
|
// "surrendered" to the Voronoi object for reuse.
|
||
|
// TODO: rhill-voronoi-core v2: more performance to be gained
|
||
|
// when I change the semantic of what is returned.
|
||
|
|
||
|
Voronoi.prototype.recycle = function(diagram) {
|
||
|
if ( diagram ) {
|
||
|
if ( diagram instanceof this.Diagram ) {
|
||
|
this.toRecycle = diagram;
|
||
|
}
|
||
|
else {
|
||
|
throw 'Voronoi.recycleDiagram() > Need a Diagram object.';
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// Top-level Fortune loop
|
||
|
|
||
|
// rhill 2011-05-19:
|
||
|
// Voronoi sites are kept client-side now, to allow
|
||
|
// user to freely modify content. At compute time,
|
||
|
// *references* to sites are copied locally.
|
||
|
|
||
|
Voronoi.prototype.compute = function(sites, bbox) {
|
||
|
// to measure execution time
|
||
|
var startTime = new Date();
|
||
|
|
||
|
// init internal state
|
||
|
this.reset();
|
||
|
|
||
|
// any diagram data available for recycling?
|
||
|
// I do that here so that this is included in execution time
|
||
|
if ( this.toRecycle ) {
|
||
|
this.vertexJunkyard = this.vertexJunkyard.concat(this.toRecycle.vertices);
|
||
|
this.edgeJunkyard = this.edgeJunkyard.concat(this.toRecycle.edges);
|
||
|
this.cellJunkyard = this.cellJunkyard.concat(this.toRecycle.cells);
|
||
|
this.toRecycle = null;
|
||
|
}
|
||
|
|
||
|
// Initialize site event queue
|
||
|
var siteEvents = sites.slice(0);
|
||
|
siteEvents.sort(function(a,b){
|
||
|
var r = b.y - a.y;
|
||
|
if (r) {return r;}
|
||
|
return b.x - a.x;
|
||
|
});
|
||
|
|
||
|
// process queue
|
||
|
var site = siteEvents.pop(),
|
||
|
siteid = 0,
|
||
|
xsitex, // to avoid duplicate sites
|
||
|
xsitey,
|
||
|
cells = this.cells,
|
||
|
circle;
|
||
|
|
||
|
// main loop
|
||
|
for (;;) {
|
||
|
// we need to figure whether we handle a site or circle event
|
||
|
// for this we find out if there is a site event and it is
|
||
|
// 'earlier' than the circle event
|
||
|
circle = this.firstCircleEvent;
|
||
|
|
||
|
// add beach section
|
||
|
if (site && (!circle || site.y < circle.y || (site.y === circle.y && site.x < circle.x))) {
|
||
|
// only if site is not a duplicate
|
||
|
if (site.x !== xsitex || site.y !== xsitey) {
|
||
|
// first create cell for new site
|
||
|
cells[siteid] = this.createCell(site);
|
||
|
site.voronoiId = siteid++;
|
||
|
// then create a beachsection for that site
|
||
|
this.addBeachsection(site);
|
||
|
// remember last site coords to detect duplicate
|
||
|
xsitey = site.y;
|
||
|
xsitex = site.x;
|
||
|
}
|
||
|
site = siteEvents.pop();
|
||
|
}
|
||
|
|
||
|
// remove beach section
|
||
|
else if (circle) {
|
||
|
this.removeBeachsection(circle.arc);
|
||
|
}
|
||
|
|
||
|
// all done, quit
|
||
|
else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// wrapping-up:
|
||
|
// connect dangling edges to bounding box
|
||
|
// cut edges as per bounding box
|
||
|
// discard edges completely outside bounding box
|
||
|
// discard edges which are point-like
|
||
|
this.clipEdges(bbox);
|
||
|
|
||
|
// add missing edges in order to close opened cells
|
||
|
this.closeCells(bbox);
|
||
|
|
||
|
// to measure execution time
|
||
|
var stopTime = new Date();
|
||
|
|
||
|
// prepare return values
|
||
|
var diagram = new this.Diagram();
|
||
|
diagram.cells = this.cells;
|
||
|
diagram.edges = this.edges;
|
||
|
diagram.vertices = this.vertices;
|
||
|
diagram.execTime = stopTime.getTime()-startTime.getTime();
|
||
|
|
||
|
// clean up
|
||
|
this.reset();
|
||
|
|
||
|
return diagram;
|
||
|
};
|
||
|
|
||
|
/******************************************************************************/
|
||
|
|
||
|
if ( typeof module !== 'undefined' ) {
|
||
|
module.exports = Voronoi;
|
||
|
}
|