460 lines
19 KiB
C++
460 lines
19 KiB
C++
/*
|
||
* =====================================================================================
|
||
*
|
||
* OpenMiner
|
||
*
|
||
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
|
||
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
|
||
*
|
||
* This file is part of OpenMiner.
|
||
*
|
||
* OpenMiner is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* OpenMiner is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public License
|
||
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
|
||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
*
|
||
* =====================================================================================
|
||
*/
|
||
#include "BlockGeometry.hpp"
|
||
#include "ChunkMeshBuilder.hpp"
|
||
#include "ClientWorld.hpp"
|
||
#include "TextureAtlas.hpp"
|
||
|
||
using namespace BlockGeometry;
|
||
|
||
// NOTE: TextureAtlas and Registry are accessed from different threads.
|
||
//
|
||
// This is not a problem currently since both shouldn’t change during the execution,
|
||
// but if they do, a lot of problems will occur.
|
||
//
|
||
// Also, Registry is accessed from server too when running a singleplayer game,
|
||
// so if it changes during the execution, that would cause problems there too.
|
||
//
|
||
void ChunkMeshBuilder::addMeshBuildingJob(const Chunk &chunk, const TextureAtlas &textureAtlas) {
|
||
// Creating the job (creates a copy of the chunk to send it to the thread)
|
||
ChunkMeshBuildingJob job;
|
||
job.textureAtlas = &textureAtlas;
|
||
job.chunkData.loadFromChunk(chunk);
|
||
|
||
// Send the job to the thread pool
|
||
auto future = m_threadPool.submit([](ChunkMeshBuildingJob job) {
|
||
// For each block, generate its vertices and add them to the list
|
||
for (s8f z = 0 ; z < CHUNK_HEIGHT ; z++) {
|
||
for (s8f y = 0 ; y < CHUNK_DEPTH ; y++) {
|
||
for (s8f x = 0 ; x < CHUNK_WIDTH ; x++) {
|
||
u16 blockID = job.chunkData.getBlockID(x, y, z);
|
||
if (!blockID) continue;
|
||
|
||
u16 blockParam = job.chunkData.getBlockParam(x, y, z);
|
||
const BlockState &blockState = ChunkData::getBlockState(blockID, blockParam);
|
||
|
||
if (blockState.drawType() == BlockDrawType::XShape)
|
||
addCross(x, y, z, job, blockState);
|
||
else
|
||
addCube(x, y, z, job, blockState, blockParam);
|
||
}
|
||
}
|
||
}
|
||
|
||
return job;
|
||
}, job);
|
||
|
||
m_futures.emplace_back(std::move(future));
|
||
}
|
||
|
||
void ChunkMeshBuilder::update() {
|
||
for (auto it = m_futures.begin() ; it != m_futures.end() ; ) {
|
||
if (it->future().valid() && it->future().wait_for(std::chrono::milliseconds(0)) == std::future_status::ready) {
|
||
ChunkMeshBuildingJob job = it->get();
|
||
|
||
ClientChunk *chunk = (ClientChunk *)m_world.getChunk(job.chunkData.x, job.chunkData.y, job.chunkData.z);
|
||
if (chunk) {
|
||
for (u8 i = 0 ; i < ChunkBuilder::layers ; ++i) {
|
||
job.vertices[i].shrink_to_fit();
|
||
|
||
const gk::VertexBuffer &vbo = chunk->getVertexBuffer(i);
|
||
|
||
gk::VertexBuffer::bind(&vbo);
|
||
vbo.setData(job.vertices[i].size() * sizeof(Vertex), job.vertices[i].data(), GL_DYNAMIC_DRAW);
|
||
gk::VertexBuffer::bind(nullptr);
|
||
|
||
chunk->setVerticesCount(i, job.vertices[i].size());
|
||
}
|
||
}
|
||
|
||
it = m_futures.erase(it);
|
||
}
|
||
else
|
||
++it;
|
||
}
|
||
}
|
||
|
||
inline void ChunkMeshBuilder::addCube(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job, const BlockState &blockState, u16 blockParam) {
|
||
const gk::FloatBox &boundingBox = blockState.boundingBox();
|
||
|
||
u8f orientation = blockState.block().isRotatable()
|
||
? blockState.block().param().getParam(BlockParam::Rotation, blockParam) : 0;
|
||
const glm::mat3 &orientMatrix = orientMatrices[orientation];
|
||
|
||
glm::vec3 vertexPos[nVertsPerCube]{
|
||
// Order is important. It matches the bit order defined in BlockGeometry::cubeVerts.
|
||
{boundingBox.x, boundingBox.y, boundingBox.z},
|
||
{boundingBox.x + boundingBox.sizeX, boundingBox.y, boundingBox.z},
|
||
{boundingBox.x, boundingBox.y + boundingBox.sizeY, boundingBox.z},
|
||
{boundingBox.x + boundingBox.sizeX, boundingBox.y + boundingBox.sizeY, boundingBox.z},
|
||
{boundingBox.x, boundingBox.y, boundingBox.z + boundingBox.sizeZ},
|
||
{boundingBox.x + boundingBox.sizeX, boundingBox.y, boundingBox.z + boundingBox.sizeZ},
|
||
{boundingBox.x, boundingBox.y + boundingBox.sizeY, boundingBox.z + boundingBox.sizeZ},
|
||
{boundingBox.x + boundingBox.sizeX, boundingBox.y + boundingBox.sizeY, boundingBox.z + boundingBox.sizeZ},
|
||
};
|
||
|
||
if (blockState.drawType() == BlockDrawType::Cactus) {
|
||
// Ignore bounding box, initialize it to full node coordinates
|
||
for (u8f i = 0; i < nVertsPerCube; ++i) {
|
||
vertexPos[i].x = (i >> 0) & 1;
|
||
vertexPos[i].y = (i >> 1) & 1;
|
||
vertexPos[i].z = (i >> 2) & 1;
|
||
}
|
||
}
|
||
|
||
// vNeighbour is used to find neighbouring cubes per vertex.
|
||
// Same binary layout.
|
||
glm::vec3 vNeighbour[nVertsPerCube] = {
|
||
{-1,-1,-1}, { 1,-1,-1}, {-1, 1,-1}, { 1, 1,-1}, {-1,-1, 1}, { 1,-1, 1}, {-1, 1, 1}, {1, 1, 1},
|
||
};
|
||
|
||
if (orientation) { // don't work extra if it's not oriented differently
|
||
static const glm::vec3 half{0.5, 0.5, 0.5};
|
||
// Rotate each vertex coordinate around the centre of the
|
||
// cube, and each vertex neighbour around the origin
|
||
for (int i = 0; i < nVertsPerCube; ++i) {
|
||
vertexPos[i] = orientMatrix * (vertexPos[i] - half) + half;
|
||
vNeighbour[i] = orientMatrix * vNeighbour[i];
|
||
}
|
||
}
|
||
|
||
for (s8f f = 0; f < nFaces ; ++f) {
|
||
// Construct the normal vector to a face
|
||
const glm::vec3 glmNormal = orientMatrix * faceNormals[f];
|
||
const gk::Vector3i normal{int(glmNormal.x), int(glmNormal.y), int(glmNormal.z)};
|
||
|
||
// Construct an array with the 4 vertex positions of this face
|
||
glm::vec3 *faceVerts[nVertsPerFace]{
|
||
&vertexPos[cubeVerts[f][0]], &vertexPos[cubeVerts[f][1]],
|
||
&vertexPos[cubeVerts[f][2]], &vertexPos[cubeVerts[f][3]]
|
||
};
|
||
|
||
// Construct an array with the 4 vertex neighbours of this face
|
||
// (as GameKit integer vectors)
|
||
const gk::Vector3i corner0{int(vNeighbour[cubeVerts[f][0]].x), int(vNeighbour[cubeVerts[f][0]].y), int(vNeighbour[cubeVerts[f][0]].z)};
|
||
const gk::Vector3i corner1{int(vNeighbour[cubeVerts[f][1]].x), int(vNeighbour[cubeVerts[f][1]].y), int(vNeighbour[cubeVerts[f][1]].z)};
|
||
const gk::Vector3i corner2{int(vNeighbour[cubeVerts[f][2]].x), int(vNeighbour[cubeVerts[f][2]].y), int(vNeighbour[cubeVerts[f][2]].z)};
|
||
const gk::Vector3i corner3{int(vNeighbour[cubeVerts[f][3]].x), int(vNeighbour[cubeVerts[f][3]].y), int(vNeighbour[cubeVerts[f][3]].z)};
|
||
|
||
const gk::Vector3i *vFaceNeighbours[nVertsPerFace]{&corner0, &corner1, &corner2, &corner3};
|
||
|
||
addCubeFace(x, y, z, f, job, blockState, normal, faceVerts, vFaceNeighbours);
|
||
}
|
||
}
|
||
|
||
inline void ChunkMeshBuilder::addCubeFace(s8f x, s8f y, s8f z, s8f f, ChunkMeshBuildingJob &job,
|
||
const BlockState &blockState,
|
||
const gk::Vector3i &normal,
|
||
const glm::vec3 *const vertexPos[nVertsPerFace],
|
||
const gk::Vector3i *const neighbourOfs[nVertsPerFace])
|
||
{
|
||
// Get surrounding block for the face
|
||
s8f sx = x + normal.x;
|
||
s8f sy = y + normal.y;
|
||
s8f sz = z + normal.z;
|
||
|
||
const BlockState *surroundingBlockState = job.chunkData.getBlockState(sx, sy, sz);
|
||
|
||
// Skip hidden faces
|
||
if (surroundingBlockState && surroundingBlockState->block().id()
|
||
&& ((blockState.drawType() == BlockDrawType::Solid && surroundingBlockState->drawType() == BlockDrawType::Solid && surroundingBlockState->isOpaque())
|
||
|| (blockState.block().id() == surroundingBlockState->block().id() && (blockState.drawType() == BlockDrawType::Liquid || blockState.drawType() == BlockDrawType::Glass))
|
||
|| (blockState.drawType() == BlockDrawType::Liquid && surroundingBlockState->drawType() == BlockDrawType::Solid)
|
||
|| (blockState.drawType() == BlockDrawType::Cactus && surroundingBlockState->block().id() == blockState.block().id() && f > 3)))
|
||
return;
|
||
|
||
const gk::FloatBox &boundingBox = blockState.boundingBox();
|
||
|
||
const std::string &texture = blockState.tiles().getTextureForFace(f);
|
||
const gk::FloatRect &blockTexCoords = job.textureAtlas->getTexCoords(texture);
|
||
|
||
// Calculate UV's
|
||
// These are tough to obtain. Note that texture Y grows in the up-down direction, and so does V.
|
||
// Vertex index in the bitmap array and U/V correspondence is:
|
||
// U0V0 -> 3 2 <- U1V0
|
||
// U0V1 -> 0 1 <- U1V1
|
||
float U0, V0, U1, V1;
|
||
if (blockState.drawType() == BlockDrawType::Cactus) {
|
||
U0 = 0.f;
|
||
V0 = 0.f;
|
||
U1 = 1.f;
|
||
V1 = 1.f;
|
||
}
|
||
else {
|
||
U0 = (f == 0) ? 1.f - (boundingBox.y + boundingBox.sizeY) : (f == 1) ? boundingBox.y :
|
||
(f == 3) ? 1.f - (boundingBox.x + boundingBox.sizeX) : boundingBox.x;
|
||
V0 = (f <= 3) ? 1.f - (boundingBox.z + boundingBox.sizeZ) : (f == 4) ? boundingBox.y : 1.f - (boundingBox.y + boundingBox.sizeY);
|
||
U1 = (f == 0) ? 1.f - boundingBox.y : (f == 1) ? boundingBox.y + boundingBox.sizeY :
|
||
(f == 3) ? 1.f - boundingBox.x : boundingBox.x + boundingBox.sizeX;
|
||
V1 = (f <= 3) ? 1.f - boundingBox.z : (f == 4) ? boundingBox.y + boundingBox.sizeY : 1.f - boundingBox.y;
|
||
}
|
||
|
||
// Prepare vertex information for VBO
|
||
Vertex vertices[nVertsPerFace];
|
||
for (s8f v = 0; v < nVertsPerFace; ++v) {
|
||
if (blockState.drawType() == BlockDrawType::Cactus) {
|
||
vertices[v].coord3d[0] = x + vertexPos[v]->x - boundingBox.x * normal.x;
|
||
vertices[v].coord3d[1] = y + vertexPos[v]->y - boundingBox.y * normal.y;
|
||
vertices[v].coord3d[2] = z + vertexPos[v]->z - boundingBox.z * normal.z;
|
||
}
|
||
else {
|
||
float blockHeight = vertexPos[v]->z;
|
||
if (blockState.drawType() == BlockDrawType::Liquid && (f != BlockFace::Bottom || !surroundingBlockState || !surroundingBlockState->block().id())) {
|
||
if (f == BlockFace::Bottom)
|
||
blockHeight = vertexPos[v]->z - 2.f / 16.f;
|
||
else
|
||
blockHeight = vertexPos[v]->z * 14.f / 16.f;
|
||
}
|
||
|
||
vertices[v].coord3d[0] = x + vertexPos[v]->x;
|
||
vertices[v].coord3d[1] = y + vertexPos[v]->y;
|
||
vertices[v].coord3d[2] = z + blockHeight;
|
||
}
|
||
|
||
vertices[v].coord3d[0] += blockState.drawOffset().x;
|
||
vertices[v].coord3d[1] += blockState.drawOffset().y;
|
||
vertices[v].coord3d[2] += blockState.drawOffset().z;
|
||
|
||
vertices[v].coord3d[3] = f;
|
||
|
||
vertices[v].normal[0] = normal.x;
|
||
vertices[v].normal[1] = normal.y;
|
||
vertices[v].normal[2] = normal.z;
|
||
|
||
const gk::Color colorMultiplier = blockState.colorMultiplier();
|
||
vertices[v].color[0] = colorMultiplier.r;
|
||
vertices[v].color[1] = colorMultiplier.g;
|
||
vertices[v].color[2] = colorMultiplier.b;
|
||
vertices[v].color[3] = colorMultiplier.a;
|
||
|
||
float U = (v == 0 || v == 3) ? U0 : U1;
|
||
float V = (v >= 2) ? V0 : V1;
|
||
vertices[v].texCoord[0] = gk::qlerp(blockTexCoords.x, blockTexCoords.x + blockTexCoords.sizeX, U);
|
||
vertices[v].texCoord[1] = gk::qlerp(blockTexCoords.y, blockTexCoords.y + blockTexCoords.sizeY, V);
|
||
|
||
if (Config::isSmoothLightingEnabled)
|
||
vertices[v].lightValue[0] = getLightForVertex(Light::Sun, x, y, z, *neighbourOfs[v], normal, job.chunkData);
|
||
else
|
||
vertices[v].lightValue[0] = job.chunkData.getSunlight(sx, sy, sz);
|
||
|
||
if (Config::isSmoothLightingEnabled && !blockState.isLightSource())
|
||
vertices[v].lightValue[1] = getLightForVertex(Light::Torch, x, y, z, *neighbourOfs[v], normal, job.chunkData);
|
||
else if (blockState.isOpaque())
|
||
vertices[v].lightValue[1] = job.chunkData.getTorchlight(sx, sy, sz);
|
||
else
|
||
vertices[v].lightValue[1] = job.chunkData.getTorchlight(x, y, z);
|
||
|
||
vertices[v].ambientOcclusion = getAmbientOcclusion(x, y, z, *neighbourOfs[v], normal, job.chunkData);
|
||
}
|
||
|
||
auto addVertex = [&](u8 v) {
|
||
if (Config::ambientOcclusion != 1 || blockState.isLightSource())
|
||
vertices[v].ambientOcclusion = 5;
|
||
|
||
if (blockState.drawType() == BlockDrawType::Liquid)
|
||
job.vertices[Layer::Liquid].emplace_back(vertices[v]);
|
||
else if (blockState.drawType() == BlockDrawType::Glass)
|
||
job.vertices[Layer::Glass].emplace_back(vertices[v]);
|
||
else if (blockState.colorMultiplier() != gk::Color::White)
|
||
job.vertices[Layer::NoMipMap].emplace_back(vertices[v]);
|
||
else
|
||
job.vertices[Layer::Solid].emplace_back(vertices[v]);
|
||
};
|
||
|
||
// Flipping quad to fix anisotropy issue
|
||
if (vertices[0].ambientOcclusion + vertices[2].ambientOcclusion >
|
||
vertices[1].ambientOcclusion + vertices[3].ambientOcclusion) {
|
||
addVertex(0);
|
||
addVertex(1);
|
||
addVertex(2);
|
||
addVertex(2);
|
||
addVertex(3);
|
||
addVertex(0);
|
||
} else {
|
||
addVertex(0);
|
||
addVertex(1);
|
||
addVertex(3);
|
||
addVertex(3);
|
||
addVertex(1);
|
||
addVertex(2);
|
||
}
|
||
}
|
||
|
||
inline void ChunkMeshBuilder::addCross(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job, const BlockState &blockState) {
|
||
glm::vec3 vertexPos[nVertsPerCube]{
|
||
{0, 0, 0},
|
||
{1, 0, 0},
|
||
{0, 1, 0},
|
||
{1, 1, 0},
|
||
{0, 0, 1},
|
||
{1, 0, 1},
|
||
{0, 1, 1},
|
||
{1, 1, 1},
|
||
};
|
||
|
||
const glm::vec3 *const faceVertices[nCrossFaces][nVertsPerFace]{
|
||
{&vertexPos[crossVerts[0][0]], &vertexPos[crossVerts[0][1]],
|
||
&vertexPos[crossVerts[0][2]], &vertexPos[crossVerts[0][3]]},
|
||
{&vertexPos[crossVerts[1][0]], &vertexPos[crossVerts[1][1]],
|
||
&vertexPos[crossVerts[1][2]], &vertexPos[crossVerts[1][3]]},
|
||
};
|
||
|
||
const std::string &texture = blockState.tiles().getTextureForFace(0);
|
||
const gk::FloatRect &blockTexCoords = job.textureAtlas->getTexCoords(texture);
|
||
|
||
float faceTexCoords[nVertsPerFace][nCoordsPerUV] = {
|
||
{blockTexCoords.x, blockTexCoords.y + blockTexCoords.sizeY},
|
||
{blockTexCoords.x + blockTexCoords.sizeX, blockTexCoords.y + blockTexCoords.sizeY},
|
||
{blockTexCoords.x + blockTexCoords.sizeX, blockTexCoords.y},
|
||
{blockTexCoords.x, blockTexCoords.y},
|
||
};
|
||
|
||
for (int f = 0; f < nCrossFaces ; ++f) {
|
||
Vertex vertices[nVertsPerFace];
|
||
for (int v = 0 ; v < nVertsPerFace ; ++v) {
|
||
vertices[v].coord3d[0] = x + faceVertices[f][v]->x + blockState.drawOffset().x;
|
||
vertices[v].coord3d[1] = y + faceVertices[f][v]->y + blockState.drawOffset().y;
|
||
vertices[v].coord3d[2] = z + faceVertices[f][v]->z + blockState.drawOffset().z;
|
||
vertices[v].coord3d[3] = 6;
|
||
|
||
vertices[v].normal[0] = 0;
|
||
vertices[v].normal[1] = 0;
|
||
vertices[v].normal[2] = 0;
|
||
|
||
const gk::Color colorMultiplier = blockState.colorMultiplier();
|
||
vertices[v].color[0] = colorMultiplier.r;
|
||
vertices[v].color[1] = colorMultiplier.g;
|
||
vertices[v].color[2] = colorMultiplier.b;
|
||
vertices[v].color[3] = colorMultiplier.a;
|
||
|
||
vertices[v].texCoord[0] = faceTexCoords[v][0];
|
||
vertices[v].texCoord[1] = faceTexCoords[v][1];
|
||
|
||
vertices[v].lightValue[0] = job.chunkData.getSunlight(x, y, z);
|
||
vertices[v].lightValue[1] = job.chunkData.getTorchlight(x, y, z);
|
||
|
||
vertices[v].ambientOcclusion = 5;
|
||
}
|
||
|
||
job.vertices[Layer::Flora].emplace_back(vertices[0]);
|
||
job.vertices[Layer::Flora].emplace_back(vertices[1]);
|
||
job.vertices[Layer::Flora].emplace_back(vertices[3]);
|
||
job.vertices[Layer::Flora].emplace_back(vertices[3]);
|
||
job.vertices[Layer::Flora].emplace_back(vertices[1]);
|
||
job.vertices[Layer::Flora].emplace_back(vertices[2]);
|
||
}
|
||
}
|
||
|
||
// Based on this article: https://0fps.net/2013/07/03/ambient-occlusion-for-minecraft-like-worlds/
|
||
inline u8 ChunkMeshBuilder::getAmbientOcclusion(s8f x, s8f y, s8f z, const gk::Vector3i &offset, const gk::Vector3i &normal, const ChunkData &chunk) {
|
||
gk::Vector3i minOffset{
|
||
(normal.x != 0) ? offset.x : 0,
|
||
(normal.y != 0) ? offset.y : 0,
|
||
(normal.z != 0) ? offset.z : 0
|
||
};
|
||
|
||
const BlockState *blocks[4] = {
|
||
chunk.getBlockState(x + minOffset.x, y + minOffset.y, z + offset.z),
|
||
chunk.getBlockState(x + offset.x, y + minOffset.y, z + minOffset.z),
|
||
chunk.getBlockState(x + minOffset.x, y + offset.y, z + minOffset.z),
|
||
chunk.getBlockState(x + offset.x, y + offset.y, z + offset.z)
|
||
};
|
||
|
||
bool blockPresence[4] = {
|
||
blocks[0] && blocks[0]->block().id() != 0 && blocks[0]->isOpaque(),
|
||
blocks[1] && blocks[1]->block().id() != 0 && blocks[1]->isOpaque(),
|
||
blocks[2] && blocks[2]->block().id() != 0 && blocks[2]->isOpaque(),
|
||
blocks[3] && blocks[3]->block().id() != 0 && blocks[3]->isOpaque()
|
||
};
|
||
|
||
bool side1 = blockPresence[(minOffset.x != 0) ? 2 : 1];
|
||
bool side2 = blockPresence[(minOffset.z != 0) ? 2 : 0];
|
||
bool corner = blockPresence[3];
|
||
|
||
return (side1 && side2) ? 0 : 3 - (side1 + side2 + corner);
|
||
}
|
||
|
||
inline u8 ChunkMeshBuilder::getLightForVertex(Light light, s8f x, s8f y, s8f z, const gk::Vector3i &offset, const gk::Vector3i &normal, const ChunkData &chunk) {
|
||
std::function<s8(const ChunkData &chunk, s8, s8, s8)> getLight = [&](const ChunkData &chunk, s8 x, s8 y, s8 z) -> s8 {
|
||
// if (x < 0) return chunk->getSurroundingChunk(0) && chunk->getSurroundingChunk(0)->isInitialized() ? getLight(chunk->getSurroundingChunk(0), x + CHUNK_WIDTH, y, z) : -1;
|
||
// if (x >= CHUNK_WIDTH) return chunk->getSurroundingChunk(1) && chunk->getSurroundingChunk(1)->isInitialized() ? getLight(chunk->getSurroundingChunk(1), x - CHUNK_WIDTH, y, z) : -1;
|
||
// if (y < 0) return chunk->getSurroundingChunk(2) && chunk->getSurroundingChunk(2)->isInitialized() ? getLight(chunk->getSurroundingChunk(2), x, y + CHUNK_DEPTH, z) : -1;
|
||
// if (y >= CHUNK_DEPTH) return chunk->getSurroundingChunk(3) && chunk->getSurroundingChunk(3)->isInitialized() ? getLight(chunk->getSurroundingChunk(3), x, y - CHUNK_DEPTH, z) : -1;
|
||
// if (z < 0) return chunk->getSurroundingChunk(4) && chunk->getSurroundingChunk(4)->isInitialized() ? getLight(chunk->getSurroundingChunk(4), x, y, z + CHUNK_HEIGHT) : -1;
|
||
// if (z >= CHUNK_HEIGHT) return chunk->getSurroundingChunk(5) && chunk->getSurroundingChunk(5)->isInitialized() ? getLight(chunk->getSurroundingChunk(5), x, y, z - CHUNK_HEIGHT) : -1;
|
||
//
|
||
// if (light == Light::Sun)
|
||
// return chunk->isInitialized() ? chunk->lightmap().getSunlight(x, y, z) : -1;
|
||
// else
|
||
// return chunk->isInitialized() ? chunk->lightmap().getTorchlight(x, y, z) : -1;
|
||
|
||
return (light == Light::Sun)
|
||
? chunk.getSunlight(x, y, z)
|
||
: chunk.getTorchlight(x, y, z);
|
||
};
|
||
|
||
gk::Vector3i minOffset{
|
||
(normal.x != 0) ? offset.x : 0,
|
||
(normal.y != 0) ? offset.y : 0,
|
||
(normal.z != 0) ? offset.z : 0
|
||
};
|
||
|
||
gk::Vector3i surroundingBlocks[4]{
|
||
{x + minOffset.x, y + minOffset.y, z + offset.z},
|
||
{x + offset.x, y + minOffset.y, z + minOffset.z},
|
||
{x + minOffset.x, y + offset.y, z + minOffset.z},
|
||
{x + offset.x, y + offset.y, z + offset.z}
|
||
};
|
||
|
||
// Get light values for surrounding nodes
|
||
s8 lightValues[4] = {
|
||
getLight(chunk, surroundingBlocks[0].x, surroundingBlocks[0].y, surroundingBlocks[0].z),
|
||
getLight(chunk, surroundingBlocks[1].x, surroundingBlocks[1].y, surroundingBlocks[1].z),
|
||
getLight(chunk, surroundingBlocks[2].x, surroundingBlocks[2].y, surroundingBlocks[2].z),
|
||
getLight(chunk, surroundingBlocks[3].x, surroundingBlocks[3].y, surroundingBlocks[3].z),
|
||
};
|
||
|
||
float count = 0, total = 0;
|
||
for (u8 i = 0 ; i < 4 ; ++i) {
|
||
// Fix light approximation
|
||
// if (i == 3 && lightValues[i] > lightValues[0] && !lightValues[1] && !lightValues[2])
|
||
// continue;
|
||
|
||
// If the chunk is initialized, add the light value to the total
|
||
// But only add dark blocks if AO is set on Smooth Lighting
|
||
if (lightValues[i] != -1 && (Config::ambientOcclusion == 2 || lightValues[i] != 0)) {
|
||
total += lightValues[i];
|
||
++count;
|
||
}
|
||
}
|
||
|
||
if (count)
|
||
return total / count;
|
||
else
|
||
return 0;
|
||
}
|