minetest/src/inventory.cpp
Jesse McDonald e6a9e6066a Inventory: Make addItem for empty ItemStacks respect max stack size
When adding items to an empty ItemStack, limit the number of items taken
based on the maximum stack size in the item description.
Likewise, when checking whether items will fit into an empty ItemStack,
only absorb as many items as are allowed in a single stack and return the rest.
2017-06-21 01:53:57 +01:00

1011 lines
20 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "inventory.h"
#include "serialization.h"
#include "debug.h"
#include <sstream>
#include "log.h"
#include "itemdef.h"
#include "util/strfnd.h"
#include "content_mapnode.h" // For loading legacy MaterialItems
#include "nameidmapping.h" // For loading legacy MaterialItems
#include "util/serialize.h"
#include "util/string.h"
/*
ItemStack
*/
static content_t content_translate_from_19_to_internal(content_t c_from)
{
for(u32 i=0; i<sizeof(trans_table_19)/sizeof(trans_table_19[0]); i++)
{
if(trans_table_19[i][1] == c_from)
{
return trans_table_19[i][0];
}
}
return c_from;
}
ItemStack::ItemStack(const std::string &name_, u16 count_,
u16 wear_, IItemDefManager *itemdef) :
name(itemdef->getAlias(name_)),
count(count_),
wear(wear_)
{
if (name.empty() || count == 0)
clear();
else if (itemdef->get(name).type == ITEM_TOOL)
count = 1;
}
void ItemStack::serialize(std::ostream &os) const
{
DSTACK(FUNCTION_NAME);
if(empty())
return;
// Check how many parts of the itemstring are needed
int parts = 1;
if(count != 1)
parts = 2;
if(wear != 0)
parts = 3;
if (!metadata.empty())
parts = 4;
os<<serializeJsonStringIfNeeded(name);
if(parts >= 2)
os<<" "<<count;
if(parts >= 3)
os<<" "<<wear;
if (parts >= 4) {
os << " ";
metadata.serialize(os);
}
}
void ItemStack::deSerialize(std::istream &is, IItemDefManager *itemdef)
{
DSTACK(FUNCTION_NAME);
clear();
// Read name
name = deSerializeJsonStringIfNeeded(is);
// Skip space
std::string tmp;
std::getline(is, tmp, ' ');
if(!tmp.empty())
throw SerializationError("Unexpected text after item name");
if(name == "MaterialItem")
{
// Obsoleted on 2011-07-30
u16 material;
is>>material;
u16 materialcount;
is>>materialcount;
// Convert old materials
if(material <= 0xff)
material = content_translate_from_19_to_internal(material);
if(material > 0xfff)
throw SerializationError("Too large material number");
// Convert old id to name
NameIdMapping legacy_nimap;
content_mapnode_get_name_id_mapping(&legacy_nimap);
legacy_nimap.getName(material, name);
if(name == "")
name = "unknown_block";
if (itemdef)
name = itemdef->getAlias(name);
count = materialcount;
}
else if(name == "MaterialItem2")
{
// Obsoleted on 2011-11-16
u16 material;
is>>material;
u16 materialcount;
is>>materialcount;
if(material > 0xfff)
throw SerializationError("Too large material number");
// Convert old id to name
NameIdMapping legacy_nimap;
content_mapnode_get_name_id_mapping(&legacy_nimap);
legacy_nimap.getName(material, name);
if(name == "")
name = "unknown_block";
if (itemdef)
name = itemdef->getAlias(name);
count = materialcount;
}
else if(name == "node" || name == "NodeItem" || name == "MaterialItem3"
|| name == "craft" || name == "CraftItem")
{
// Obsoleted on 2012-01-07
std::string all;
std::getline(is, all, '\n');
// First attempt to read inside ""
Strfnd fnd(all);
fnd.next("\"");
// If didn't skip to end, we have ""s
if(!fnd.at_end()){
name = fnd.next("\"");
} else { // No luck, just read a word then
fnd.start(all);
name = fnd.next(" ");
}
fnd.skip_over(" ");
if (itemdef)
name = itemdef->getAlias(name);
count = stoi(trim(fnd.next("")));
if(count == 0)
count = 1;
}
else if(name == "MBOItem")
{
// Obsoleted on 2011-10-14
throw SerializationError("MBOItem not supported anymore");
}
else if(name == "tool" || name == "ToolItem")
{
// Obsoleted on 2012-01-07
std::string all;
std::getline(is, all, '\n');
// First attempt to read inside ""
Strfnd fnd(all);
fnd.next("\"");
// If didn't skip to end, we have ""s
if(!fnd.at_end()){
name = fnd.next("\"");
} else { // No luck, just read a word then
fnd.start(all);
name = fnd.next(" ");
}
count = 1;
// Then read wear
fnd.skip_over(" ");
if (itemdef)
name = itemdef->getAlias(name);
wear = stoi(trim(fnd.next("")));
}
else
{
do // This loop is just to allow "break;"
{
// The real thing
// Apply item aliases
if (itemdef)
name = itemdef->getAlias(name);
// Read the count
std::string count_str;
std::getline(is, count_str, ' ');
if(count_str.empty())
{
count = 1;
break;
}
else
count = stoi(count_str);
// Read the wear
std::string wear_str;
std::getline(is, wear_str, ' ');
if(wear_str.empty())
break;
else
wear = stoi(wear_str);
// Read metadata
metadata.deSerialize(is);
// In case fields are added after metadata, skip space here:
//std::getline(is, tmp, ' ');
//if(!tmp.empty())
// throw SerializationError("Unexpected text after metadata");
} while(false);
}
if (name.empty() || count == 0)
clear();
else if (itemdef && itemdef->get(name).type == ITEM_TOOL)
count = 1;
}
void ItemStack::deSerialize(const std::string &str, IItemDefManager *itemdef)
{
std::istringstream is(str, std::ios::binary);
deSerialize(is, itemdef);
}
std::string ItemStack::getItemString() const
{
std::ostringstream os(std::ios::binary);
serialize(os);
return os.str();
}
ItemStack ItemStack::addItem(const ItemStack &newitem_,
IItemDefManager *itemdef)
{
ItemStack newitem = newitem_;
// If the item is empty or the position invalid, bail out
if(newitem.empty())
{
// nothing can be added trivially
}
// If this is an empty item, it's an easy job.
else if(empty())
{
const u16 stackMax = getStackMax(itemdef);
*this = newitem;
// If the item fits fully, delete it
if (count <= stackMax) {
newitem.clear();
} else { // Else the item does not fit fully. Return the rest.
count = stackMax;
newitem.remove(count);
}
}
// If item name or metadata differs, bail out
else if (name != newitem.name
|| metadata != newitem.metadata)
{
// cannot be added
}
// If the item fits fully, add counter and delete it
else if(newitem.count <= freeSpace(itemdef))
{
add(newitem.count);
newitem.clear();
}
// Else the item does not fit fully. Add all that fits and return
// the rest.
else
{
u16 freespace = freeSpace(itemdef);
add(freespace);
newitem.remove(freespace);
}
return newitem;
}
bool ItemStack::itemFits(const ItemStack &newitem_,
ItemStack *restitem,
IItemDefManager *itemdef) const
{
ItemStack newitem = newitem_;
// If the item is empty or the position invalid, bail out
if(newitem.empty())
{
// nothing can be added trivially
}
// If this is an empty item, it's an easy job.
else if(empty())
{
const u16 stackMax = getStackMax(itemdef);
// If the item fits fully, delete it
if (newitem.count <= stackMax) {
newitem.clear();
} else { // Else the item does not fit fully. Return the rest.
newitem.remove(stackMax);
}
}
// If item name or metadata differs, bail out
else if (name != newitem.name
|| metadata != newitem.metadata)
{
// cannot be added
}
// If the item fits fully, delete it
else if(newitem.count <= freeSpace(itemdef))
{
newitem.clear();
}
// Else the item does not fit fully. Return the rest.
else
{
u16 freespace = freeSpace(itemdef);
newitem.remove(freespace);
}
if(restitem)
*restitem = newitem;
return newitem.empty();
}
ItemStack ItemStack::takeItem(u32 takecount)
{
if(takecount == 0 || count == 0)
return ItemStack();
ItemStack result = *this;
if(takecount >= count)
{
// Take all
clear();
}
else
{
// Take part
remove(takecount);
result.count = takecount;
}
return result;
}
ItemStack ItemStack::peekItem(u32 peekcount) const
{
if(peekcount == 0 || count == 0)
return ItemStack();
ItemStack result = *this;
if(peekcount < count)
result.count = peekcount;
return result;
}
/*
Inventory
*/
InventoryList::InventoryList(const std::string &name, u32 size, IItemDefManager *itemdef):
m_name(name),
m_size(size),
m_itemdef(itemdef)
{
clearItems();
}
InventoryList::~InventoryList()
{
}
void InventoryList::clearItems()
{
m_items.clear();
for(u32 i=0; i<m_size; i++)
{
m_items.push_back(ItemStack());
}
//setDirty(true);
}
void InventoryList::setSize(u32 newsize)
{
if(newsize != m_items.size())
m_items.resize(newsize);
m_size = newsize;
}
void InventoryList::setWidth(u32 newwidth)
{
m_width = newwidth;
}
void InventoryList::setName(const std::string &name)
{
m_name = name;
}
void InventoryList::serialize(std::ostream &os) const
{
//os.imbue(std::locale("C"));
os<<"Width "<<m_width<<"\n";
for(u32 i=0; i<m_items.size(); i++)
{
const ItemStack &item = m_items[i];
if(item.empty())
{
os<<"Empty";
}
else
{
os<<"Item ";
item.serialize(os);
}
os<<"\n";
}
os<<"EndInventoryList\n";
}
void InventoryList::deSerialize(std::istream &is)
{
//is.imbue(std::locale("C"));
clearItems();
u32 item_i = 0;
m_width = 0;
for(;;)
{
std::string line;
std::getline(is, line, '\n');
std::istringstream iss(line);
//iss.imbue(std::locale("C"));
std::string name;
std::getline(iss, name, ' ');
if(name == "EndInventoryList")
{
break;
}
// This is a temporary backwards compatibility fix
else if(name == "end")
{
break;
}
else if(name == "Width")
{
iss >> m_width;
if (iss.fail())
throw SerializationError("incorrect width property");
}
else if(name == "Item")
{
if(item_i > getSize() - 1)
throw SerializationError("too many items");
ItemStack item;
item.deSerialize(iss, m_itemdef);
m_items[item_i++] = item;
}
else if(name == "Empty")
{
if(item_i > getSize() - 1)
throw SerializationError("too many items");
m_items[item_i++].clear();
}
}
}
InventoryList::InventoryList(const InventoryList &other)
{
*this = other;
}
InventoryList & InventoryList::operator = (const InventoryList &other)
{
m_items = other.m_items;
m_size = other.m_size;
m_width = other.m_width;
m_name = other.m_name;
m_itemdef = other.m_itemdef;
//setDirty(true);
return *this;
}
bool InventoryList::operator == (const InventoryList &other) const
{
if(m_size != other.m_size)
return false;
if(m_width != other.m_width)
return false;
if(m_name != other.m_name)
return false;
for(u32 i=0; i<m_items.size(); i++)
{
ItemStack s1 = m_items[i];
ItemStack s2 = other.m_items[i];
if(s1.name != s2.name || s1.wear!= s2.wear || s1.count != s2.count ||
s1.metadata != s2.metadata)
return false;
}
return true;
}
const std::string &InventoryList::getName() const
{
return m_name;
}
u32 InventoryList::getSize() const
{
return m_items.size();
}
u32 InventoryList::getWidth() const
{
return m_width;
}
u32 InventoryList::getUsedSlots() const
{
u32 num = 0;
for(u32 i=0; i<m_items.size(); i++)
{
if(!m_items[i].empty())
num++;
}
return num;
}
u32 InventoryList::getFreeSlots() const
{
return getSize() - getUsedSlots();
}
const ItemStack& InventoryList::getItem(u32 i) const
{
assert(i < m_size); // Pre-condition
return m_items[i];
}
ItemStack& InventoryList::getItem(u32 i)
{
assert(i < m_size); // Pre-condition
return m_items[i];
}
ItemStack InventoryList::changeItem(u32 i, const ItemStack &newitem)
{
if(i >= m_items.size())
return newitem;
ItemStack olditem = m_items[i];
m_items[i] = newitem;
//setDirty(true);
return olditem;
}
void InventoryList::deleteItem(u32 i)
{
assert(i < m_items.size()); // Pre-condition
m_items[i].clear();
}
ItemStack InventoryList::addItem(const ItemStack &newitem_)
{
ItemStack newitem = newitem_;
if(newitem.empty())
return newitem;
/*
First try to find if it could be added to some existing items
*/
for(u32 i=0; i<m_items.size(); i++)
{
// Ignore empty slots
if(m_items[i].empty())
continue;
// Try adding
newitem = addItem(i, newitem);
if(newitem.empty())
return newitem; // All was eaten
}
/*
Then try to add it to empty slots
*/
for(u32 i=0; i<m_items.size(); i++)
{
// Ignore unempty slots
if(!m_items[i].empty())
continue;
// Try adding
newitem = addItem(i, newitem);
if(newitem.empty())
return newitem; // All was eaten
}
// Return leftover
return newitem;
}
ItemStack InventoryList::addItem(u32 i, const ItemStack &newitem)
{
if(i >= m_items.size())
return newitem;
ItemStack leftover = m_items[i].addItem(newitem, m_itemdef);
//if(leftover != newitem)
// setDirty(true);
return leftover;
}
bool InventoryList::itemFits(const u32 i, const ItemStack &newitem,
ItemStack *restitem) const
{
if(i >= m_items.size())
{
if(restitem)
*restitem = newitem;
return false;
}
return m_items[i].itemFits(newitem, restitem, m_itemdef);
}
bool InventoryList::roomForItem(const ItemStack &item_) const
{
ItemStack item = item_;
ItemStack leftover;
for(u32 i=0; i<m_items.size(); i++)
{
if(itemFits(i, item, &leftover))
return true;
item = leftover;
}
return false;
}
bool InventoryList::containsItem(const ItemStack &item, bool match_meta) const
{
u32 count = item.count;
if(count == 0)
return true;
for(std::vector<ItemStack>::const_reverse_iterator
i = m_items.rbegin();
i != m_items.rend(); ++i)
{
if(count == 0)
break;
if (i->name == item.name
&& (!match_meta || (i->metadata == item.metadata))) {
if (i->count >= count)
return true;
else
count -= i->count;
}
}
return false;
}
ItemStack InventoryList::removeItem(const ItemStack &item)
{
ItemStack removed;
for(std::vector<ItemStack>::reverse_iterator
i = m_items.rbegin();
i != m_items.rend(); ++i)
{
if(i->name == item.name)
{
u32 still_to_remove = item.count - removed.count;
removed.addItem(i->takeItem(still_to_remove), m_itemdef);
if(removed.count == item.count)
break;
}
}
return removed;
}
ItemStack InventoryList::takeItem(u32 i, u32 takecount)
{
if(i >= m_items.size())
return ItemStack();
ItemStack taken = m_items[i].takeItem(takecount);
//if(!taken.empty())
// setDirty(true);
return taken;
}
void InventoryList::moveItemSomewhere(u32 i, InventoryList *dest, u32 count)
{
// Take item from source list
ItemStack item1;
if (count == 0)
item1 = changeItem(i, ItemStack());
else
item1 = takeItem(i, count);
if (item1.empty())
return;
// Try to add the item to destination list
u32 dest_size = dest->getSize();
// First try all the non-empty slots
for (u32 dest_i = 0; dest_i < dest_size; dest_i++) {
if (!m_items[dest_i].empty()) {
item1 = dest->addItem(dest_i, item1);
if (item1.empty()) return;
}
}
// Then try all the empty ones
for (u32 dest_i = 0; dest_i < dest_size; dest_i++) {
if (m_items[dest_i].empty()) {
item1 = dest->addItem(dest_i, item1);
if (item1.empty()) return;
}
}
// If we reach this, the item was not fully added
// Add the remaining part back to the source item
addItem(i, item1);
}
u32 InventoryList::moveItem(u32 i, InventoryList *dest, u32 dest_i,
u32 count, bool swap_if_needed, bool *did_swap)
{
if(this == dest && i == dest_i)
return count;
// Take item from source list
ItemStack item1;
if(count == 0)
item1 = changeItem(i, ItemStack());
else
item1 = takeItem(i, count);
if(item1.empty())
return 0;
// Try to add the item to destination list
u32 oldcount = item1.count;
item1 = dest->addItem(dest_i, item1);
// If something is returned, the item was not fully added
if(!item1.empty())
{
// If olditem is returned, nothing was added.
bool nothing_added = (item1.count == oldcount);
// If something else is returned, part of the item was left unadded.
// Add the other part back to the source item
addItem(i, item1);
// If olditem is returned, nothing was added.
// Swap the items
if (nothing_added && swap_if_needed) {
// Tell that we swapped
if (did_swap != NULL) {
*did_swap = true;
}
// Take item from source list
item1 = changeItem(i, ItemStack());
// Adding was not possible, swap the items.
ItemStack item2 = dest->changeItem(dest_i, item1);
// Put item from destination list to the source list
changeItem(i, item2);
}
}
return (oldcount - item1.count);
}
/*
Inventory
*/
Inventory::~Inventory()
{
clear();
}
void Inventory::clear()
{
m_dirty = true;
for(u32 i=0; i<m_lists.size(); i++)
{
delete m_lists[i];
}
m_lists.clear();
}
void Inventory::clearContents()
{
m_dirty = true;
for(u32 i=0; i<m_lists.size(); i++)
{
InventoryList *list = m_lists[i];
for(u32 j=0; j<list->getSize(); j++)
{
list->deleteItem(j);
}
}
}
Inventory::Inventory(IItemDefManager *itemdef)
{
m_dirty = false;
m_itemdef = itemdef;
}
Inventory::Inventory(const Inventory &other)
{
*this = other;
m_dirty = false;
}
Inventory & Inventory::operator = (const Inventory &other)
{
// Gracefully handle self assignment
if(this != &other)
{
m_dirty = true;
clear();
m_itemdef = other.m_itemdef;
for(u32 i=0; i<other.m_lists.size(); i++)
{
m_lists.push_back(new InventoryList(*other.m_lists[i]));
}
}
return *this;
}
bool Inventory::operator == (const Inventory &other) const
{
if(m_lists.size() != other.m_lists.size())
return false;
for(u32 i=0; i<m_lists.size(); i++)
{
if(*m_lists[i] != *other.m_lists[i])
return false;
}
return true;
}
void Inventory::serialize(std::ostream &os) const
{
for(u32 i=0; i<m_lists.size(); i++)
{
InventoryList *list = m_lists[i];
os<<"List "<<list->getName()<<" "<<list->getSize()<<"\n";
list->serialize(os);
}
os<<"EndInventory\n";
}
void Inventory::deSerialize(std::istream &is)
{
clear();
for(;;)
{
std::string line;
std::getline(is, line, '\n');
std::istringstream iss(line);
std::string name;
std::getline(iss, name, ' ');
if(name == "EndInventory")
{
break;
}
// This is a temporary backwards compatibility fix
else if(name == "end")
{
break;
}
else if(name == "List")
{
std::string listname;
u32 listsize;
std::getline(iss, listname, ' ');
iss>>listsize;
InventoryList *list = new InventoryList(listname, listsize, m_itemdef);
list->deSerialize(is);
m_lists.push_back(list);
}
else
{
throw SerializationError("invalid inventory specifier: " + name);
}
}
}
InventoryList * Inventory::addList(const std::string &name, u32 size)
{
m_dirty = true;
s32 i = getListIndex(name);
if(i != -1)
{
if(m_lists[i]->getSize() != size)
{
delete m_lists[i];
m_lists[i] = new InventoryList(name, size, m_itemdef);
}
return m_lists[i];
}
else
{
//don't create list with invalid name
if (name.find(" ") != std::string::npos) return NULL;
InventoryList *list = new InventoryList(name, size, m_itemdef);
m_lists.push_back(list);
return list;
}
}
InventoryList * Inventory::getList(const std::string &name)
{
s32 i = getListIndex(name);
if(i == -1)
return NULL;
return m_lists[i];
}
std::vector<const InventoryList*> Inventory::getLists()
{
std::vector<const InventoryList*> lists;
for(u32 i=0; i<m_lists.size(); i++)
{
InventoryList *list = m_lists[i];
lists.push_back(list);
}
return lists;
}
bool Inventory::deleteList(const std::string &name)
{
s32 i = getListIndex(name);
if(i == -1)
return false;
m_dirty = true;
delete m_lists[i];
m_lists.erase(m_lists.begin() + i);
return true;
}
const InventoryList * Inventory::getList(const std::string &name) const
{
s32 i = getListIndex(name);
if(i == -1)
return NULL;
return m_lists[i];
}
const s32 Inventory::getListIndex(const std::string &name) const
{
for(u32 i=0; i<m_lists.size(); i++)
{
if(m_lists[i]->getName() == name)
return i;
}
return -1;
}
//END