179 lines
6.6 KiB
C++
179 lines
6.6 KiB
C++
/*
|
|
* =====================================================================================
|
|
*
|
|
* OpenMiner
|
|
*
|
|
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
|
|
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
|
|
*
|
|
* This file is part of OpenMiner.
|
|
*
|
|
* OpenMiner is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* OpenMiner is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* =====================================================================================
|
|
*/
|
|
#include <gk/core/GameClock.hpp>
|
|
#include <gk/gl/GLCheck.hpp>
|
|
#include <gk/gl/Texture.hpp>
|
|
#include <gk/gl/Vertex.hpp>
|
|
#include <gk/resource/ResourceHandler.hpp>
|
|
|
|
#include "CelestialObject.hpp"
|
|
#include "GameTime.hpp"
|
|
#include "Vertex.hpp"
|
|
|
|
CelestialObject::CelestialObject() {
|
|
m_vbo.layout().setupDefaultLayout();
|
|
}
|
|
|
|
void CelestialObject::setTexture(const std::string &textureName) {
|
|
if (textureName.empty()) return;
|
|
|
|
m_texture = &gk::ResourceHandler::getInstance().get<gk::Texture>(textureName);
|
|
|
|
m_isUpdateNeeded = true;
|
|
}
|
|
|
|
void CelestialObject::updateVertexBuffer() const {
|
|
if (m_width <= 0.f || m_height <= 0.f) {
|
|
gkError() << "Trying to update vertex buffer for celestial object of invalid size";
|
|
return;
|
|
}
|
|
|
|
gk::Vertex vertices[4] = {
|
|
// Rectangle vertices
|
|
{{0, m_width / 2.f, -m_height / 2.f, -1}},
|
|
{{0, -m_width / 2.f, -m_height / 2.f, -1}},
|
|
{{0, -m_width / 2.f, m_height / 2.f, -1}},
|
|
{{0, m_width / 2.f, m_height / 2.f, -1}},
|
|
};
|
|
|
|
for (u8 i = 0 ; i < 4 ; ++i) {
|
|
vertices[i].color[0] = m_color.r;
|
|
vertices[i].color[1] = m_color.g;
|
|
vertices[i].color[2] = m_color.b;
|
|
vertices[i].color[3] = m_color.a;
|
|
}
|
|
|
|
if (m_texture) {
|
|
gk::FloatRect texRect{0, 0, 1, 1};
|
|
|
|
if (m_phaseCount && m_phaseSize && m_currentPhase < m_phaseCount) {
|
|
u16 currentPhaseX = u16(m_currentPhase % (m_texture->getSize().x / m_phaseSize));
|
|
u16 currentPhaseY = u16(m_currentPhase / (m_texture->getSize().x / m_phaseSize));
|
|
texRect.x = currentPhaseX * m_phaseSize / float(m_texture->getSize().x);
|
|
texRect.y = currentPhaseY * m_phaseSize / float(m_texture->getSize().y);
|
|
texRect.sizeX = m_phaseSize / float(m_texture->getSize().x);
|
|
texRect.sizeY = m_phaseSize / float(m_texture->getSize().y);
|
|
}
|
|
|
|
vertices[0].texCoord[0] = texRect.x + texRect.sizeX;
|
|
vertices[0].texCoord[1] = texRect.y;
|
|
vertices[1].texCoord[0] = texRect.x;
|
|
vertices[1].texCoord[1] = texRect.y;
|
|
vertices[2].texCoord[0] = texRect.x;
|
|
vertices[2].texCoord[1] = texRect.y + texRect.sizeY;
|
|
vertices[3].texCoord[0] = texRect.x + texRect.sizeX;
|
|
vertices[3].texCoord[1] = texRect.y + texRect.sizeY;
|
|
}
|
|
|
|
gk::VertexBuffer::bind(&m_vbo);
|
|
m_vbo.setData(sizeof(vertices), vertices, GL_STATIC_DRAW);
|
|
gk::VertexBuffer::bind(nullptr);
|
|
|
|
m_isUpdateNeeded = false;
|
|
}
|
|
|
|
void CelestialObject::updateAxisTransform() const {
|
|
// Set m_rotAxisTransform to a rotation that points the local Y axis
|
|
// towards m_rotationAxis, while keeping the local X axis horizontal.
|
|
// Keeping the X axis horizontal guarantees that the sun and moon cycle
|
|
// still make some sense, that is, that the sun goes above the horizon
|
|
// at 6:00 and below at 18:00 and the moon does the opposite.
|
|
if (m_rotationAxis.x == 0.0f && m_rotationAxis.y == 0.0f) {
|
|
// The axis is completely vertical. This does not make much sense,
|
|
// because the sun and the moon will rotate horizontally following
|
|
// the horizon, but let's not crash! There are infinite rotations
|
|
// that can keep the sun and moon in the horizon. Let's pick one:
|
|
// local X axis pointing to world's X, local Y axis pointing to
|
|
// world's Z, and local Z axis pointing to world's -Y. That places
|
|
// Polaris at the top, and the sun to the East at 6:00 and to the
|
|
// South at 12:00.
|
|
m_rotAxisTransform = {1,0,0,0, 0,0,1,0, 0,-1,0,0, 0,0,0,1};
|
|
}
|
|
else {
|
|
// A reference vector that points to the world's Z.
|
|
glm::vec3 tmp{0.f, 0.f, 1.f};
|
|
// Normalize the rotation axis
|
|
glm::vec3 axis = glm::normalize(glm::vec3{m_rotationAxis.x, m_rotationAxis.y, m_rotationAxis.z});
|
|
// Point the Y vector of the matrix to the normalized axis
|
|
m_rotAxisTransform[1].x = axis.x;
|
|
m_rotAxisTransform[1].y = axis.y;
|
|
m_rotAxisTransform[1].z = axis.z;
|
|
// Follow the right hand rule (Y x Z = X) to obtain a local X vector
|
|
// perpendicular to both the rotation axis and the world's Z vector,
|
|
// using a cross product. That gives us our horizontal axis (local X
|
|
// vector). Normalize the result, as the two vectors implied may not
|
|
// be perpendicular even if they are both normalized.
|
|
tmp = glm::normalize(glm::cross(axis, tmp));
|
|
// Place it in the X vector of the matrix
|
|
m_rotAxisTransform[0].x = tmp.x;
|
|
m_rotAxisTransform[0].y = tmp.y;
|
|
m_rotAxisTransform[0].z = tmp.z;
|
|
// To complete the orthogonal basis, we need a third vector
|
|
// perpendicular to the other two. Follow the right hand rule to
|
|
// obtain the Z vector (X x Y = Z) with a cross product. The result
|
|
// does not need normalization because both input vectors are already
|
|
// perpendicular to each other and normalized.
|
|
tmp = glm::cross(tmp, axis);
|
|
// Place it in the Z vector of the matrix
|
|
m_rotAxisTransform[2].x = tmp.x;
|
|
m_rotAxisTransform[2].y = tmp.y;
|
|
m_rotAxisTransform[2].z = tmp.z;
|
|
// Fill in the rest of fields of the matrix (4th row and column)
|
|
m_rotAxisTransform[0].w = 0.f;
|
|
m_rotAxisTransform[1].w = 0.f;
|
|
m_rotAxisTransform[2].w = 0.f;
|
|
m_rotAxisTransform[3].x = 0.f;
|
|
m_rotAxisTransform[3].y = 0.f;
|
|
m_rotAxisTransform[3].z = 0.f;
|
|
m_rotAxisTransform[3].w = 1.f;
|
|
}
|
|
m_axisXfNeedsUpdate = false;
|
|
}
|
|
|
|
void CelestialObject::draw(gk::RenderTarget &target, gk::RenderStates states) const {
|
|
if (m_isUpdateNeeded)
|
|
updateVertexBuffer();
|
|
|
|
if (m_axisXfNeedsUpdate)
|
|
updateAxisTransform();
|
|
|
|
states.transform *= m_rotAxisTransform;
|
|
states.transform.rotateY(-GameTime::getCurrentTime(m_rotationOffset, m_rotationSpeed) * 360.f);
|
|
states.transform *= getTransform();
|
|
|
|
if (m_texture)
|
|
states.texture = m_texture;
|
|
|
|
static const GLubyte indices[] = {
|
|
0, 1, 3,
|
|
3, 1, 2
|
|
};
|
|
|
|
target.drawElements(m_vbo, GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, indices, states);
|
|
}
|
|
|