slidescript/src/lz78/wrapper.c

293 lines
7.6 KiB
C

/*
* Basic implementation of LZ78 compression algorithm
*
* Copyright (C) 2010 evilaliv3 <giovanni.pellerano@evilaliv3.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "wrapper.h"
#include "../inc/x3mem.h"
/* Structure representing the type of algorithm */
struct __algorithm {
char* name; /* String representing the name */
uint8_t type; /* Constant representing the type */
};
/* Opaque type representing the type of algorithm */
typedef struct __algorithm algorithm;
/* Struct of available algorithms */
const algorithm algo_list[] = {
{"lz78", LZ78_ALGORITHM},
{NULL, UNKNOWN_ALGORITHM}
};
/* Struct representing the wrapper used for compression or decompression */
struct __wrapper {
uint8_t type; /* Algorithm used to compress or decompress data */
uint8_t mode; /* Flag indicating compress/decompress mode */
void* data; /* Opaque structure representing the algorithm */
};
/* Global variable representing the current error stored */
uint8_t wrapper_cur_err = WRAPPER_SUCCESS;
/* Associate an algorithm-dependent error to a wrapper-generic error */
uint8_t wrapper_return(uint8_t code) {
wrapper_cur_err = code;
switch (code) {
case LZ78_SUCCESS:
return WRAPPER_SUCCESS;
case LZ78_ERROR_READ:
return WRAPPER_ERROR_READ;
case LZ78_ERROR_WRITE:
return WRAPPER_ERROR_WRITE;
case LZ78_ERROR_EAGAIN:
return WRAPPER_ERROR_EAGAIN;
case LZ78_ERROR_COMPRESS:
return WRAPPER_ERROR_COMPRESS;
case LZ78_ERROR_DECOMPRESS:
return WRAPPER_ERROR_DECOMPRESS;
case LZ78_ERROR_DICTIONARY:
case LZ78_ERROR_INITIALIZATION:
case LZ78_ERROR_MODE:
return WRAPPER_ERROR_GENERIC;
}
return code;
}
uint8_t get_algorithm(char* type) {
uint8_t i = 0;
while (algo_list[i].name != NULL) {
if (strcmp(type, algo_list[i].name) == 0)
return algo_list[i].type;
++i;
}
return UNKNOWN_ALGORITHM;
}
int byte_size(char* size) {
int n;
if (size == NULL)
return 0;
n = atoi(size);
switch (size[strlen(size) - 1]) {
case 'K':
n <<= 10;
break;
case 'M':
n <<= 20;
break;
}
return (n < 0) ? 0 : n;
}
void wrapper_perror() {
switch (wrapper_cur_err) {
case WRAPPER_SUCCESS:
break;
case WRAPPER_ERROR_ALGORITHM:
fprintf(stderr, "Unrecognized compression algorithm\n");
break;
case WRAPPER_ERROR_FILE_IN:
fprintf(stderr, "Unable to read input file\n");
break;
case WRAPPER_ERROR_FILE_OUT:
fprintf(stderr, "Unable to write output file\n");
break;
case LZ78_SUCCESS:
break;
case LZ78_ERROR_DICTIONARY:
fprintf(stderr, "LZ78: unable to allocate dictionaries\n");
break;
case LZ78_ERROR_INITIALIZATION:
fprintf(stderr, "LZ78: bad initialization\n");
break;
case LZ78_ERROR_MODE:
fprintf(stderr, "LZ78: wrong compression/decompression mode\n");
break;
case LZ78_ERROR_READ:
fprintf(stderr, "LZ78: unable to read input data\n");
break;
case LZ78_ERROR_WRITE:
fprintf(stderr, "LZ78: unable to write output data\n");
break;
case LZ78_ERROR_EAGAIN:
fprintf(stderr, "LZ78: I/O operation would block: retry...\n");
break;
case LZ78_ERROR_COMPRESS:
fprintf(stderr, "LZ78: unable to compress input data\n");
break;
case LZ78_ERROR_DECOMPRESS:
fprintf(stderr, "LZ78: unable to decompress input data\n");
break;
default:
fprintf(stderr, "Unhandled error code %d\n", wrapper_cur_err);
}
}
wrapper* wrapper_new(uint8_t w_mode, uint8_t w_type, char* argv) {
wrapper* w = qmalloc(QM_LZ, sizeof(wrapper));
if (w == NULL)
return NULL;
w->type = w_type;
w->mode = w_mode;
switch (w->type) {
case LZ78_ALGORITHM:
w->data = lz78_new(w_mode, byte_size(argv));
break;
default:
qfree(w);
return NULL;
}
if (w->data)
return w;
else {
qfree(w);
return NULL;
}
}
void wrapper_destroy(wrapper* w) {
if (w == NULL)
return;
switch (w->type) {
case LZ78_ALGORITHM:
lz78_destroy(w->data);
break;
default:
return;
}
qflush(QM_LZ);
}
uint8_t wrapper_compress(wrapper* w, char* input, char* output) {
uint8_t ret;
int fd_in;
int fd_out;
switch (w->type) {
case LZ78_ALGORITHM:
if (input == NULL) {
fd_in = STDIN_FILENO;
} else {
fd_in = open(input, ACCESS_READ);
if (fd_in == -1)
return wrapper_return(WRAPPER_ERROR_FILE_IN);
}
if (output == NULL) {
fd_out = STDOUT_FILENO;
} else {
fd_out = open(output, ACCESS_WRITE, 0644);
if (fd_out == -1) {
close(fd_in);
return wrapper_return(WRAPPER_ERROR_FILE_OUT);
}
}
ret = lz78_compress(w->data, fd_in, fd_out);
close(fd_in);
close(fd_out);
return wrapper_return(ret);
default:
return wrapper_return(WRAPPER_ERROR_ALGORITHM);
}
}
uint8_t wrapper_decompress(wrapper* w, char* input, char* output) {
uint8_t ret;
int fd_in;
int fd_out;
switch (w->type) {
case LZ78_ALGORITHM:
if (input == NULL) {
fd_in = STDIN_FILENO;
} else {
fd_in = open(input, ACCESS_READ);
if (fd_in == -1)
return wrapper_return(WRAPPER_ERROR_FILE_IN);
}
if (output == NULL) {
fd_out = STDOUT_FILENO;
} else {
fd_out = open(output, ACCESS_WRITE, 0644);
if (fd_out == -1) {
close(fd_in);
return wrapper_return(WRAPPER_ERROR_FILE_OUT);
}
}
ret = lz78_decompress(w->data, fd_in, fd_out);
close(fd_in);
close(fd_out);
return wrapper_return(ret);
default:
return wrapper_return(WRAPPER_ERROR_ALGORITHM);
}
}
uint8_t wrapper_exec(wrapper* w, char* input, char* output) {
uint8_t ret;
if (w->mode == WRAPPER_MODE_COMPRESS) {
for (;;) {
ret = wrapper_compress(w, input, output);
if (ret != WRAPPER_ERROR_EAGAIN)
return ret;
}
} else {
for (;;) {
ret = wrapper_decompress(w, input, output);
if (ret != WRAPPER_ERROR_EAGAIN)
return ret;
}
}
}