622 lines
16 KiB
C++
622 lines
16 KiB
C++
/*
|
|
Minetest
|
|
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "collision.h"
|
|
#include "mapblock.h"
|
|
#include "map.h"
|
|
#include "nodedef.h"
|
|
#include "gamedef.h"
|
|
#include "log.h"
|
|
#include "environment.h"
|
|
#include "serverobject.h"
|
|
#include <vector>
|
|
#include <set>
|
|
#include "util/timetaker.h"
|
|
#include "main.h" // g_profiler
|
|
#include "profiler.h"
|
|
|
|
// Helper function:
|
|
// Checks for collision of a moving aabbox with a static aabbox
|
|
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
|
|
// The time after which the collision occurs is stored in dtime.
|
|
int axisAlignedCollision(
|
|
const aabb3f &staticbox, const aabb3f &movingbox,
|
|
const v3f &speed, f32 d, f32 &dtime)
|
|
{
|
|
//TimeTaker tt("axisAlignedCollision");
|
|
|
|
f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X);
|
|
f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y);
|
|
f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z);
|
|
|
|
aabb3f relbox(
|
|
movingbox.MinEdge.X - staticbox.MinEdge.X,
|
|
movingbox.MinEdge.Y - staticbox.MinEdge.Y,
|
|
movingbox.MinEdge.Z - staticbox.MinEdge.Z,
|
|
movingbox.MaxEdge.X - staticbox.MinEdge.X,
|
|
movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
|
|
movingbox.MaxEdge.Z - staticbox.MinEdge.Z
|
|
);
|
|
|
|
if(speed.X > 0) // Check for collision with X- plane
|
|
{
|
|
if(relbox.MaxEdge.X <= d)
|
|
{
|
|
dtime = - relbox.MaxEdge.X / speed.X;
|
|
if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
|
|
(relbox.MaxEdge.Y + speed.Y * dtime > 0) &&
|
|
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
|
|
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
|
|
return 0;
|
|
}
|
|
else if(relbox.MinEdge.X > xsize)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else if(speed.X < 0) // Check for collision with X+ plane
|
|
{
|
|
if(relbox.MinEdge.X >= xsize - d)
|
|
{
|
|
dtime = (xsize - relbox.MinEdge.X) / speed.X;
|
|
if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
|
|
(relbox.MaxEdge.Y + speed.Y * dtime > 0) &&
|
|
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
|
|
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
|
|
return 0;
|
|
}
|
|
else if(relbox.MaxEdge.X < 0)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// NO else if here
|
|
|
|
if(speed.Y > 0) // Check for collision with Y- plane
|
|
{
|
|
if(relbox.MaxEdge.Y <= d)
|
|
{
|
|
dtime = - relbox.MaxEdge.Y / speed.Y;
|
|
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
|
|
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
|
|
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
|
|
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
|
|
return 1;
|
|
}
|
|
else if(relbox.MinEdge.Y > ysize)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else if(speed.Y < 0) // Check for collision with Y+ plane
|
|
{
|
|
if(relbox.MinEdge.Y >= ysize - d)
|
|
{
|
|
dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
|
|
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
|
|
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
|
|
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
|
|
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
|
|
return 1;
|
|
}
|
|
else if(relbox.MaxEdge.Y < 0)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// NO else if here
|
|
|
|
if(speed.Z > 0) // Check for collision with Z- plane
|
|
{
|
|
if(relbox.MaxEdge.Z <= d)
|
|
{
|
|
dtime = - relbox.MaxEdge.Z / speed.Z;
|
|
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
|
|
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
|
|
(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
|
|
(relbox.MaxEdge.Y + speed.Y * dtime > 0))
|
|
return 2;
|
|
}
|
|
//else if(relbox.MinEdge.Z > zsize)
|
|
//{
|
|
// return -1;
|
|
//}
|
|
}
|
|
else if(speed.Z < 0) // Check for collision with Z+ plane
|
|
{
|
|
if(relbox.MinEdge.Z >= zsize - d)
|
|
{
|
|
dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
|
|
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
|
|
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
|
|
(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
|
|
(relbox.MaxEdge.Y + speed.Y * dtime > 0))
|
|
return 2;
|
|
}
|
|
//else if(relbox.MaxEdge.Z < 0)
|
|
//{
|
|
// return -1;
|
|
//}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
// Helper function:
|
|
// Checks if moving the movingbox up by the given distance would hit a ceiling.
|
|
bool wouldCollideWithCeiling(
|
|
const std::vector<aabb3f> &staticboxes,
|
|
const aabb3f &movingbox,
|
|
f32 y_increase, f32 d)
|
|
{
|
|
//TimeTaker tt("wouldCollideWithCeiling");
|
|
|
|
assert(y_increase >= 0);
|
|
|
|
for(std::vector<aabb3f>::const_iterator
|
|
i = staticboxes.begin();
|
|
i != staticboxes.end(); i++)
|
|
{
|
|
const aabb3f& staticbox = *i;
|
|
if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
|
|
(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
|
|
(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
|
|
(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
|
|
(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
|
|
(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
|
|
f32 pos_max_d, const aabb3f &box_0,
|
|
f32 stepheight, f32 dtime,
|
|
v3f &pos_f, v3f &speed_f, v3f &accel_f)
|
|
{
|
|
Map *map = &env->getMap();
|
|
//TimeTaker tt("collisionMoveSimple");
|
|
ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
|
|
|
|
collisionMoveResult result;
|
|
|
|
/*
|
|
Calculate new velocity
|
|
*/
|
|
if( dtime > 0.5 ) {
|
|
infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl;
|
|
dtime = 0.5;
|
|
}
|
|
speed_f += accel_f * dtime;
|
|
|
|
// If there is no speed, there are no collisions
|
|
if(speed_f.getLength() == 0)
|
|
return result;
|
|
|
|
/*
|
|
Collect node boxes in movement range
|
|
*/
|
|
std::vector<aabb3f> cboxes;
|
|
std::vector<bool> is_unloaded;
|
|
std::vector<bool> is_step_up;
|
|
std::vector<bool> is_object;
|
|
std::vector<int> bouncy_values;
|
|
std::vector<v3s16> node_positions;
|
|
{
|
|
//TimeTaker tt2("collisionMoveSimple collect boxes");
|
|
ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
|
|
|
|
v3s16 oldpos_i = floatToInt(pos_f, BS);
|
|
v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS);
|
|
s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
|
|
s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
|
|
s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
|
|
s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
|
|
s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
|
|
s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
|
|
|
|
for(s16 x = min_x; x <= max_x; x++)
|
|
for(s16 y = min_y; y <= max_y; y++)
|
|
for(s16 z = min_z; z <= max_z; z++)
|
|
{
|
|
v3s16 p(x,y,z);
|
|
try{
|
|
// Object collides into walkable nodes
|
|
MapNode n = map->getNode(p);
|
|
const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
|
|
if(f.walkable == false)
|
|
continue;
|
|
int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
|
|
|
|
std::vector<aabb3f> nodeboxes = n.getNodeBoxes(gamedef->ndef());
|
|
for(std::vector<aabb3f>::iterator
|
|
i = nodeboxes.begin();
|
|
i != nodeboxes.end(); i++)
|
|
{
|
|
aabb3f box = *i;
|
|
box.MinEdge += v3f(x, y, z)*BS;
|
|
box.MaxEdge += v3f(x, y, z)*BS;
|
|
cboxes.push_back(box);
|
|
is_unloaded.push_back(false);
|
|
is_step_up.push_back(false);
|
|
bouncy_values.push_back(n_bouncy_value);
|
|
node_positions.push_back(p);
|
|
is_object.push_back(false);
|
|
}
|
|
}
|
|
catch(InvalidPositionException &e)
|
|
{
|
|
// Collide with unloaded nodes
|
|
aabb3f box = getNodeBox(p, BS);
|
|
cboxes.push_back(box);
|
|
is_unloaded.push_back(true);
|
|
is_step_up.push_back(false);
|
|
bouncy_values.push_back(0);
|
|
node_positions.push_back(p);
|
|
is_object.push_back(false);
|
|
}
|
|
}
|
|
} // tt2
|
|
|
|
{
|
|
ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
|
|
//TimeTaker tt3("collisionMoveSimple collect object boxes");
|
|
|
|
/* add object boxes to cboxes */
|
|
|
|
|
|
std::list<ActiveObject*> objects;
|
|
#ifndef SERVER
|
|
ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
|
|
if (c_env != 0)
|
|
{
|
|
f32 distance = speed_f.getLength();
|
|
std::vector<DistanceSortedActiveObject> clientobjects;
|
|
c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects);
|
|
for (int i=0; i < clientobjects.size(); i++)
|
|
{
|
|
objects.push_back((ActiveObject*)clientobjects[i].obj);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
|
|
if (s_env != 0)
|
|
{
|
|
f32 distance = speed_f.getLength();
|
|
std::set<u16> s_objects = s_env->getObjectsInsideRadius(pos_f,distance * 1.5);
|
|
for (std::set<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); iter++)
|
|
{
|
|
ServerActiveObject *current = s_env->getActiveObject(*iter);
|
|
objects.push_back((ActiveObject*)current);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (std::list<ActiveObject*>::const_iterator iter = objects.begin();iter != objects.end(); ++iter)
|
|
{
|
|
ActiveObject *object = *iter;
|
|
|
|
if (object != NULL)
|
|
{
|
|
aabb3f object_collisionbox;
|
|
if (object->getCollisionBox(&object_collisionbox))
|
|
{
|
|
cboxes.push_back(object_collisionbox);
|
|
is_unloaded.push_back(false);
|
|
is_step_up.push_back(false);
|
|
bouncy_values.push_back(0);
|
|
node_positions.push_back(v3s16(0,0,0));
|
|
is_object.push_back(true);
|
|
}
|
|
}
|
|
}
|
|
} //tt3
|
|
|
|
assert(cboxes.size() == is_unloaded.size());
|
|
assert(cboxes.size() == is_step_up.size());
|
|
assert(cboxes.size() == bouncy_values.size());
|
|
assert(cboxes.size() == node_positions.size());
|
|
assert(cboxes.size() == is_object.size());
|
|
|
|
/*
|
|
Collision detection
|
|
*/
|
|
|
|
/*
|
|
Collision uncertainty radius
|
|
Make it a bit larger than the maximum distance of movement
|
|
*/
|
|
f32 d = pos_max_d * 1.1;
|
|
// A fairly large value in here makes moving smoother
|
|
//f32 d = 0.15*BS;
|
|
|
|
// This should always apply, otherwise there are glitches
|
|
assert(d > pos_max_d);
|
|
|
|
int loopcount = 0;
|
|
|
|
while(dtime > BS*1e-10)
|
|
{
|
|
//TimeTaker tt3("collisionMoveSimple dtime loop");
|
|
ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
|
|
|
|
// Avoid infinite loop
|
|
loopcount++;
|
|
if(loopcount >= 100)
|
|
{
|
|
infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl;
|
|
dtime = 0;
|
|
break;
|
|
}
|
|
|
|
aabb3f movingbox = box_0;
|
|
movingbox.MinEdge += pos_f;
|
|
movingbox.MaxEdge += pos_f;
|
|
|
|
int nearest_collided = -1;
|
|
f32 nearest_dtime = dtime;
|
|
u32 nearest_boxindex = -1;
|
|
|
|
/*
|
|
Go through every nodebox, find nearest collision
|
|
*/
|
|
for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
|
|
{
|
|
// Ignore if already stepped up this nodebox.
|
|
if(is_step_up[boxindex])
|
|
continue;
|
|
|
|
// Find nearest collision of the two boxes (raytracing-like)
|
|
f32 dtime_tmp;
|
|
int collided = axisAlignedCollision(
|
|
cboxes[boxindex], movingbox, speed_f, d, dtime_tmp);
|
|
|
|
if(collided == -1 || dtime_tmp >= nearest_dtime)
|
|
continue;
|
|
|
|
nearest_dtime = dtime_tmp;
|
|
nearest_collided = collided;
|
|
nearest_boxindex = boxindex;
|
|
}
|
|
|
|
if(nearest_collided == -1)
|
|
{
|
|
// No collision with any collision box.
|
|
pos_f += speed_f * dtime;
|
|
dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers
|
|
}
|
|
else
|
|
{
|
|
// Otherwise, a collision occurred.
|
|
|
|
const aabb3f& cbox = cboxes[nearest_boxindex];
|
|
|
|
// Check for stairs.
|
|
bool step_up = (nearest_collided != 1) && // must not be Y direction
|
|
(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
|
|
(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
|
|
(!wouldCollideWithCeiling(cboxes, movingbox,
|
|
cbox.MaxEdge.Y - movingbox.MinEdge.Y,
|
|
d));
|
|
|
|
// Get bounce multiplier
|
|
bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
|
|
float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
|
|
|
|
// Move to the point of collision and reduce dtime by nearest_dtime
|
|
if(nearest_dtime < 0)
|
|
{
|
|
// Handle negative nearest_dtime (can be caused by the d allowance)
|
|
if(!step_up)
|
|
{
|
|
if(nearest_collided == 0)
|
|
pos_f.X += speed_f.X * nearest_dtime;
|
|
if(nearest_collided == 1)
|
|
pos_f.Y += speed_f.Y * nearest_dtime;
|
|
if(nearest_collided == 2)
|
|
pos_f.Z += speed_f.Z * nearest_dtime;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pos_f += speed_f * nearest_dtime;
|
|
dtime -= nearest_dtime;
|
|
}
|
|
|
|
bool is_collision = true;
|
|
if(is_unloaded[nearest_boxindex])
|
|
is_collision = false;
|
|
|
|
CollisionInfo info;
|
|
if (is_object[nearest_boxindex]) {
|
|
info.type = COLLISION_OBJECT;
|
|
}
|
|
else
|
|
info.type = COLLISION_NODE;
|
|
info.node_p = node_positions[nearest_boxindex];
|
|
info.bouncy = bouncy;
|
|
info.old_speed = speed_f;
|
|
|
|
// Set the speed component that caused the collision to zero
|
|
if(step_up)
|
|
{
|
|
// Special case: Handle stairs
|
|
is_step_up[nearest_boxindex] = true;
|
|
is_collision = false;
|
|
}
|
|
else if(nearest_collided == 0) // X
|
|
{
|
|
if(fabs(speed_f.X) > BS*3)
|
|
speed_f.X *= bounce;
|
|
else
|
|
speed_f.X = 0;
|
|
result.collides = true;
|
|
result.collides_xz = true;
|
|
}
|
|
else if(nearest_collided == 1) // Y
|
|
{
|
|
if(fabs(speed_f.Y) > BS*3)
|
|
speed_f.Y *= bounce;
|
|
else
|
|
speed_f.Y = 0;
|
|
result.collides = true;
|
|
}
|
|
else if(nearest_collided == 2) // Z
|
|
{
|
|
if(fabs(speed_f.Z) > BS*3)
|
|
speed_f.Z *= bounce;
|
|
else
|
|
speed_f.Z = 0;
|
|
result.collides = true;
|
|
result.collides_xz = true;
|
|
}
|
|
|
|
info.new_speed = speed_f;
|
|
if(info.new_speed.getDistanceFrom(info.old_speed) < 0.1*BS)
|
|
is_collision = false;
|
|
|
|
if(is_collision){
|
|
result.collisions.push_back(info);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Final touches: Check if standing on ground, step up stairs.
|
|
*/
|
|
aabb3f box = box_0;
|
|
box.MinEdge += pos_f;
|
|
box.MaxEdge += pos_f;
|
|
for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
|
|
{
|
|
const aabb3f& cbox = cboxes[boxindex];
|
|
|
|
/*
|
|
See if the object is touching ground.
|
|
|
|
Object touches ground if object's minimum Y is near node's
|
|
maximum Y and object's X-Z-area overlaps with the node's
|
|
X-Z-area.
|
|
|
|
Use 0.15*BS so that it is easier to get on a node.
|
|
*/
|
|
if(
|
|
cbox.MaxEdge.X-d > box.MinEdge.X &&
|
|
cbox.MinEdge.X+d < box.MaxEdge.X &&
|
|
cbox.MaxEdge.Z-d > box.MinEdge.Z &&
|
|
cbox.MinEdge.Z+d < box.MaxEdge.Z
|
|
){
|
|
if(is_step_up[boxindex])
|
|
{
|
|
pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
|
|
box = box_0;
|
|
box.MinEdge += pos_f;
|
|
box.MaxEdge += pos_f;
|
|
}
|
|
if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS)
|
|
{
|
|
result.touching_ground = true;
|
|
if(is_unloaded[boxindex])
|
|
result.standing_on_unloaded = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#if 0
|
|
// This doesn't seem to work and isn't used
|
|
collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
|
|
f32 pos_max_d, const aabb3f &box_0,
|
|
f32 stepheight, f32 dtime,
|
|
v3f &pos_f, v3f &speed_f, v3f &accel_f)
|
|
{
|
|
//TimeTaker tt("collisionMovePrecise");
|
|
ScopeProfiler sp(g_profiler, "collisionMovePrecise avg", SPT_AVG);
|
|
|
|
collisionMoveResult final_result;
|
|
|
|
// If there is no speed, there are no collisions
|
|
if(speed_f.getLength() == 0)
|
|
return final_result;
|
|
|
|
// Don't allow overly huge dtime
|
|
if(dtime > 2.0)
|
|
dtime = 2.0;
|
|
|
|
f32 dtime_downcount = dtime;
|
|
|
|
u32 loopcount = 0;
|
|
do
|
|
{
|
|
loopcount++;
|
|
|
|
// Maximum time increment (for collision detection etc)
|
|
// time = distance / speed
|
|
f32 dtime_max_increment = 1.0;
|
|
if(speed_f.getLength() != 0)
|
|
dtime_max_increment = pos_max_d / speed_f.getLength();
|
|
|
|
// Maximum time increment is 10ms or lower
|
|
if(dtime_max_increment > 0.01)
|
|
dtime_max_increment = 0.01;
|
|
|
|
f32 dtime_part;
|
|
if(dtime_downcount > dtime_max_increment)
|
|
{
|
|
dtime_part = dtime_max_increment;
|
|
dtime_downcount -= dtime_part;
|
|
}
|
|
else
|
|
{
|
|
dtime_part = dtime_downcount;
|
|
/*
|
|
Setting this to 0 (no -=dtime_part) disables an infinite loop
|
|
when dtime_part is so small that dtime_downcount -= dtime_part
|
|
does nothing
|
|
*/
|
|
dtime_downcount = 0;
|
|
}
|
|
|
|
collisionMoveResult result = collisionMoveSimple(map, gamedef,
|
|
pos_max_d, box_0, stepheight, dtime_part,
|
|
pos_f, speed_f, accel_f);
|
|
|
|
if(result.touching_ground)
|
|
final_result.touching_ground = true;
|
|
if(result.collides)
|
|
final_result.collides = true;
|
|
if(result.collides_xz)
|
|
final_result.collides_xz = true;
|
|
if(result.standing_on_unloaded)
|
|
final_result.standing_on_unloaded = true;
|
|
}
|
|
while(dtime_downcount > 0.001);
|
|
|
|
return final_result;
|
|
}
|
|
#endif
|