296 lines
9.7 KiB
C++
296 lines
9.7 KiB
C++
// Copyright (C) 2002-2007 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __IRR_POINT_3D_H_INCLUDED__
|
|
#define __IRR_POINT_3D_H_INCLUDED__
|
|
|
|
#include "irrMath.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
//! 3d vector template class with lots of operators and methods.
|
|
template <class T>
|
|
class vector3d
|
|
{
|
|
public:
|
|
|
|
#ifdef IRRLICHT_FAST_MATH
|
|
vector3d() {};
|
|
#else
|
|
vector3d() : X(0), Y(0), Z(0) {};
|
|
#endif
|
|
|
|
vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {};
|
|
vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {};
|
|
|
|
// operators
|
|
|
|
vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
|
|
|
|
vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
|
|
|
|
vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
|
|
vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
|
|
|
|
vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
|
|
vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
|
|
|
|
vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
|
|
vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
|
|
vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
|
|
vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
|
|
|
|
vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
|
|
vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
|
|
vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
|
|
vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
|
|
|
|
bool operator<=(const vector3d<T>&other) const { return X<=other.X && Y<=other.Y && Z<=other.Z;};
|
|
bool operator>=(const vector3d<T>&other) const { return X>=other.X && Y>=other.Y && Z>=other.Z;};
|
|
bool operator<(const vector3d<T>&other) const { return X<other.X && Y<other.Y && Z<other.Z;};
|
|
bool operator>(const vector3d<T>&other) const { return X>other.X && Y>other.Y && Z>other.Z;};
|
|
|
|
//! use week float compare
|
|
//bool operator==(const vector3d<T>& other) const { return other.X==X && other.Y==Y && other.Z==Z; }
|
|
//bool operator!=(const vector3d<T>& other) const { return other.X!=X || other.Y!=Y || other.Z!=Z; }
|
|
|
|
bool operator==(const vector3d<T>& other) const
|
|
{
|
|
return core::equals(X, other.X) &&
|
|
core::equals(Y, other.Y) &&
|
|
core::equals(Z, other.Z);
|
|
}
|
|
|
|
bool operator!=(const vector3d<T>& other) const
|
|
{
|
|
return !core::equals(X, other.X) ||
|
|
!core::equals(Y, other.Y) ||
|
|
!core::equals(Z, other.Z);
|
|
}
|
|
|
|
// functions
|
|
|
|
//! returns if this vector equals the other one, taking floating point rounding errors into account
|
|
bool equals(const vector3d<T>& other, const f32 tolerance = ROUNDING_ERROR_32 ) const
|
|
{
|
|
return core::equals(X, other.X, tolerance) &&
|
|
core::equals(Y, other.Y, tolerance) &&
|
|
core::equals(Z, other.Z, tolerance);
|
|
}
|
|
|
|
void set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; }
|
|
void set(const vector3d<T>& p) { X=p.X; Y=p.Y; Z=p.Z;}
|
|
|
|
//! Returns length of the vector.
|
|
T getLength() const { return (T) sqrt(X*X + Y*Y + Z*Z); }
|
|
|
|
//! Returns squared length of the vector.
|
|
/** This is useful because it is much faster than
|
|
getLength(). */
|
|
T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
|
|
|
|
//! Returns the dot product with another vector.
|
|
T dotProduct(const vector3d<T>& other) const
|
|
{
|
|
return X*other.X + Y*other.Y + Z*other.Z;
|
|
}
|
|
|
|
//! Returns distance from another point.
|
|
/** Here, the vector is interpreted as point in 3 dimensional space. */
|
|
T getDistanceFrom(const vector3d<T>& other) const
|
|
{
|
|
return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
|
|
}
|
|
|
|
//! Returns squared distance from another point.
|
|
/** Here, the vector is interpreted as point in 3 dimensional space. */
|
|
T getDistanceFromSQ(const vector3d<T>& other) const
|
|
{
|
|
return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
|
|
}
|
|
|
|
//! Calculates the cross product with another vector
|
|
//! \param p: vector to multiply with.
|
|
//! \return Crossproduct of this vector with p.
|
|
vector3d<T> crossProduct(const vector3d<T>& p) const
|
|
{
|
|
return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
|
|
}
|
|
|
|
//! Returns if this vector interpreted as a point is on a line between two other points.
|
|
/** It is assumed that the point is on the line. */
|
|
//! \param begin: Beginning vector to compare between.
|
|
//! \param end: Ending vector to compare between.
|
|
//! \return True if this vector is between begin and end. False if not.
|
|
bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
|
|
{
|
|
T f = (end - begin).getLengthSQ();
|
|
return getDistanceFromSQ(begin) < f &&
|
|
getDistanceFromSQ(end) < f;
|
|
}
|
|
|
|
//! Normalizes the vector. In case of the 0 vector the result
|
|
//! is still 0, otherwise the length of the vector will be 1.
|
|
//! Todo: 64 Bit template doesnt work.. need specialized template
|
|
vector3d<T>& normalize()
|
|
{
|
|
T l = X*X + Y*Y + Z*Z;
|
|
if (l == 0)
|
|
return *this;
|
|
l = (T) reciprocal_squareroot ( (f32)l );
|
|
X *= l;
|
|
Y *= l;
|
|
Z *= l;
|
|
return *this;
|
|
}
|
|
|
|
//! Sets the length of the vector to a new value
|
|
void setLength(T newlength)
|
|
{
|
|
normalize();
|
|
*this *= newlength;
|
|
}
|
|
|
|
//! Inverts the vector.
|
|
void invert()
|
|
{
|
|
X *= -1.0f;
|
|
Y *= -1.0f;
|
|
Z *= -1.0f;
|
|
}
|
|
|
|
//! Rotates the vector by a specified number of degrees around the Y
|
|
//! axis and the specified center.
|
|
//! \param degrees: Number of degrees to rotate around the Y axis.
|
|
//! \param center: The center of the rotation.
|
|
void rotateXZBy(f64 degrees, const vector3d<T>& center)
|
|
{
|
|
degrees *= DEGTORAD64;
|
|
T cs = (T)cos(degrees);
|
|
T sn = (T)sin(degrees);
|
|
X -= center.X;
|
|
Z -= center.Z;
|
|
set(X*cs - Z*sn, Y, X*sn + Z*cs);
|
|
X += center.X;
|
|
Z += center.Z;
|
|
}
|
|
|
|
//! Rotates the vector by a specified number of degrees around the Z
|
|
//! axis and the specified center.
|
|
//! \param degrees: Number of degrees to rotate around the Z axis.
|
|
//! \param center: The center of the rotation.
|
|
void rotateXYBy(f64 degrees, const vector3d<T>& center)
|
|
{
|
|
degrees *= DEGTORAD64;
|
|
T cs = (T)cos(degrees);
|
|
T sn = (T)sin(degrees);
|
|
X -= center.X;
|
|
Y -= center.Y;
|
|
set(X*cs - Y*sn, X*sn + Y*cs, Z);
|
|
X += center.X;
|
|
Y += center.Y;
|
|
}
|
|
|
|
//! Rotates the vector by a specified number of degrees around the X
|
|
//! axis and the specified center.
|
|
//! \param degrees: Number of degrees to rotate around the X axis.
|
|
//! \param center: The center of the rotation.
|
|
void rotateYZBy(f64 degrees, const vector3d<T>& center)
|
|
{
|
|
degrees *= DEGTORAD64;
|
|
T cs = (T)cos(degrees);
|
|
T sn = (T)sin(degrees);
|
|
Z -= center.Z;
|
|
Y -= center.Y;
|
|
set(X, Y*cs - Z*sn, Y*sn + Z*cs);
|
|
Z += center.Z;
|
|
Y += center.Y;
|
|
}
|
|
|
|
//! Returns interpolated vector.
|
|
/** \param other: other vector to interpolate between
|
|
\param d: value between 0.0f and 1.0f. */
|
|
vector3d<T> getInterpolated(const vector3d<T>& other, const T d) const
|
|
{
|
|
const T inv = (T) 1.0 - d;
|
|
return vector3d<T>(other.X*inv + X*d, other.Y*inv + Y*d, other.Z*inv + Z*d);
|
|
}
|
|
|
|
//! Returns interpolated vector. ( quadratic )
|
|
/** \param v2: second vector to interpolate with
|
|
\param v3: third vector to interpolate with
|
|
\param d: value between 0.0f and 1.0f. */
|
|
vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, const T d) const
|
|
{
|
|
// this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
|
|
const T inv = (T) 1.0 - d;
|
|
const T mul0 = inv * inv;
|
|
const T mul1 = (T) 2.0 * d * inv;
|
|
const T mul2 = d * d;
|
|
|
|
return vector3d<T> ( X * mul0 + v2.X * mul1 + v3.X * mul2,
|
|
Y * mul0 + v2.Y * mul1 + v3.Y * mul2,
|
|
Z * mul0 + v2.Z * mul1 + v3.Z * mul2);
|
|
}
|
|
|
|
//! Gets the Y and Z rotations of a vector.
|
|
/** Thanks to Arras on the Irrlicht forums to add this method.
|
|
\return A vector representing the rotation in degrees of
|
|
this vector. The Z component of the vector will always be 0. */
|
|
vector3d<T> getHorizontalAngle()
|
|
{
|
|
vector3d<T> angle;
|
|
|
|
angle.Y = (T)atan2(X, Z);
|
|
angle.Y *= (f32)RADTODEG64;
|
|
|
|
if (angle.Y < 0.0f) angle.Y += 360.0f;
|
|
if (angle.Y >= 360.0f) angle.Y -= 360.0f;
|
|
|
|
f32 z1 = (f32)sqrt(X*X + Z*Z);
|
|
|
|
angle.X = (T)atan2(z1, Y);
|
|
angle.X *= (f32)RADTODEG64;
|
|
angle.X -= 90.0f;
|
|
|
|
if (angle.X < 0.0f) angle.X += 360.0f;
|
|
if (angle.X >= 360.0f) angle.X -= 360.0f;
|
|
|
|
return angle;
|
|
}
|
|
|
|
//! Fills an array of 4 values with the vector data (usually floats).
|
|
/** Useful for setting in shader constants for example. The fourth value
|
|
will always be 0. */
|
|
void getAs4Values(T* array) const
|
|
{
|
|
array[0] = X;
|
|
array[1] = Y;
|
|
array[2] = Z;
|
|
array[3] = 0;
|
|
}
|
|
|
|
|
|
// member variables
|
|
|
|
T X, Y, Z;
|
|
};
|
|
|
|
|
|
//! Typedef for a f32 3d vector.
|
|
typedef vector3d<f32> vector3df;
|
|
//! Typedef for an integer 3d vector.
|
|
typedef vector3d<s32> vector3di;
|
|
|
|
template<class S, class T> vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|