irrlicht/include/IGeometryCreator.h

230 lines
9.2 KiB
C++
Raw Blame History

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __I_GEOMETRY_CREATOR_H_INCLUDED__
#define __I_GEOMETRY_CREATOR_H_INCLUDED__
#include "IReferenceCounted.h"
#include "IMesh.h"
#include "IImage.h"
namespace irr
{
namespace video
{
class IVideoDriver;
class SMaterial;
}
namespace scene
{
enum ECUBE_MESH_TYPE
{
//! Single buffer with 12 different vertices, normals are average of adjacent planes
//! Order for outgoing (front-face) normals of planes would be: NEG_Z, POS_X, POS_Z, NEG_X, POS_Y, NEG_Y
ECMT_1BUF_12VTX_NA,
//! One buffer per side, each with 4 vertices, normals are perpendicular to sides
//! Note: You probably will have to scale down your texture uv's to avoid white lines at borders
// as this mesh sets them to 0,1 values. We can't do that when creating the mesh as it
// depends on texture resolution which we don't know at that point.
ECMT_6BUF_4VTX_NP
};
//! Helper class for creating geometry on the fly.
/** You can get an instance of this class through ISceneManager::getGeometryCreator() */
class IGeometryCreator : public IReferenceCounted
{
public:
//! Creates a simple cube mesh.
/**
\param size Dimensions of the cube.
\param type One of ECUBE_MESH_TYPE. So you can chose between cubes with single material or independent materials per side.
\return Generated mesh.
*/
virtual IMesh* createCubeMesh(const core::vector3df& size=core::vector3df(5.f,5.f,5.f), ECUBE_MESH_TYPE type = ECMT_1BUF_12VTX_NA) const =0;
//! Create a pseudo-random mesh representing a hilly terrain.
/**
\param tileSize The size of each tile.
\param tileCount The number of tiles in each dimension.
\param material The material to apply to the mesh.
\param hillHeight The maximum height of the hills.
\param countHills The number of hills along each dimension.
\param textureRepeatCount The number of times to repeat the material texture along each dimension.
\return Generated mesh.
*/
virtual IMesh* createHillPlaneMesh(
const core::dimension2d<f32>& tileSize,
const core::dimension2d<u32>& tileCount,
video::SMaterial* material, f32 hillHeight,
const core::dimension2d<f32>& countHills,
const core::dimension2d<f32>& textureRepeatCount) const =0;
//! Create a simple rectangular textured plane mesh.
/**
\param tileSize The size of each tile.
\param tileCount The number of tiles in each dimension.
\param material The material to apply to the mesh.
\param textureRepeatCount The number of times to repeat the material texture along each dimension.
\return Generated mesh.
*/
IMesh* createPlaneMesh(
const core::dimension2d<f32>& tileSize,
const core::dimension2d<u32>& tileCount=core::dimension2du(1,1),
video::SMaterial* material=0,
const core::dimension2df& textureRepeatCount=core::dimension2df(1.f,1.f)) const
{
return createHillPlaneMesh(tileSize, tileCount, material, 0.f, core::dimension2df(), textureRepeatCount);
}
//! Create a geoplane.
/**
\param radius Radius of the plane
\param rows How many rows to place
\param columns How many columns to place
\return Generated mesh.
*/
virtual IMesh* createGeoplaneMesh(f32 radius = 5.f,
u32 rows = 16, u32 columns = 16) const =0;
//! Create a terrain mesh from an image representing a heightfield.
/**
\param texture The texture to apply to the terrain.
\param heightmap An image that will be interpreted as a heightmap. The
brightness (average color) of each pixel is interpreted as a height,
with a 255 brightness pixel producing the maximum height.
\param stretchSize The size that each pixel will produce, i.e. a
512x512 heightmap
and a stretchSize of (10.f, 20.f) will produce a mesh of size
5120.f x 10240.f
\param maxHeight The maximum height of the terrain.
\param driver The current video driver.
\param defaultVertexBlockSize (to be documented)
\param debugBorders (to be documented)
\return Generated mesh.
*/
virtual IMesh* createTerrainMesh(video::IImage* texture,
video::IImage* heightmap,
const core::dimension2d<f32>& stretchSize,
f32 maxHeight, video::IVideoDriver* driver,
const core::dimension2d<u32>& defaultVertexBlockSize,
bool debugBorders=false) const =0;
//! Create an arrow mesh, composed of a cylinder and a cone.
/**
\param tesselationCylinder Number of quads composing the cylinder.
\param tesselationCone Number of triangles composing the cone's roof.
\param height Total height of the arrow
\param cylinderHeight Total height of the cylinder, should be lesser
than total height
\param widthCylinder Diameter of the cylinder
\param widthCone Diameter of the cone's base, should be not smaller
than the cylinder's diameter
\param colorCylinder color of the cylinder
\param colorCone color of the cone
\return Generated mesh.
*/
virtual IMesh* createArrowMesh(const u32 tesselationCylinder = 4,
const u32 tesselationCone = 8, const f32 height = 1.f,
const f32 cylinderHeight = 0.6f, const f32 widthCylinder = 0.05f,
const f32 widthCone = 0.3f, const video::SColor colorCylinder = 0xFFFFFFFF,
const video::SColor colorCone = 0xFFFFFFFF) const =0;
//! Create a sphere mesh.
/**
\param radius Radius of the sphere
\param polyCountX Number of quads used for the horizontal tiling
\param polyCountY Number of quads used for the vertical tiling
\return Generated mesh.
*/
virtual IMesh* createSphereMesh(f32 radius = 5.f,
u32 polyCountX = 16, u32 polyCountY = 16) const =0;
//! Create a cylinder mesh.
/**
\param radius Radius of the cylinder.
\param length Length of the cylinder.
\param tesselation Number of quads around the circumference of the cylinder.
\param color The color of the cylinder.
\param closeTop If true, close the ends of the cylinder, otherwise leave them open.
\param oblique X-offset (shear) of top compared to bottom.
\param normalType When 0 side normals are radial from origin. Note that origin is at the bottom.
When 1 side normals are flat along top/bottom polygons.
NOTE: To get normals which are perpendicular to the side of an oblique
cylinder, don't use the oblique parameter. Instead set normalType to 1
and create a cylinder with oblique set to 0. Then use
IMeshManipulator::transform with a shear matrix on the returned mesh.
You get a shear matrix for an identical effect of this oblique parameter when you
set the 4th element of an identity matrix to (oblique/length).
\return Generated mesh.
*/
virtual IMesh* createCylinderMesh(f32 radius, f32 length,
u32 tesselation,
const video::SColor& color=video::SColor(0xffffffff),
bool closeTop=true, f32 oblique=0.f, u32 normalType=0) const =0;
//! Create a cone mesh.
/**
\param radius Radius of the cone.
\param length Length of the cone.
\param tesselation Number of quads around the circumference of the cone.
\param colorTop The color of the top of the cone.
\param colorBottom The color of the bottom of the cone.
\param oblique (to be documented)
\return Generated mesh.
*/
virtual IMesh* createConeMesh(f32 radius, f32 length, u32 tesselation,
const video::SColor& colorTop=video::SColor(0xffffffff),
const video::SColor& colorBottom=video::SColor(0xffffffff),
f32 oblique=0.f) const =0;
//! Create a torus mesh
/** Note: Segments might get reduced to ensure it fits into 16-bit meshbuffer.
With 255 segments for minor and major circle you'll hit the maximum.
When using caps 2 more vertices are added.
Note: UV's for caps are probably not useful
\param majorRadius Starting from mesh center
\param minorRadius Starting from a circle at majorRadius distance around center
\param majorSegments Segments for major circle. Will use at least 3 segments.
\param minorSegments Segments for minor circle. Will use at least 3 segments.
\param angleStart Start major circle between 0 and 360<36> and < angleEnd
\param angleEnd End major circle between 0 and 360<36> and > angleStart
\param capEnds When you don't create a full major circle you might want caps
0 = no caps (default)
Bit 1: add cap at angleStart
Bit 2: add cap at angleEnd
*/
virtual IMesh* createTorusMesh(f32 majorRadius, f32 minorRadius,
u32 majorSegments = 32, u32 minorSegments = 16,
f32 angleStart=0.f, f32 angleEnd=360.f, int capEnds=0) const = 0;
//! Create a volume light mesh.
/**
\param subdivideU Horizontal patch count.
\param subdivideV Vertical patch count.
\param footColor Color at the bottom of the light.
\param tailColor Color at the mid of the light.
\param lpDistance Virtual distance of the light point for normals.
\param lightDim Dimensions of the light.
\return Generated mesh.
*/
virtual IMesh* createVolumeLightMesh(
const u32 subdivideU=32, const u32 subdivideV=32,
const video::SColor footColor = 0xffffffff,
const video::SColor tailColor = 0xffffffff,
const f32 lpDistance = 8.f,
const core::vector3df& lightDim = core::vector3df(1.f,1.2f,1.f)) const =0;
};
} // end namespace scene
} // end namespace irr
#endif // __I_GEOMETRY_CREATOR_H_INCLUDED__