irrlicht/source/Irrlicht/CSphereSceneNode.cpp

307 lines
8.6 KiB
C++

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CSphereSceneNode.h"
#include "IVideoDriver.h"
#include "ISceneManager.h"
#include "S3DVertex.h"
#include "os.h"
namespace irr
{
namespace scene
{
//! constructor
CSphereSceneNode::CSphereSceneNode(f32 radius, u32 polyCountX, u32 polyCountY, ISceneNode* parent, ISceneManager* mgr, s32 id,
const core::vector3df& position, const core::vector3df& rotation, const core::vector3df& scale)
: ISceneNode(parent, mgr, id, position, rotation, scale), Radius(radius),
PolyCountX(polyCountX), PolyCountY(polyCountY)
{
#ifdef _DEBUG
setDebugName("CSphereSceneNode");
#endif
setSizeAndPolys();
}
//! destructor
CSphereSceneNode::~CSphereSceneNode()
{
}
void CSphereSceneNode::setSizeAndPolys()
{
// thanks to Alfaz93 who made his code available for Irrlicht on which
// this one is based!
// we are creating the sphere mesh here.
if (PolyCountX < 2)
PolyCountX = 2;
if (PolyCountY < 2)
PolyCountY = 2;
if (PolyCountX * PolyCountY > 32767) // prevent u16 overflow
if (PolyCountX > PolyCountY) // prevent u16 overflow
PolyCountX = 32767/PolyCountY-1;
else
PolyCountY = 32767/(PolyCountX+1);
u32 PolyCountXPitch = PolyCountX+1; // get to same vertex on next level
Buffer.Vertices.set_used((PolyCountXPitch * PolyCountY) + 2);
Buffer.Indices.set_used((PolyCountX * PolyCountY) * 6);
video::SColor clr(100, 255,255,255);
u32 i=0;
u32 level = 0;
for (u32 p1 = 0; p1 < PolyCountY-1; ++p1)
{
//main quads, top to bottom
for (u32 p2 = 0; p2 < PolyCountX - 1; ++p2)
{
const u32 curr = level + p2;
Buffer.Indices[i] = curr + PolyCountXPitch;
Buffer.Indices[++i] = curr;
Buffer.Indices[++i] = curr + 1;
Buffer.Indices[++i] = curr + PolyCountXPitch;
Buffer.Indices[++i] = curr+1;
Buffer.Indices[++i] = curr + 1 + PolyCountXPitch;
++i;
}
// the connectors from front to end
Buffer.Indices[i] = level + PolyCountX - 1 + PolyCountXPitch;
Buffer.Indices[++i] = level + PolyCountX - 1;
Buffer.Indices[++i] = level + PolyCountX;
++i;
Buffer.Indices[i] = level + PolyCountX - 1 + PolyCountXPitch;
Buffer.Indices[++i] = level + PolyCountX;
Buffer.Indices[++i] = level + PolyCountX + PolyCountXPitch;
++i;
level += PolyCountXPitch;
}
const u32 PolyCountSq = PolyCountXPitch * PolyCountY; // top point
const u32 PolyCountSq1 = PolyCountSq + 1; // bottom point
const u32 PolyCountSqM1 = (PolyCountY - 1) * PolyCountXPitch; // last row's first vertex
for (u32 p2 = 0; p2 < PolyCountX - 1; ++p2)
{
// create triangles which are at the top of the sphere
Buffer.Indices[i] = PolyCountSq;
Buffer.Indices[++i] = p2 + 1;
Buffer.Indices[++i] = p2;
++i;
// create triangles which are at the bottom of the sphere
Buffer.Indices[i] = PolyCountSqM1 + p2;
Buffer.Indices[++i] = PolyCountSqM1 + p2 + 1;
Buffer.Indices[++i] = PolyCountSq1;
++i;
}
// create final triangle which is at the top of the sphere
Buffer.Indices[i] = PolyCountSq;
Buffer.Indices[++i] = PolyCountX;
Buffer.Indices[++i] = PolyCountX-1;
++i;
// create final triangle which is at the bottom of the sphere
Buffer.Indices[i] = PolyCountSqM1 + PolyCountX - 1;
Buffer.Indices[++i] = PolyCountSqM1;
Buffer.Indices[++i] = PolyCountSq1;
// calculate the angle which separates all points in a circle
const f64 AngleX = 2 * core::PI / PolyCountX;
const f64 AngleY = core::PI / PolyCountY;
i = 0;
f64 axz;
// we don't start at 0.
f64 ay = 0;//AngleY / 2;
for (u32 y = 0; y < PolyCountY; ++y)
{
ay += AngleY;
const f64 sinay = sin(ay);
axz = 0;
// calculate the necessary vertices without the doubled one
for (u32 xz = 0;xz < PolyCountX; ++xz)
{
// calculate points position
const core::vector3df pos((f32)(Radius * cos(axz) * sinay),
(f32)(Radius * cos(ay)),
(f32)(Radius * sin(axz) * sinay));
// for spheres the normal is the position
core::vector3df normal(pos);
normal.normalize();
// calculate texture coordinates via sphere mapping
// tu is the same on each level, so only calculate once
f32 tu = 0.5f;
if (y==0)
{
if (normal.Y != -1.0f && normal.Y != 1.0f)
tu = (f32)(acos(core::clamp(normal.X/sinay, -1.0, 1.0)) * 0.5 *core::RECIPROCAL_PI64);
if (normal.Z < 0.0f)
tu=1-tu;
}
else
tu = Buffer.Vertices[i-PolyCountXPitch].TCoords.X;
Buffer.Vertices[i] = video::S3DVertex(pos.X, pos.Y, pos.Z,
normal.X, normal.Y, normal.Z,
clr, tu,
(f32)(ay*core::RECIPROCAL_PI64));
++i;
axz += AngleX;
}
// This is the doubled vertex on the initial position
Buffer.Vertices[i] = video::S3DVertex(Buffer.Vertices[i-PolyCountX]);
Buffer.Vertices[i].TCoords.X=1.0f;
++i;
}
// the vertex at the top of the sphere
Buffer.Vertices[i] = video::S3DVertex(0.0f,Radius,0.0f, 0.0f,1.0f,0.0f, clr, 0.5f, 0.0f);
// the vertex at the bottom of the sphere
++i;
Buffer.Vertices[i] = video::S3DVertex(0.0f,-Radius,0.0f, 0.0f,-1.0f,0.0f, clr, 0.5f, 1.0f);
// recalculate bounding box
Buffer.BoundingBox.reset(Buffer.Vertices[i].Pos);
Buffer.BoundingBox.addInternalPoint(Buffer.Vertices[i-1].Pos);
Buffer.BoundingBox.addInternalPoint(Radius,0.0f,0.0f);
Buffer.BoundingBox.addInternalPoint(-Radius,0.0f,0.0f);
Buffer.BoundingBox.addInternalPoint(0.0f,0.0f,Radius);
Buffer.BoundingBox.addInternalPoint(0.0f,0.0f,-Radius);
}
//! renders the node.
void CSphereSceneNode::render()
{
video::IVideoDriver* driver = SceneManager->getVideoDriver();
if (Buffer.Vertices.size() && Buffer.Indices.size())
{
driver->setMaterial(Buffer.Material);
driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
driver->drawMeshBuffer(&Buffer);
if ( DebugDataVisible & scene::EDS_BBOX )
{
video::SMaterial m;
m.Lighting = false;
driver->setMaterial(m);
driver->draw3DBox(Buffer.BoundingBox, video::SColor(255,255,255,255));
}
}
}
//! returns the axis aligned bounding box of this node
const core::aabbox3d<f32>& CSphereSceneNode::getBoundingBox() const
{
return Buffer.BoundingBox;
}
void CSphereSceneNode::OnRegisterSceneNode()
{
if (IsVisible)
SceneManager->registerNodeForRendering(this);
ISceneNode::OnRegisterSceneNode();
}
//! returns the material based on the zero based index i. To get the amount
//! of materials used by this scene node, use getMaterialCount().
//! This function is needed for inserting the node into the scene hirachy on a
//! optimal position for minimizing renderstate changes, but can also be used
//! to directly modify the material of a scene node.
video::SMaterial& CSphereSceneNode::getMaterial(u32 i)
{
return Buffer.Material;
}
//! returns amount of materials used by this scene node.
u32 CSphereSceneNode::getMaterialCount()
{
return 1;
}
//! Writes attributes of the scene node.
void CSphereSceneNode::serializeAttributes(io::IAttributes* out, io::SAttributeReadWriteOptions* options)
{
ISceneNode::serializeAttributes(out, options);
out->addFloat("Radius", Radius);
out->addInt("PolyCountX", PolyCountX);
out->addInt("PolyCountY", PolyCountY);
}
//! Reads attributes of the scene node.
void CSphereSceneNode::deserializeAttributes(io::IAttributes* in, io::SAttributeReadWriteOptions* options)
{
f32 oldRadius = Radius;
u32 oldPolyCountX = PolyCountX;
u32 oldPolyCountY = PolyCountY;
Radius = in->getAttributeAsFloat("Radius");
PolyCountX = in->getAttributeAsInt("PolyCountX");
PolyCountY = in->getAttributeAsInt("PolyCountY");
// legacy values read for compatibility with older versions
u32 polyCount = in->getAttributeAsInt("PolyCount");
if (PolyCountX ==0 && PolyCountY == 0)
PolyCountX = PolyCountY = polyCount;
Radius = irr::core::max_(Radius, 0.0001f);
if ( !core::equals(Radius, oldRadius) || PolyCountX != oldPolyCountX || PolyCountY != oldPolyCountY)
setSizeAndPolys();
ISceneNode::deserializeAttributes(in, options);
}
//! Creates a clone of this scene node and its children.
ISceneNode* CSphereSceneNode::clone(ISceneNode* newParent, ISceneManager* newManager)
{
if (!newParent) newParent = Parent;
if (!newManager) newManager = SceneManager;
CSphereSceneNode* nb = new CSphereSceneNode(Radius, PolyCountX, PolyCountY, newParent,
newManager, ID, RelativeTranslation);
nb->cloneMembers(this, newManager);
nb->Buffer.Material = Buffer.Material;
nb->drop();
return nb;
}
} // end namespace scene
} // end namespace irr