irrlicht/source/Irrlicht/CGeometryCreator.cpp

633 lines
17 KiB
C++

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CGeometryCreator.h"
#include "SAnimatedMesh.h"
#include "SMeshBuffer.h"
#include "SMesh.h"
#include "IVideoDriver.h"
#include "CImage.h"
#include "os.h"
namespace irr
{
namespace scene
{
// creates a hill plane
IMesh* CGeometryCreator::createHillPlaneMesh(
const core::dimension2d<f32>& tileSize,
const core::dimension2d<s32>& tc, video::SMaterial* material,
f32 hillHeight, const core::dimension2d<f32>& ch,
const core::dimension2d<f32>& textureRepeatCount)
{
core::dimension2d<s32> tileCount = tc;
core::dimension2d<f32> countHills = ch;
SMeshBuffer* buffer = new SMeshBuffer();
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
if (countHills.Width < 0.01f)
countHills.Width = 1;
if (countHills.Height < 0.01f)
countHills.Height = 1;
const f32 halfX = (tileSize.Width * tileCount.Width) / 2.0f;
const f32 halfY = (tileSize.Height * tileCount.Height) / 2.0f;
const core::dimension2d<f32> tx(
1.0f / (tileCount.Width / textureRepeatCount.Width),
1.0f / (tileCount.Height / textureRepeatCount.Height));
++tileCount.Height;
++tileCount.Width;
// create vertices
s32 x;
for (x=0; x<tileCount.Width; ++x)
{
for (s32 y=0; y<tileCount.Height; ++y)
{
vtx.Pos.set(tileSize.Width * x - halfX, 0, tileSize.Height * y - halfY);
vtx.TCoords.set(x * tx.Width, 1.0f - y * tx.Height);
if (hillHeight)
vtx.Pos.Y = (f32)(sin(vtx.Pos.X * countHills.Width * irr::core::PI / halfX) *
cos(vtx.Pos.Z * countHills.Height * irr::core::PI / halfY))
*hillHeight;
buffer->Vertices.push_back(vtx);
}
}
// create indices
for (x=0; x<tileCount.Width-1; ++x)
{
for (s32 y=0; y<tileCount.Height-1; ++y)
{
s32 current = y*tileCount.Width + x;
buffer->Indices.push_back(current);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + tileCount.Width);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + 1 + tileCount.Width);
buffer->Indices.push_back(current + tileCount.Width);
}
}
// recalculate normals
for (u32 i=0; i<buffer->Indices.size(); i+=3)
{
core::plane3d<f32> p(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos);
buffer->Vertices[buffer->Indices[i+0]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = p.Normal;
}
if (material)
buffer->Material = *material;
buffer->recalculateBoundingBox();
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
IMesh* CGeometryCreator::createTerrainMesh(video::IImage* texture,
video::IImage* heightmap, const core::dimension2d<f32>& stretchSize,
f32 maxHeight, video::IVideoDriver* driver,
const core::dimension2d<s32> maxVtxBlockSize,
bool debugBorders)
{
if (!texture || !heightmap)
return 0;
video::SMaterial material;
c8 textureName[64];
c8 tmp[255];
// debug border
s32 borderSkip = debugBorders ? 0 : 1;
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
SMesh* mesh = new SMesh();
u32 tm = os::Timer::getRealTime()/1000;
core::dimension2d<s32> hMapSize= heightmap->getDimension();
core::dimension2d<s32> tMapSize= texture->getDimension();
core::position2d<f32> thRel((f32)tMapSize.Width / hMapSize.Width, (f32)tMapSize.Height / hMapSize.Height);
core::position2d<s32> processed(0,0);
while (processed.Y<hMapSize.Height)
{
while(processed.X<hMapSize.Width)
{
core::dimension2d<s32> blockSize = maxVtxBlockSize;
if (processed.X + blockSize.Width > hMapSize.Width)
blockSize.Width = hMapSize.Width - processed.X;
if (processed.Y + blockSize.Height > hMapSize.Height)
blockSize.Height = hMapSize.Height - processed.Y;
SMeshBuffer* buffer = new SMeshBuffer();
// add vertices of vertex block
s32 y;
for (y=0; y<blockSize.Height; ++y)
{
for (s32 x=0; x<blockSize.Width; ++x)
{
video::SColor clr = heightmap->getPixel(x+processed.X, y+processed.Y);
const f32 height = ((clr.getRed() + clr.getGreen() + clr.getBlue()) / 3.0f)/255.0f * maxHeight;
vtx.Pos.set((f32)(x+processed.X) * stretchSize.Width,
height, (f32)(y+processed.Y) * stretchSize.Height);
vtx.TCoords.set((x+0.5f) / blockSize.Width,
(y+0.5f) / blockSize.Height);
buffer->Vertices.push_back(vtx);
}
}
// add indices of vertex block
for (y=0; y<blockSize.Height-1; ++y)
{
for (s32 x=0; x<blockSize.Width-1; ++x)
{
s32 c = (y*blockSize.Width) + x;
buffer->Indices.push_back(c);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1 + blockSize.Width);
}
}
// recalculate normals
for (s32 i=0; i<(s32)buffer->Indices.size(); i+=3)
{
core::plane3d<f32> p(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos);
p.Normal.normalize();
buffer->Vertices[buffer->Indices[i+0]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = p.Normal;
}
if (buffer->Vertices.size())
{
// create texture for this block
video::IImage* img = new video::CImage(texture,
core::position2d<s32>((s32)(processed.X*thRel.X), (s32)(processed.Y*thRel.Y)),
core::dimension2d<s32>((s32)(blockSize.Width*thRel.X), (s32)(blockSize.Height*thRel.Y)));
sprintf(textureName, "terrain%u_%d", tm, mesh->getMeshBufferCount());
material.Textures[0] = driver->addTexture(textureName, img);
if (material.Textures[0])
{
sprintf(tmp, "Generated terrain texture (%dx%d): %s",
material.Textures[0]->getSize().Width,
material.Textures[0]->getSize().Height,
textureName);
os::Printer::log(tmp);
}
else
os::Printer::log("Could not create terrain texture.", textureName, ELL_ERROR);
buffer->Material = material;
img->drop();
}
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
buffer->drop();
// keep on processing
processed.X += maxVtxBlockSize.Width - borderSkip;
}
// keep on processing
processed.X = 0;
processed.Y += maxVtxBlockSize.Height - borderSkip;
}
mesh->recalculateBoundingBox();
return mesh;
}
/*
a cylinder, a cone and a cross
point up on (0,1.f, 0.f )
*/
IMesh* CGeometryCreator::createArrowMesh(const u32 tesselationCylinder,
const u32 tesselationCone,
const f32 height,
const f32 cylinderHeight,
const f32 width0,
const f32 width1,
const video::SColor vtxColor0,
const video::SColor vtxColor1)
{
SMeshBuffer* buffer;
video::S3DVertex v;
u32 i;
v.Color = vtxColor0;
// cylinder
buffer = new SMeshBuffer();
// floor, bottom
f32 angleStep = (core::PI * 2.f ) / tesselationCylinder;
for ( i = 0; i != tesselationCylinder; ++i )
{
f32 angle = angleStep * f32(i);
v.Color = vtxColor0;
v.Pos.X = width0 * cosf ( angle );
v.Pos.Y = 0.f;
v.Pos.Z = width0 * sinf ( angle );
v.Normal = v.Pos;
v.Normal.normalize ();
buffer->Vertices.push_back ( v );
v.Pos.X = width0 * 0.5f * cosf ( angle );
v.Pos.Y = cylinderHeight;
v.Pos.Z = width0 * 0.5f * sinf ( angle );
v.Normal = v.Pos;
v.Normal.normalize ();
buffer->Vertices.push_back ( v );
angle += ( angleStep / 2.f );
v.Color = vtxColor1;
v.Pos.X = ( width0 * 0.75f ) * cosf ( angle );
v.Pos.Y = 0.f;
v.Pos.Z = ( width0 * 0.75f ) * sinf ( angle );
v.Normal = v.Pos;
v.Normal.normalize ();
buffer->Vertices.push_back ( v );
v.Pos.X = ( width0 * 0.25f ) * cosf ( angle );
v.Pos.Y = cylinderHeight;
v.Pos.Z = ( width0 * 0.25f ) * sinf ( angle );
v.Normal = v.Pos;
v.Normal.normalize ();
buffer->Vertices.push_back ( v );
}
u32 nonWrappedSize = ( ( tesselationCylinder * 2 ) - 1 ) * 2;
for ( i = 0; i != nonWrappedSize; i += 2 )
{
buffer->Indices.push_back ( i + 2 );
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( i + 1 );
buffer->Indices.push_back ( i + 2 );
buffer->Indices.push_back ( i + 1 );
buffer->Indices.push_back ( i + 3 );
}
buffer->Indices.push_back ( 0 );
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( i + 1 );
buffer->Indices.push_back ( 0 );
buffer->Indices.push_back ( i + 1 );
buffer->Indices.push_back ( 1 );
// close down
v.Pos.X = 0.f;
v.Pos.Y = 0.f;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = -1.f;
v.Normal.Z = 0.f;
buffer->Vertices.push_back ( v );
u32 index = buffer->Vertices.size () - 1;
for ( i = 0; i != nonWrappedSize; i += 2 )
{
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( i + 2 );
}
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( 0 );
/*
// close top
v.Pos.X = 0.f;
v.Pos.Y = cylinderHeight;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = 1.f;
v.Normal.Z = 0.f;
buffer->Vertices.push_back ( v );
index = buffer->Vertices.size () - 1;
for ( i = 0; i != nonWrappedSize; i += 2 )
{
buffer->Indices.push_back ( i + 1 );
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( i + 3 );
}
buffer->Indices.push_back ( i + 1 );
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( 1 );
*/
// add to mesh
SMesh* mesh = new SMesh();
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
buffer->drop();
// cone
buffer = new SMeshBuffer();
angleStep = (core::PI * 2.f ) / tesselationCone;
v.Color = vtxColor0;
for ( i = 0; i != tesselationCone; ++i )
{
f32 angle = angleStep * f32(i);
v.Color = vtxColor0;
v.Pos.X = width1 * cosf ( angle );
v.Pos.Y = cylinderHeight;
v.Pos.Z = width1 * sinf ( angle );
v.Normal = v.Pos;
v.Normal.normalize ();
buffer->Vertices.push_back ( v );
angle += angleStep / 2.f;
v.Color = vtxColor1;
v.Pos.X = (width1 * 0.75f ) * cosf ( angle );
v.Pos.Y = cylinderHeight;
v.Pos.Z = (width1 * 0.75f ) * sinf ( angle );
v.Normal = v.Pos;
v.Normal.normalize ();
buffer->Vertices.push_back ( v );
}
nonWrappedSize = buffer->Vertices.size () - 1;
// close top
v.Pos.X = 0.f;
v.Pos.Y = height;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = 1.f;
v.Normal.Z = 0.f;
buffer->Vertices.push_back ( v );
index = buffer->Vertices.size () - 1;
for ( i = 0; i != nonWrappedSize; i += 1 )
{
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( i + 1 );
}
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( 0 );
// close down
v.Pos.X = 0.f;
v.Pos.Y = cylinderHeight;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = -1.f;
v.Normal.Z = 0.f;
buffer->Vertices.push_back ( v );
index = buffer->Vertices.size () - 1;
for ( i = 0; i != nonWrappedSize; i += 1 )
{
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( i + 1 );
}
buffer->Indices.push_back ( index );
buffer->Indices.push_back ( i + 0 );
buffer->Indices.push_back ( 0 );
// add to already existing mesh
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
buffer->drop();
mesh->recalculateBoundingBox();
return mesh;
}
/* A sphere with proper normals and texture coords */
IMesh* CGeometryCreator::createSphereMesh(f32 radius, u32 polyCountX, u32 polyCountY)
{
SMeshBuffer* buffer = new SMeshBuffer();
// thanks to Alfaz93 who made his code available for Irrlicht on which
// this one is based!
// we are creating the sphere mesh here.
if (polyCountX < 2)
polyCountX = 2;
if (polyCountY < 2)
polyCountY = 2;
if (polyCountX * polyCountY > 32767) // prevent u16 overflow
if (polyCountX > polyCountY) // prevent u16 overflow
polyCountX = 32767/polyCountY-1;
else
polyCountY = 32767/(polyCountX+1);
u32 polyCountXPitch = polyCountX+1; // get to same vertex on next level
buffer->Vertices.set_used((polyCountXPitch * polyCountY) + 2);
buffer->Indices.set_used((polyCountX * polyCountY) * 6);
video::SColor clr(100, 255,255,255);
u32 i=0;
u32 level = 0;
for (u32 p1 = 0; p1 < polyCountY-1; ++p1)
{
//main quads, top to bottom
for (u32 p2 = 0; p2 < polyCountX - 1; ++p2)
{
const u32 curr = level + p2;
buffer->Indices[i] = curr + polyCountXPitch;
buffer->Indices[++i] = curr;
buffer->Indices[++i] = curr + 1;
buffer->Indices[++i] = curr + polyCountXPitch;
buffer->Indices[++i] = curr+1;
buffer->Indices[++i] = curr + 1 + polyCountXPitch;
++i;
}
// the connectors from front to end
buffer->Indices[i] = level + polyCountX - 1 + polyCountXPitch;
buffer->Indices[++i] = level + polyCountX - 1;
buffer->Indices[++i] = level + polyCountX;
++i;
buffer->Indices[i] = level + polyCountX - 1 + polyCountXPitch;
buffer->Indices[++i] = level + polyCountX;
buffer->Indices[++i] = level + polyCountX + polyCountXPitch;
++i;
level += polyCountXPitch;
}
const u32 polyCountSq = polyCountXPitch * polyCountY; // top point
const u32 polyCountSq1 = polyCountSq + 1; // bottom point
const u32 polyCountSqM1 = (polyCountY - 1) * polyCountXPitch; // last row's first vertex
for (u32 p2 = 0; p2 < polyCountX - 1; ++p2)
{
// create triangles which are at the top of the sphere
buffer->Indices[i] = polyCountSq;
buffer->Indices[++i] = p2 + 1;
buffer->Indices[++i] = p2;
++i;
// create triangles which are at the bottom of the sphere
buffer->Indices[i] = polyCountSqM1 + p2;
buffer->Indices[++i] = polyCountSqM1 + p2 + 1;
buffer->Indices[++i] = polyCountSq1;
++i;
}
// create final triangle which is at the top of the sphere
buffer->Indices[i] = polyCountSq;
buffer->Indices[++i] = polyCountX;
buffer->Indices[++i] = polyCountX-1;
++i;
// create final triangle which is at the bottom of the sphere
buffer->Indices[i] = polyCountSqM1 + polyCountX - 1;
buffer->Indices[++i] = polyCountSqM1;
buffer->Indices[++i] = polyCountSq1;
// calculate the angle which separates all points in a circle
const f64 AngleX = 2 * core::PI / polyCountX;
const f64 AngleY = core::PI / polyCountY;
i = 0;
f64 axz;
// we don't start at 0.
f64 ay = 0;//AngleY / 2;
for (u32 y = 0; y < polyCountY; ++y)
{
ay += AngleY;
const f64 sinay = sin(ay);
axz = 0;
// calculate the necessary vertices without the doubled one
for (u32 xz = 0;xz < polyCountX; ++xz)
{
// calculate points position
const core::vector3df pos((f32)(radius * cos(axz) * sinay),
(f32)(radius * cos(ay)),
(f32)(radius * sin(axz) * sinay));
// for spheres the normal is the position
core::vector3df normal(pos);
normal.normalize();
// calculate texture coordinates via sphere mapping
// tu is the same on each level, so only calculate once
f32 tu = 0.5f;
if (y==0)
{
if (normal.Y != -1.0f && normal.Y != 1.0f)
tu = (f32)(acos(core::clamp(normal.X/sinay, -1.0, 1.0)) * 0.5 *core::RECIPROCAL_PI64);
if (normal.Z < 0.0f)
tu=1-tu;
}
else
tu = buffer->Vertices[i-polyCountXPitch].TCoords.X;
buffer->Vertices[i] = video::S3DVertex(pos.X, pos.Y, pos.Z,
normal.X, normal.Y, normal.Z,
clr, tu,
(f32)(ay*core::RECIPROCAL_PI64));
++i;
axz += AngleX;
}
// This is the doubled vertex on the initial position
buffer->Vertices[i] = video::S3DVertex(buffer->Vertices[i-polyCountX]);
buffer->Vertices[i].TCoords.X=1.0f;
++i;
}
// the vertex at the top of the sphere
buffer->Vertices[i] = video::S3DVertex(0.0f,radius,0.0f, 0.0f,1.0f,0.0f, clr, 0.5f, 0.0f);
// the vertex at the bottom of the sphere
++i;
buffer->Vertices[i] = video::S3DVertex(0.0f,-radius,0.0f, 0.0f,-1.0f,0.0f, clr, 0.5f, 1.0f);
// recalculate bounding box
buffer->BoundingBox.reset(buffer->Vertices[i].Pos);
buffer->BoundingBox.addInternalPoint(buffer->Vertices[i-1].Pos);
buffer->BoundingBox.addInternalPoint(radius,0.0f,0.0f);
buffer->BoundingBox.addInternalPoint(-radius,0.0f,0.0f);
buffer->BoundingBox.addInternalPoint(0.0f,0.0f,radius);
buffer->BoundingBox.addInternalPoint(0.0f,0.0f,-radius);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
buffer->drop();
mesh->recalculateBoundingBox();
return mesh;
}
} // end namespace scene
} // end namespace irr