irrlicht/source/Irrlicht/CTRTextureGouraud2.cpp

913 lines
20 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "IBurningShader.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
// compile flag for this file
#undef USE_ZBUFFER
#undef IPOL_Z
#undef CMP_Z
#undef WRITE_Z
#undef IPOL_W
#undef CMP_W
#undef WRITE_W
#undef SUBTEXEL
#undef INVERSE_W
#undef IPOL_C0
#undef IPOL_C1
#undef IPOL_C2
#undef IPOL_T0
#undef IPOL_T1
#undef IPOL_L0
// define render case
#define SUBTEXEL
#define INVERSE_W
#define USE_ZBUFFER
#define IPOL_W
#define CMP_W
#define WRITE_W
#define IPOL_C0
#define IPOL_C1
//#define IPOL_C2
#define IPOL_T0
//#define IPOL_T1
//#define IPOL_L0
// apply global override
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef INVERSE_W
#endif
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
#undef SUBTEXEL
#endif
#if BURNING_MATERIAL_MAX_COLORS < 1
#undef IPOL_C0
#endif
#if BURNING_MATERIAL_MAX_COLORS < 2
#undef IPOL_C1
#endif
#if BURNING_MATERIAL_MAX_COLORS < 3
#undef IPOL_C2
#endif
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT < 1
#undef IPOL_L0
#endif
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef IPOL_W
#endif
#define IPOL_Z
#ifdef CMP_W
#undef CMP_W
#define CMP_Z
#endif
#ifdef WRITE_W
#undef WRITE_W
#define WRITE_Z
#endif
#endif
namespace irr
{
namespace video
{
class CTRTextureGouraud2 : public IBurningShader
{
public:
//! constructor
CTRTextureGouraud2(CBurningVideoDriver* driver);
//! draws an indexed triangle list
virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) _IRR_OVERRIDE_;
virtual bool canWireFrame () { return true; }
private:
void fragmentShader ();
};
//! constructor
CTRTextureGouraud2::CTRTextureGouraud2(CBurningVideoDriver* driver)
: IBurningShader(driver)
{
#ifdef _DEBUG
setDebugName("CTRTextureGouraud2");
#endif
}
/*!
*/
void CTRTextureGouraud2::fragmentShader ()
{
tVideoSample *dst;
#ifdef USE_ZBUFFER
fp24 *z;
#endif
s32 xStart;
s32 xEnd;
s32 dx;
#ifdef SUBTEXEL
f32 subPixel;
#endif
#ifdef IPOL_Z
f32 slopeZ;
#endif
#ifdef IPOL_W
fp24 slopeW;
#endif
#ifdef IPOL_C0
sVec4 slopeC[BURNING_MATERIAL_MAX_COLORS];
#endif
#ifdef IPOL_T0
sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES];
#endif
#ifdef IPOL_L0
sVec3Pack_unpack slopeL[BURNING_MATERIAL_MAX_LIGHT_TANGENT];
#endif
// apply top-left fill-convention, left
xStart = fill_convention_left( line.x[0] );
xEnd = fill_convention_right( line.x[1] );
dx = xEnd - xStart;
if ( dx < 0 )
return;
// slopes
const f32 invDeltaX = fill_step_x( line.x[1] - line.x[0] );
#ifdef IPOL_Z
slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
#endif
#ifdef IPOL_W
slopeW = (line.w[1] - line.w[0]) * invDeltaX;
#endif
#ifdef IPOL_C0
slopeC[0] = (line.c[0][1] - line.c[0][0]) * invDeltaX;
#endif
#ifdef IPOL_C1
slopeC[1] = (line.c[1][1] - line.c[1][0]) * invDeltaX;
#endif
#ifdef IPOL_C2
slopeC[2] = (line.c[2][1] - line.c[2][0]) * invDeltaX;
#endif
#ifdef IPOL_T0
slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
#endif
#ifdef IPOL_T1
slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
#endif
#ifdef IPOL_L0
slopeL[0] = (line.l[0][1] - line.l[0][0]) * invDeltaX;
#endif
#ifdef SUBTEXEL
subPixel = ( (f32) xStart ) - line.x[0];
#ifdef IPOL_Z
line.z[0] += slopeZ * subPixel;
#endif
#ifdef IPOL_W
line.w[0] += slopeW * subPixel;
#endif
#ifdef IPOL_C0
line.c[0][0] += slopeC[0] * subPixel;
#endif
#ifdef IPOL_C1
line.c[1][0] += slopeC[1] * subPixel;
#endif
#ifdef IPOL_C2
line.c[2][0] += slopeC[2] * subPixel;
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0] * subPixel;
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1] * subPixel;
#endif
#ifdef IPOL_L0
line.l[0][0] += slopeL[0] * subPixel;
#endif
#endif
SOFTWARE_DRIVER_2_CLIPCHECK;
dst = (tVideoSample*)RenderTarget->getData() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
#ifdef USE_ZBUFFER
z = (fp24*) DepthBuffer->lock() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
#endif
f32 inversew = FIX_POINT_F32_MUL;
tFixPoint tx0;
tFixPoint ty0;
#ifdef IPOL_C0
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
#endif
#ifdef IPOL_C1
tFixPoint aFog = FIX_POINT_ONE;
#endif
#ifdef IPOL_C2
tFixPoint r3, g3, b3;
#endif
#if defined(BURNINGVIDEO_RENDERER_FAST) && COLOR_MAX==0xff
u32 dIndex = ( line.y & 3 ) << 2;
#endif
for ( s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
{
//if test active only first pixel
if ((0 == EdgeTestPass) & (i > line.x_edgetest)) break;
#ifdef CMP_Z
if ( line.z[0] < z[i] )
#endif
#ifdef CMP_W
if ( line.w[0] >= z[i] )
#endif
{
#ifdef WRITE_Z
z[i] = line.z[0];
#endif
#ifdef WRITE_W
z[i] = line.w[0];
#endif
#ifdef INVERSE_W
inversew = fix_inverse32 ( line.w[0] );
#endif
#ifdef IPOL_C1
//complete inside fog
if (TL_Flag & TL_FOG)
{
aFog = tofix(line.c[1][0].a, inversew);
if (aFog <= 0)
{
dst[i] = fog_color_sample;
continue;
}
}
#endif
tx0 = tofix ( line.t[0][0].x, inversew);
ty0 = tofix ( line.t[0][0].y, inversew);
#ifdef IPOL_C0
getSample_texture(r0, g0, b0, &IT[0], tx0, ty0);
vec4_to_fix(r1, g1, b1, line.c[0][0], inversew);
r0 = imulFix_simple(r0, r1);
g0 = imulFix_simple(g0, g1);
b0 = imulFix_simple(b0, b1);
#ifdef IPOL_C1
//specular highlight
if (TL_Flag & TL_SPECULAR)
{
vec4_to_fix(r1, g1, b1, line.c[1][0], inversew*COLOR_MAX);
r0 = clampfix_maxcolor(r1 + r0);
g0 = clampfix_maxcolor(g1 + g0);
b0 = clampfix_maxcolor(b1 + b0);
}
//mix with distance
if (aFog < FIX_POINT_ONE)
{
r0 = fog_color[1] + imulFix(aFog, r0 - fog_color[1]);
g0 = fog_color[2] + imulFix(aFog, g0 - fog_color[2]);
b0 = fog_color[3] + imulFix(aFog, b0 - fog_color[3]);
}
dst[i] = fix_to_sample(r0, g0, b0);
#else
dst[i] = fix_to_sample(
imulFix_simple(r0, r1),
imulFix_simple(g0, g1),
imulFix_simple(b0, b1)
);
#endif
#else
#if defined(BURNINGVIDEO_RENDERER_FAST) && COLOR_MAX==0xff
const tFixPointu d = dithermask [ dIndex | ( i ) & 3 ];
dst[i] = getTexel_plain ( &IT[0], d + tx0, d + ty0 );
#else
getSample_texture ( r0, g0, b0, &IT[0], tx0,ty0 );
dst[i] = fix_to_sample( r0, g0, b0 );
#endif
#endif
}
#ifdef IPOL_Z
line.z[0] += slopeZ;
#endif
#ifdef IPOL_W
line.w[0] += slopeW;
#endif
#ifdef IPOL_C0
line.c[0][0] += slopeC[0];
#endif
#ifdef IPOL_C1
line.c[1][0] += slopeC[1];
#endif
#ifdef IPOL_C2
line.c[2][0] += slopeC[2];
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0];
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1];
#endif
#ifdef IPOL_L0
line.l[0][0] += slopeL[0];
#endif
}
}
void CTRTextureGouraud2::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c)
{
// sort on height, y
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c);
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
const f32 ca = c->Pos.y - a->Pos.y;
const f32 ba = b->Pos.y - a->Pos.y;
const f32 cb = c->Pos.y - b->Pos.y;
// calculate delta y of the edges
scan.invDeltaY[0] = fill_step_y( ca );
scan.invDeltaY[1] = fill_step_y( ba );
scan.invDeltaY[2] = fill_step_y( cb );
if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) )
return;
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = -ca;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = ba;
scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > 0.f ? 0 : 1;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0][0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0][0] = a->Color[0];
#endif
#ifdef IPOL_C1
scan.slopeC[1][0] = (c->Color[1] - a->Color[1]) * scan.invDeltaY[0];
scan.c[1][0] = a->Color[1];
#endif
#ifdef IPOL_C2
scan.slopeC[2][0] = (c->Color[2] - a->Color[2]) * scan.invDeltaY[0];
scan.c[2][0] = a->Color[2];
#endif
#ifdef IPOL_T0
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t[0][0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t[1][0] = a->Tex[1];
#endif
#ifdef IPOL_L0
scan.slopeL[0][0] = (c->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[0];
scan.l[0][0] = a->LightTangent[0];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
// rasterize upper sub-triangle
if ( F32_GREATER_0(scan.invDeltaY[1]) )
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0][1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[0][1] = a->Color[0];
#endif
#ifdef IPOL_C1
scan.slopeC[1][1] = (b->Color[1] - a->Color[1]) * scan.invDeltaY[1];
scan.c[1][1] = a->Color[1];
#endif
#ifdef IPOL_C2
scan.slopeC[2][1] = (b->Color[2] - a->Color[2]) * scan.invDeltaY[1];
scan.c[2][1] = a->Color[2];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t[0][1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t[1][1] = a->Tex[1];
#endif
#ifdef IPOL_L0
scan.slopeL[0][1] = (b->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[1];
scan.l[0][1] = a->LightTangent[0];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_left( a->Pos.y );
yEnd = fill_convention_right( b->Pos.y );
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0] * subPixel;
scan.c[0][1] += scan.slopeC[0][1] * subPixel;
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0] * subPixel;
scan.c[1][1] += scan.slopeC[1][1] * subPixel;
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0] * subPixel;
scan.c[2][1] += scan.slopeC[2][1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0] * subPixel;
scan.l[0][1] += scan.slopeL[0][1] * subPixel;
#endif
#endif
line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]);
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[0][scan.left] = scan.c[0][0];
line.c[0][scan.right] = scan.c[0][1];
#endif
#ifdef IPOL_C1
line.c[1][scan.left] = scan.c[1][0];
line.c[1][scan.right] = scan.c[1][1];
#endif
#ifdef IPOL_C2
line.c[2][scan.left] = scan.c[2][0];
line.c[2][scan.right] = scan.c[2][1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
#ifdef IPOL_L0
line.l[0][scan.left] = scan.l[0][0];
line.l[0][scan.right] = scan.l[0][1];
#endif
// render a scanline
interlace_scanline fragmentShader ();
if ( EdgeTestPass & edge_test_first_line ) break;
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0];
scan.c[0][1] += scan.slopeC[0][1];
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0];
scan.c[1][1] += scan.slopeC[1][1];
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0];
scan.c[2][1] += scan.slopeC[2][1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0];
scan.l[0][1] += scan.slopeL[0][1];
#endif
}
}
// rasterize lower sub-triangle
if (F32_GREATER_0(scan.invDeltaY[2]) )
{
// advance to middle point
if(F32_GREATER_0(scan.invDeltaY[1]) )
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0][0] = a->Color[0] + scan.slopeC[0][0] * temp[0];
#endif
#ifdef IPOL_C1
scan.c[1][0] = a->Color[1] + scan.slopeC[1][0] * temp[0];
#endif
#ifdef IPOL_C2
scan.c[2][0] = a->Color[2] + scan.slopeC[2][0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
#endif
#ifdef IPOL_L0
scan.l[0][0] = sVec3Pack_unpack(a->LightTangent[0]) + scan.slopeL[0][0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0][1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[0][1] = b->Color[0];
#endif
#ifdef IPOL_C1
scan.slopeC[1][1] = (c->Color[1] - b->Color[1]) * scan.invDeltaY[2];
scan.c[1][1] = b->Color[1];
#endif
#ifdef IPOL_C2
scan.slopeC[2][1] = (c->Color[2] - b->Color[2]) * scan.invDeltaY[2];
scan.c[2][1] = b->Color[2];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t[0][1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t[1][1] = b->Tex[1];
#endif
#ifdef IPOL_L0
scan.slopeL[0][1] = (c->LightTangent[0] - b->LightTangent[0]) * scan.invDeltaY[2];
scan.l[0][1] = b->LightTangent[0];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_left( b->Pos.y );
yEnd = fill_convention_right( c->Pos.y );
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0] * subPixel;
scan.c[0][1] += scan.slopeC[0][1] * subPixel;
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0] * subPixel;
scan.c[1][1] += scan.slopeC[1][1] * subPixel;
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0] * subPixel;
scan.c[2][1] += scan.slopeC[2][1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0] * subPixel;
scan.l[0][1] += scan.slopeL[0][1] * subPixel;
#endif
#endif
line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]);
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[0][scan.left] = scan.c[0][0];
line.c[0][scan.right] = scan.c[0][1];
#endif
#ifdef IPOL_C1
line.c[1][scan.left] = scan.c[1][0];
line.c[1][scan.right] = scan.c[1][1];
#endif
#ifdef IPOL_C2
line.c[2][scan.left] = scan.c[2][0];
line.c[2][scan.right] = scan.c[2][1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
#ifdef IPOL_L0
line.l[0][scan.left] = scan.l[0][0];
line.l[0][scan.right] = scan.l[0][1];
#endif
// render a scanline
interlace_scanline fragmentShader ();
if ( EdgeTestPass & edge_test_first_line ) break;
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0];
scan.c[0][1] += scan.slopeC[0][1];
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0];
scan.c[1][1] += scan.slopeC[1][1];
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0];
scan.c[2][1] += scan.slopeC[2][1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0];
scan.l[0][1] += scan.slopeL[0][1];
#endif
}
}
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a flat triangle renderer
IBurningShader* createTriangleRendererTextureGouraud2(CBurningVideoDriver* driver)
{
// ETR_TEXTURE_GOURAUD
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CTRTextureGouraud2(driver);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr