irrlicht/tests/testQuaternion.cpp

330 lines
9.4 KiB
C++

// Copyright (C) 2008-2012 Colin MacDonald
// No rights reserved: this software is in the public domain.
#include "testUtils.h"
using namespace irr;
namespace
{
inline bool compareQ(const core::vector3df& v, const core::vector3df& turn=core::vector3df(0,0,1))
{
core::quaternion q(v*core::DEGTORAD);
core::vector3df v2;
const core::vector3df v3=v.rotationToDirection(turn);
if (!v3.equals(q*turn, 0.002f))
{
logTestString("Inequality before quat.toEuler(): %f,%f,%f\n", v.X,v.Y,v.Z);
return false;
}
q.toEuler(v2);
v2*=core::RADTODEG;
v2=v2.rotationToDirection(turn);
// this yields pretty far values sometimes, so don't be too picky
if (!v3.equals(v2, 0.0035f))
{
logTestString("Inequality: %f,%f,%f != %f,%f,%f\n", v.X,v.Y,v.Z, v2.X,v2.Y,v2.Z);
return false;
}
return true;
}
const core::vector3df vals[] = {
core::vector3df(0.f, 0.f, 0.f),
core::vector3df(0.f, 0.f, 24.04f),
core::vector3df(0.f, 0.f, 71.f),
core::vector3df(0.f, 0.f, 71.19f),
core::vector3df(0.f, 0.f, 80.f),
core::vector3df(0.f, 0.f, 103.99f),
core::vector3df(0.f, 0.f, 261.73f),
core::vector3df(0.f, 0.f, 276.f),
core::vector3df(0.f, 0.f, 286.29f),
core::vector3df(0.f, 0.f, 295.f),
core::vector3df(0.f, 0.f, 318.3f),
core::vector3df(360.f, 75.55f, 155.89f),
core::vector3df(0.f, 90.f, 159.51f),
core::vector3df(0.f, 90.f, 249.48f),
core::vector3df(0.f, 90.f, 269.91f),
core::vector3df(0.f, 90.f, 270.f),
core::vector3df(0.f, 284.45f, 155.89f),
core::vector3df(0.01f, 0.42f, 90.38f),
core::vector3df(0.04f, 359.99f, 9.5f),
core::vector3df(0.34f, 89.58f, 360.f),
core::vector3df(0.58f, 4.36f, 334.36f),
core::vector3df(3.23f, 359.65f, 10.17f),
core::vector3df(3.23f, 359.65f, 10.21f),
core::vector3df(4.85f, 359.3f, 94.33f),
core::vector3df(8.90f, 6.63f, 9.27f),
core::vector3df(11.64f, 311.52f, 345.35f),
core::vector3df(12.1f, 4.72f, 11.24f),
core::vector3df(14.63f, 48.72f, 31.79f),
core::vector3df(76.68f, 1.11f, 18.65f),
core::vector3df(90.f, 0.f, 0.f),
core::vector3df(90.01f, 270.49f, 360.f),
core::vector3df(90.95f, 0.f, 0.f),
core::vector3df(173.58f, 348.13f, 132.25f),
core::vector3df(115.52f, 89.04f, 205.51f),
core::vector3df(179.3f, 359.18f, 0.58f),
core::vector3df(180.09f, 270.06f, 0.f),
core::vector3df(180.41f, 359.94f, 179.69f),
core::vector3df(180.92f, 10.79f, 144.53f),
core::vector3df(181.95f, 270.03f, 0.f),
core::vector3df(269.05f, 0.f, 0.f),
core::vector3df(269.99f, 270.49f, 360.f),
core::vector3df(283.32f, 358.89f, 18.65f),
core::vector3df(347.9f, 355.28f, 11.24f),
core::vector3df(351.1f, 353.37f, 9.27f),
core::vector3df(355.82f, 345.96f, 273.26f),
core::vector3df(358.24f, 358.07f, 342.82f),
core::vector3df(359.78f, 357.69f, 7.52f),
core::vector3df(359.96f, 0.01f, 9.5f),
core::vector3df(-57.197479f,-90.f,0.f),
core::vector3df(-57.187481f,-90.f,0.f)
};
bool testQuatEulerMatrix()
{
// Test fromAngleAxis
core::vector3df v4;
core::quaternion q1;
f32 angle = 60.f;
q1.fromAngleAxis(angle*core::DEGTORAD, core::vector3df(1, 0, 0));
q1.toEuler(v4);
bool result = v4.equals(core::vector3df(angle*core::DEGTORAD,0,0));
// Test maxtrix constructor
core::vector3df v5;
core::matrix4 mx4;
mx4.setRotationDegrees(core::vector3df(angle,0,0));
core::quaternion q2(mx4);
q2.toEuler(v5);
result &= q1.equals(q2);
result &= v4.equals(v5);
// Test matrix conversion via getMatrix
core::matrix4 mat;
mat.setRotationDegrees(core::vector3df(angle,0,0));
core::vector3df v6 = mat.getRotationDegrees()*core::DEGTORAD;
// make sure comparison matrix is correct
result &= v4.equals(v6);
core::matrix4 mat2 = q1.getMatrix();
result &= mat.equals(mat2, 0.0005f);
// test for proper handedness
angle=90;
q1.fromAngleAxis(angle*core::DEGTORAD, core::vector3df(0,0,1));
// check we have the correct quat
result &= q1.equals(core::quaternion(0,0,sqrtf(2)/2,sqrtf(2)/2));
q1.toEuler(v4);
// and the correct rotation vector
result &= v4.equals(core::vector3df(0,0,90*core::DEGTORAD));
mat.setRotationRadians(v4);
mat2=q1.getMatrix();
// check matrix
result &= mat.equals(mat2, 0.0005f);
// and to be absolutely sure, check rotation results
v5.set(1,0,0);
mat.transformVect(v5);
v6.set(1,0,0);
mat2.transformVect(v6);
result &= v5.equals(v6);
return result;
}
bool testEulerConversion()
{
bool result = true;
for (u32 i=0; i<sizeof(vals)/sizeof(vals[0]); ++i)
{
// make sure the rotations work with different turn vectors
result &= compareQ(vals[i]) && compareQ(vals[i], core::vector3df(1,2,3)) &&
compareQ(vals[i], core::vector3df(0,1,0));
}
result &= testQuatEulerMatrix();
return result;
}
bool testRotationFromTo()
{
bool result = true;
core::quaternion q;
q.rotationFromTo(core::vector3df(1.f,0.f,0.f), core::vector3df(1.f,0.f,0.f));
if (q != core::quaternion())
{
logTestString("Quaternion rotationFromTo method did not yield identity.\n");
result = false;
}
core::vector3df from(1.f,0.f,0.f);
q.rotationFromTo(from, core::vector3df(-1.f,0.f,0.f));
from=q*from;
if (from != core::vector3df(-1.f,0.f,0.f))
{
logTestString("Quaternion rotationFromTo method did not yield x flip.\n");
result = false;
}
from.set(1.f,2.f,3.f);
q.rotationFromTo(from, core::vector3df(-1.f,-2.f,-3.f));
from=q*from;
if (from != core::vector3df(-1.f,-2.f,-3.f))
{
logTestString("Quaternion rotationFromTo method did not yield x flip for non-axis.\n");
result = false;
}
from.set(1.f,0.f,0.f);
q.rotationFromTo(from, core::vector3df(0.f,1.f,0.f));
from=q*from;
if (from != core::vector3df(0.f,1.f,0.f))
{
logTestString("Quaternion rotationFromTo method did not yield 90 degree rotation.\n");
result = false;
}
for (u32 i=1; i<sizeof(vals)/sizeof(vals[0])-1; ++i)
{
from.set(vals[i]).normalize();
core::vector3df to(vals[i+1]);
to.normalize();
q.rotationFromTo(from, to);
from = q*from;
result &= (from.equals(to, 0.00012f));
}
return result;
}
bool testInterpolation()
{
bool result=true;
core::quaternion q(1.f,2.f,3.f,4.f);
q.normalize();
core::quaternion q2;
q2.lerp(q,q,0);
if (q != q2)
{
logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==0).\n");
result = false;
}
q2.lerp(q,q,0.5f);
if (q != q2)
{
logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==0.5).\n");
result = false;
}
q2.lerp(q,q,1);
if (q != q2)
{
logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==1).\n");
result = false;
}
q2.lerp(q,q,0.2345f);
if (q != q2)
{
logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==0.2345).\n");
result = false;
}
q2.slerp(q,q,0);
if (q != q2)
{
logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==0).\n");
result = false;
}
q2.slerp(q,q,0.5f);
if (q != q2)
{
logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==0.5).\n");
result = false;
}
q2.slerp(q,q,1);
if (q != q2)
{
logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==1).\n");
result = false;
}
q2.slerp(q,q,0.2345f);
if (q != q2)
{
logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==0.2345).\n");
result = false;
}
core::quaternion q3(core::vector3df(45,135,85)*core::DEGTORAD);
q.set(core::vector3df(35,125,75)*core::DEGTORAD);
q2.slerp(q,q3,0);
if (q != q2)
{
logTestString("Quaternion slerp with different quaternions did not yield first quaternion back (with t==0).\n");
result = false;
}
q2.slerp(q,q3,1);
if (q3 != q2)
{
logTestString("Quaternion slerp with different quaternions did not yield second quaternion back (with t==1).\n");
result = false;
}
q2.slerp(q,q3,0.5);
if (!q2.equals(core::quaternion(-0.437f,0.742f,0.017f,0.506f),0.001f))
{
logTestString("Quaternion slerp with different quaternions did not yield correct result (with t==0.5).\n");
result = false;
}
q2.slerp(q,q3,0.2345f);
if (!q2.equals(core::quaternion(-0.4202f,0.7499f,0.03814f,0.5093f),0.0007f))
{
logTestString("Quaternion slerp with different quaternions did not yield correct result (with t==0.2345).\n");
result = false;
}
return result;
}
}
bool testQuaternion(void)
{
bool result = true;
core::quaternion q1;
if ((q1.W != 1.f)||(q1.X != 0.f)||(q1.Y != 0.f)||(q1.Z != 0.f))
{
logTestString("Default constructor did not create proper quaternion.\n");
result = false;
}
core::quaternion q2(1.f,2.f,3.f,4.f);
if ((q2.W != 4.f)||(q2.X != 1.f)||(q2.Y != 2.f)||(q2.Z != 3.f))
{
logTestString("Element constructor did not create proper quaternion.\n");
result = false;
}
q2.set(4.f,3.f,2.f,1.f);
if ((q2.W != 1.f)||(q2.X != 4.f)||(q2.Y != 3.f)||(q2.Z != 2.f))
{
logTestString("Quaternion set method not working(1).\n");
result = false;
}
q2.set(0.f,0.f,0.f,1.f);
if ((q2.W != 1.f)||(q2.X != 0.f)||(q2.Y != 0.f)||(q2.Z != 0.f))
{
logTestString("Quaternion set method not working(2).\n");
result = false;
}
if (q1 != q2)
{
logTestString("Quaternion equals method not working.\n");
result = false;
}
result &= testRotationFromTo();
result &= testInterpolation();
result &= testEulerConversion();
return result;
}