irrlicht/source/Irrlicht/CTRParallaxMap.cpp

1181 lines
28 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "IBurningShader.h"
#include "CSoftwareDriver2.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
// compile flag for this file
#undef USE_ZBUFFER
#undef IPOL_Z
#undef CMP_Z
#undef WRITE_Z
#undef IPOL_W
#undef CMP_W
#undef WRITE_W
#undef SUBTEXEL
#undef INVERSE_W
#undef IPOL_C0
#undef IPOL_C1
#undef IPOL_C2
#undef IPOL_C3
#undef IPOL_T0
#undef IPOL_T1
#undef IPOL_T2
#undef IPOL_L0
// define render case
#define SUBTEXEL
#define INVERSE_W
#define USE_ZBUFFER
#define IPOL_W
#define CMP_W
#define WRITE_W
#define IPOL_C0
#define IPOL_C1
#define IPOL_C2
#define IPOL_C3
#define IPOL_T0
#define IPOL_T1
#define IPOL_L0
// apply global override
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef INVERSE_W
#endif
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
#undef SUBTEXEL
#endif
#if BURNING_MATERIAL_MAX_COLORS < 1
#undef IPOL_C0
#endif
#if BURNING_MATERIAL_MAX_COLORS < 2
#undef IPOL_C1
#endif
#if BURNING_MATERIAL_MAX_COLORS < 3
#undef IPOL_C2
#endif
#if BURNING_MATERIAL_MAX_COLORS < 4
#undef IPOL_C3
#endif
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT < 1
#undef IPOL_L0
#endif
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef IPOL_W
#endif
#define IPOL_Z
#ifdef CMP_W
#undef CMP_W
#define CMP_Z
#endif
#ifdef WRITE_W
#undef WRITE_W
#define WRITE_Z
#endif
#endif
burning_namespace_start
class CBurningParallaxMap : public IBurningShader
{
public:
//! constructor
CBurningParallaxMap(CBurningVideoDriver* driver,s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial);
~CBurningParallaxMap();
//! draws an indexed triangle list
virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) IRR_OVERRIDE;
virtual void OnSetMaterialBurning(const SBurningShaderMaterial& material) IRR_OVERRIDE;
virtual void OnSetMaterial(const video::SMaterial& material,
const video::SMaterial& lastMaterial,
bool resetAllRenderstates, video::IMaterialRendererServices* services) IRR_OVERRIDE;
virtual void OnSetConstants(IMaterialRendererServices* services, s32 userData) IRR_OVERRIDE;
private:
void fragmentShader();
f32 CurrentScale;
tFixPoint CurrentScaleFix[2];
};
//! constructor
CBurningParallaxMap::CBurningParallaxMap(CBurningVideoDriver* driver, s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial)
: IBurningShader(driver, baseMaterial)
{
#ifdef _DEBUG
setDebugName("CTRNormalMap");
#endif
CallBack = this;
outMaterialTypeNr = driver->addMaterialRenderer(this);
CurrentScale = 0.02f;
}
CBurningParallaxMap::~CBurningParallaxMap()
{
if (CallBack == this)
CallBack = 0;
}
void CBurningParallaxMap::OnSetMaterialBurning(const SBurningShaderMaterial& material)
{
CurrentScale = material.org.MaterialTypeParam;
}
void CBurningParallaxMap::OnSetMaterial(const video::SMaterial& material,
const video::SMaterial& lastMaterial,
bool resetAllRenderstates, video::IMaterialRendererServices* services)
{
IBurningShader::OnSetMaterial(material, lastMaterial,
resetAllRenderstates, services);
CurrentScale = material.MaterialTypeParam;
}
/*!
*/
void CBurningParallaxMap::fragmentShader()
{
tVideoSample* dst;
#ifdef USE_ZBUFFER
fp24* z;
#endif
s32 xStart;
s32 xEnd;
s32 dx;
#ifdef SUBTEXEL
f32 subPixel;
#endif
#ifdef IPOL_Z
f32 slopeZ;
#endif
#ifdef IPOL_W
fp24 slopeW;
#endif
#ifdef IPOL_C0
sVec4 slopeC[BURNING_MATERIAL_MAX_COLORS];
#endif
#ifdef IPOL_T0
sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES];
#endif
#ifdef IPOL_L0
sVec3Pack_unpack slopeL[BURNING_MATERIAL_MAX_LIGHT_TANGENT];
#endif
// apply top-left fill-convention, left
xStart = fill_convention_left(line.x[0]);
xEnd = fill_convention_right(line.x[1]);
dx = xEnd - xStart;
if (dx < 0)
return;
// slopes
const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]);
#ifdef IPOL_Z
slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
#endif
#ifdef IPOL_W
slopeW = (line.w[1] - line.w[0]) * invDeltaX;
#endif
#ifdef IPOL_C0
slopeC[0] = (line.c[0][1] - line.c[0][0]) * invDeltaX;
#endif
#ifdef IPOL_C1
slopeC[1] = (line.c[1][1] - line.c[1][0]) * invDeltaX;
#endif
#ifdef IPOL_C2
slopeC[2] = (line.c[2][1] - line.c[2][0]) * invDeltaX;
#endif
#ifdef IPOL_C3
slopeC[3] = (line.c[3][1] - line.c[3][0]) * invDeltaX;
#endif
#ifdef IPOL_T0
slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
#endif
#ifdef IPOL_T1
slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
#endif
#ifdef IPOL_T2
slopeT[2] = (line.t[2][1] - line.t[2][0]) * invDeltaX;
#endif
#ifdef IPOL_L0
slopeL[0] = (line.l[0][1] - line.l[0][0]) * invDeltaX;
#endif
#ifdef SUBTEXEL
subPixel = ((f32)xStart) - line.x[0];
#ifdef IPOL_Z
line.z[0] += slopeZ * subPixel;
#endif
#ifdef IPOL_W
line.w[0] += slopeW * subPixel;
#endif
#ifdef IPOL_C0
line.c[0][0] += slopeC[0] * subPixel;
#endif
#ifdef IPOL_C1
line.c[1][0] += slopeC[1] * subPixel;
#endif
#ifdef IPOL_C2
line.c[2][0] += slopeC[2] * subPixel;
#endif
#ifdef IPOL_C3
line.c[3][0] += slopeC[3] * subPixel;
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0] * subPixel;
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1] * subPixel;
#endif
#ifdef IPOL_T2
line.t[2][0] += slopeT[2] * subPixel;
#endif
#ifdef IPOL_L0
line.l[0][0] += slopeL[0] * subPixel;
#endif
#endif
SOFTWARE_DRIVER_2_CLIPCHECK;
dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart;
#ifdef USE_ZBUFFER
z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart;
#endif
f32 inversew = FIX_POINT_F32_MUL;
tFixPoint tx0, ty0;
#ifdef IPOL_T1
tFixPoint tx1, ty1;
#endif
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1,a1;
tFixPoint r2, g2, b2;
#ifdef IPOL_L0
tFixPoint lx, ly, lz;
sVec4 norm;
#endif
tFixPoint ndotl = FIX_POINT_ONE;
#ifdef IPOL_C0
tFixPoint a3, r3, g3, b3;
#endif
#ifdef IPOL_C1
tFixPoint aFog = FIX_POINT_ONE;
#endif
for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
{
#ifdef CMP_Z
if (line.z[0] < z[i])
#endif
#ifdef CMP_W
if (line.w[0] >= z[i])
#endif
{
#ifdef INVERSE_W
inversew = fix_inverse32(line.w[0]);
#endif
#ifdef IPOL_C0
//vertex alpha blend ( and omit depthwrite ,hacky..)
a3 = tofix(line.c[0][0].a, inversew);
if (a3 + 2 >= FIX_POINT_ONE)
{
#ifdef WRITE_Z
z[i] = line.z[0];
#endif
#ifdef WRITE_W
z[i] = line.w[0];
#endif
}
#endif
#ifdef IPOL_C1
//complete inside fog
if (TL_Flag & TL_FOG)
{
aFog = tofix(line.c[1][0].a, inversew);
if (aFog <= 0)
{
dst[i] = fog_color_sample;
continue;
}
}
#endif
tx1 = tofix(line.t[1][0].x, inversew);
ty1 = tofix(line.t[1][0].y, inversew);
// normal map height
getSample_texture(a1, &IT[1], tx1, ty1);
// xyz * 2 - 1
a1 = (a1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
tFixPoint ofs = imulFix_simple(a1,CurrentScaleFix[0]);
//eyevector
#ifdef IPOL_L0
#if 0
norm.x = line.l[0][0].x * inversew;
norm.y = line.l[0][0].y * inversew;
norm.z = line.l[0][0].z * inversew;
norm.normalize_dir_xyz_zero();
lx = tofix(norm.x, FIX_POINT_F32_MUL);
ly = tofix(norm.y, FIX_POINT_F32_MUL);
#else
lx = tofix(line.l[0][0].x, inversew);
ly = tofix(line.l[0][0].y, inversew);
#endif
//lz = tofix(line.l[0][0].z, inversew);
#endif
// vec2 TexCoord = EyeVector.xy * TempFetch.w + vTexCoord;
tx0 = tofix(line.t[0][0].x, inversew) + imulFix_simple(lx, ofs);
ty0 = tofix(line.t[0][0].y, inversew) + imulFix_simple(ly, ofs);
// diffuse map
getSample_texture(r0, g0, b0, &IT[0], tx0, ty0);
ofs = imulFix_simple(a1, CurrentScaleFix[1]);
tx1 += imulFix_simple(lx, ofs);
ty1 += imulFix_simple(ly, ofs);
// normal map ( same texcoord0 but different mipmapping)
getSample_texture(r1, g1, b1, &IT[1], tx1, ty1);
// normal: xyz * 2 - 1
r1 = (r1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
g1 = (g1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
b1 = (b1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
//lightvector
lx = tofix(line.c[2][0].x, inversew);
ly = tofix(line.c[2][0].y, inversew);
lz = tofix(line.c[2][0].z, inversew);
//omit normalize
//max(dot(LightVector, Normal), 0.0);
ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz)));
#ifdef IPOL_C0
//LightColor[0] * lambert
r3 = imulFix_simple(tofix(line.c[0][0].r, inversew), ndotl);
g3 = imulFix_simple(tofix(line.c[0][0].g, inversew), ndotl);
b3 = imulFix_simple(tofix(line.c[0][0].b, inversew), ndotl);
//lightvector1
lx = tofix(line.c[3][0].x, inversew);
ly = tofix(line.c[3][0].y, inversew);
lz = tofix(line.c[3][0].z, inversew);
//omit normalize
ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz)));
//LightColor[1] * lambert
r3 += imulFix_simple(tofix(line.c[1][0].r, inversew), ndotl);
g3 += imulFix_simple(tofix(line.c[1][0].g, inversew), ndotl);
b3 += imulFix_simple(tofix(line.c[1][0].b, inversew), ndotl);
// (Lambert0 * LightColor[0] + Lambert1 * LightColor[1]) * Diffuse Texture;
r2 = clampfix_maxcolor(imulFix_simple(r3, r0));
g2 = clampfix_maxcolor(imulFix_simple(g3, g0));
b2 = clampfix_maxcolor(imulFix_simple(b3, b0));
//vertex alpha blend ( and omit depthwrite ,hacky..)
if (a3 + 2 < FIX_POINT_ONE)
{
color_to_fix(r1, g1, b1, dst[i]);
r2 = r1 + imulFix(a3, r2 - r1);
g2 = g1 + imulFix(a3, g2 - g1);
b2 = b1 + imulFix(a3, b2 - b1);
}
#ifdef IPOL_C1
//mix with distance
if (aFog < FIX_POINT_ONE) //TL_Flag & TL_FOG)
{
r2 = fog_color[1] + imulFix(aFog, r2 - fog_color[1]);
g2 = fog_color[2] + imulFix(aFog, g2 - fog_color[2]);
b2 = fog_color[3] + imulFix(aFog, b2 - fog_color[3]);
}
#endif
dst[i] = fix_to_sample(r2, g2, b2);
#else
r2 = imulFix_tex4(r0, r1);
g2 = imulFix_tex4(g0, g1);
b2 = imulFix_tex4(b0, b1);
dst[i] = fix_to_sample(r2, g2, b2);
#endif
}
#ifdef IPOL_Z
line.z[0] += slopeZ;
#endif
#ifdef IPOL_W
line.w[0] += slopeW;
#endif
#ifdef IPOL_C0
line.c[0][0] += slopeC[0];
#endif
#ifdef IPOL_C1
line.c[1][0] += slopeC[1];
#endif
#ifdef IPOL_C2
line.c[2][0] += slopeC[2];
#endif
#ifdef IPOL_C3
line.c[3][0] += slopeC[3];
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0];
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1];
#endif
#ifdef IPOL_T2
line.t[2][0] += slopeT[2];
#endif
#ifdef IPOL_L0
line.l[0][0] += slopeL[0];
#endif
}
}
void CBurningParallaxMap::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c)
{
// sort on height, y
if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b);
if (F32_A_GREATER_B(b->Pos.y, c->Pos.y)) swapVertexPointer(&b, &c);
if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b);
const f32 ca = c->Pos.y - a->Pos.y;
const f32 ba = b->Pos.y - a->Pos.y;
const f32 cb = c->Pos.y - b->Pos.y;
// calculate delta y of the edges
scan.invDeltaY[0] = fill_step_y(ca);
scan.invDeltaY[1] = fill_step_y(ba);
scan.invDeltaY[2] = fill_step_y(cb);
if (F32_LOWER_EQUAL_0(scan.invDeltaY[0]))
return;
CurrentScaleFix[0] = tofix(CurrentScale, FIX_POINT_F32_MUL) << (IT[0].pitchlog2- SOFTWARE_DRIVER_2_TEXTURE_GRANULARITY);
CurrentScaleFix[1] = tofix(CurrentScale, FIX_POINT_F32_MUL) << (IT[1].pitchlog2 - SOFTWARE_DRIVER_2_TEXTURE_GRANULARITY);
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = -ca;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = ba;
scan.left = (temp[0] * temp[3] - temp[1] * temp[2]) < 0.f ? 1 : 0;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0][0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0][0] = a->Color[0];
#endif
#ifdef IPOL_C1
scan.slopeC[1][0] = (c->Color[1] - a->Color[1]) * scan.invDeltaY[0];
scan.c[1][0] = a->Color[1];
#endif
#ifdef IPOL_C2
scan.slopeC[2][0] = (c->Color[2] - a->Color[2]) * scan.invDeltaY[0];
scan.c[2][0] = a->Color[2];
#endif
#ifdef IPOL_C3
scan.slopeC[3][0] = (c->Color[3] - a->Color[3]) * scan.invDeltaY[0];
scan.c[3][0] = a->Color[3];
#endif
#ifdef IPOL_T0
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t[0][0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t[1][0] = a->Tex[1];
#endif
#ifdef IPOL_T2
scan.slopeT[2][0] = (c->Tex[2] - a->Tex[2]) * scan.invDeltaY[0];
scan.t[2][0] = a->Tex[2];
#endif
#ifdef IPOL_L0
scan.slopeL[0][0] = (c->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[0];
scan.l[0][0] = a->LightTangent[0];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
// rasterize upper sub-triangle
if (F32_GREATER_0(scan.invDeltaY[1]))
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0][1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[0][1] = a->Color[0];
#endif
#ifdef IPOL_C1
scan.slopeC[1][1] = (b->Color[1] - a->Color[1]) * scan.invDeltaY[1];
scan.c[1][1] = a->Color[1];
#endif
#ifdef IPOL_C2
scan.slopeC[2][1] = (b->Color[2] - a->Color[2]) * scan.invDeltaY[1];
scan.c[2][1] = a->Color[2];
#endif
#ifdef IPOL_C3
scan.slopeC[3][1] = (b->Color[3] - a->Color[3]) * scan.invDeltaY[1];
scan.c[3][1] = a->Color[3];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t[0][1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t[1][1] = a->Tex[1];
#endif
#ifdef IPOL_T2
scan.slopeT[2][1] = (b->Tex[2] - a->Tex[2]) * scan.invDeltaY[1];
scan.t[2][1] = a->Tex[2];
#endif
#ifdef IPOL_L0
scan.slopeL[0][1] = (b->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[1];
scan.l[0][1] = a->LightTangent[0];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_top(a->Pos.y);
yEnd = fill_convention_down(b->Pos.y);
#ifdef SUBTEXEL
subPixel = ((f32)yStart) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0] * subPixel;
scan.c[0][1] += scan.slopeC[0][1] * subPixel;
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0] * subPixel;
scan.c[1][1] += scan.slopeC[1][1] * subPixel;
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0] * subPixel;
scan.c[2][1] += scan.slopeC[2][1] * subPixel;
#endif
#ifdef IPOL_C3
scan.c[3][0] += scan.slopeC[3][0] * subPixel;
scan.c[3][1] += scan.slopeC[3][1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#ifdef IPOL_T2
scan.t[2][0] += scan.slopeT[2][0] * subPixel;
scan.t[2][1] += scan.slopeT[2][1] * subPixel;
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0] * subPixel;
scan.l[0][1] += scan.slopeL[0][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[0][scan.left] = scan.c[0][0];
line.c[0][scan.right] = scan.c[0][1];
#endif
#ifdef IPOL_C1
line.c[1][scan.left] = scan.c[1][0];
line.c[1][scan.right] = scan.c[1][1];
#endif
#ifdef IPOL_C2
line.c[2][scan.left] = scan.c[2][0];
line.c[2][scan.right] = scan.c[2][1];
#endif
#ifdef IPOL_C3
line.c[3][scan.left] = scan.c[3][0];
line.c[3][scan.right] = scan.c[3][1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
#ifdef IPOL_T2
line.t[2][scan.left] = scan.t[2][0];
line.t[2][scan.right] = scan.t[2][1];
#endif
#ifdef IPOL_L0
line.l[0][scan.left] = scan.l[0][0];
line.l[0][scan.right] = scan.l[0][1];
#endif
// render a scanline
if_interlace_scanline fragmentShader();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0];
scan.c[0][1] += scan.slopeC[0][1];
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0];
scan.c[1][1] += scan.slopeC[1][1];
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0];
scan.c[2][1] += scan.slopeC[2][1];
#endif
#ifdef IPOL_C3
scan.c[3][0] += scan.slopeC[3][0];
scan.c[3][1] += scan.slopeC[3][1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
#ifdef IPOL_T2
scan.t[2][0] += scan.slopeT[2][0];
scan.t[2][1] += scan.slopeT[2][1];
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0];
scan.l[0][1] += scan.slopeL[0][1];
#endif
}
}
// rasterize lower sub-triangle
if (F32_GREATER_0(scan.invDeltaY[2]))
{
// advance to middle point
if (F32_GREATER_0(scan.invDeltaY[1]))
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0][0] = a->Color[0] + scan.slopeC[0][0] * temp[0];
#endif
#ifdef IPOL_C1
scan.c[1][0] = a->Color[1] + scan.slopeC[1][0] * temp[0];
#endif
#ifdef IPOL_C2
scan.c[2][0] = a->Color[2] + scan.slopeC[2][0] * temp[0];
#endif
#ifdef IPOL_C3
scan.c[3][0] = a->Color[3] + scan.slopeC[3][0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
#endif
#ifdef IPOL_T2
scan.t[2][0] = a->Tex[2] + scan.slopeT[2][0] * temp[0];
#endif
#ifdef IPOL_L0
scan.l[0][0] = sVec3Pack_unpack(a->LightTangent[0]) + scan.slopeL[0][0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0][1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[0][1] = b->Color[0];
#endif
#ifdef IPOL_C1
scan.slopeC[1][1] = (c->Color[1] - b->Color[1]) * scan.invDeltaY[2];
scan.c[1][1] = b->Color[1];
#endif
#ifdef IPOL_C2
scan.slopeC[2][1] = (c->Color[2] - b->Color[2]) * scan.invDeltaY[2];
scan.c[2][1] = b->Color[2];
#endif
#ifdef IPOL_C3
scan.slopeC[3][1] = (c->Color[3] - b->Color[3]) * scan.invDeltaY[2];
scan.c[3][1] = b->Color[3];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t[0][1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t[1][1] = b->Tex[1];
#endif
#ifdef IPOL_T2
scan.slopeT[2][1] = (c->Tex[2] - b->Tex[2]) * scan.invDeltaY[2];
scan.t[2][1] = b->Tex[2];
#endif
#ifdef IPOL_L0
scan.slopeL[0][1] = (c->LightTangent[0] - b->LightTangent[0]) * scan.invDeltaY[2];
scan.l[0][1] = b->LightTangent[0];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_top(b->Pos.y);
yEnd = fill_convention_down(c->Pos.y);
#ifdef SUBTEXEL
subPixel = ((f32)yStart) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0] * subPixel;
scan.c[0][1] += scan.slopeC[0][1] * subPixel;
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0] * subPixel;
scan.c[1][1] += scan.slopeC[1][1] * subPixel;
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0] * subPixel;
scan.c[2][1] += scan.slopeC[2][1] * subPixel;
#endif
#ifdef IPOL_C3
scan.c[3][0] += scan.slopeC[3][0] * subPixel;
scan.c[3][1] += scan.slopeC[3][1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#ifdef IPOL_T2
scan.t[2][0] += scan.slopeT[2][0] * subPixel;
scan.t[2][1] += scan.slopeT[2][1] * subPixel;
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0] * subPixel;
scan.l[0][1] += scan.slopeL[0][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[0][scan.left] = scan.c[0][0];
line.c[0][scan.right] = scan.c[0][1];
#endif
#ifdef IPOL_C1
line.c[1][scan.left] = scan.c[1][0];
line.c[1][scan.right] = scan.c[1][1];
#endif
#ifdef IPOL_C2
line.c[2][scan.left] = scan.c[2][0];
line.c[2][scan.right] = scan.c[2][1];
#endif
#ifdef IPOL_C3
line.c[3][scan.left] = scan.c[3][0];
line.c[3][scan.right] = scan.c[3][1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
#ifdef IPOL_T2
line.t[2][scan.left] = scan.t[2][0];
line.t[2][scan.right] = scan.t[2][1];
#endif
#ifdef IPOL_L0
line.l[0][scan.left] = scan.l[0][0];
line.l[0][scan.right] = scan.l[0][1];
#endif
// render a scanline
if_interlace_scanline fragmentShader();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0][0] += scan.slopeC[0][0];
scan.c[0][1] += scan.slopeC[0][1];
#endif
#ifdef IPOL_C1
scan.c[1][0] += scan.slopeC[1][0];
scan.c[1][1] += scan.slopeC[1][1];
#endif
#ifdef IPOL_C2
scan.c[2][0] += scan.slopeC[2][0];
scan.c[2][1] += scan.slopeC[2][1];
#endif
#ifdef IPOL_C3
scan.c[3][0] += scan.slopeC[3][0];
scan.c[3][1] += scan.slopeC[3][1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
#ifdef IPOL_T2
scan.t[2][0] += scan.slopeT[2][0];
scan.t[2][1] += scan.slopeT[2][1];
#endif
#ifdef IPOL_L0
scan.l[0][0] += scan.slopeL[0][0];
scan.l[0][1] += scan.slopeL[0][1];
#endif
}
}
}
//! Called by the engine when the vertex and/or pixel shader constants for an
//! material renderer should be set.
void CBurningParallaxMap::OnSetConstants(IMaterialRendererServices* services, s32 userData)
{
#if 0
video::IVideoDriver* driver = services->getVideoDriver();
// set transposed world matrix
const core::matrix4& tWorld = driver->getTransform(video::ETS_WORLD).getTransposed();
services->setVertexShaderConstant(tWorld.pointer(), 0, 4);
// set transposed worldViewProj matrix
core::matrix4 worldViewProj(driver->getTransform(video::ETS_PROJECTION));
worldViewProj *= driver->getTransform(video::ETS_VIEW);
worldViewProj *= driver->getTransform(video::ETS_WORLD);
core::matrix4 tr(worldViewProj.getTransposed());
services->setVertexShaderConstant(tr.pointer(), 8, 4);
// here we fetch the fixed function lights from the driver
// and set them as constants
u32 cnt = driver->getDynamicLightCount();
// Load the inverse world matrix.
core::matrix4 invWorldMat;
driver->getTransform(video::ETS_WORLD).getInverse(invWorldMat);
for (u32 i = 0; i < 2; ++i)
{
video::SLight light;
if (i < cnt)
light = driver->getDynamicLight(i);
else
{
light.DiffuseColor.set(0, 0, 0); // make light dark
light.Radius = 1.0f;
}
light.DiffuseColor.a = 1.0f / (light.Radius * light.Radius); // set attenuation
// Transform the light by the inverse world matrix to get it into object space.
invWorldMat.transformVect(light.Position);
services->setVertexShaderConstant(
reinterpret_cast<const f32*>(&light.Position), 12 + (i * 2), 1);
services->setVertexShaderConstant(
reinterpret_cast<const f32*>(&light.DiffuseColor), 13 + (i * 2), 1);
}
// Obtain the view position by transforming 0,0,0 by the inverse view matrix
// and then multiply this by the inverse world matrix.
core::vector3df viewPos(0.0f, 0.0f, 0.0f);
core::matrix4 inverseView;
driver->getTransform(video::ETS_VIEW).getInverse(inverseView);
inverseView.transformVect(viewPos);
invWorldMat.transformVect(viewPos);
services->setVertexShaderConstant(reinterpret_cast<const f32*>(&viewPos.X), 16, 1);
// set scale factor
f32 factor = 0.02f; // default value
if (CurrentScale != 0.0f)
factor = CurrentScale;
f32 c6[] = { factor, factor, factor, factor };
services->setPixelShaderConstant(c6, 0, 1);
#endif
}
burning_namespace_end
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
burning_namespace_start
IBurningShader* createTRParallaxMap(CBurningVideoDriver* driver, s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CBurningParallaxMap(driver, outMaterialTypeNr, baseMaterial);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
burning_namespace_end