irrlicht/source/Irrlicht/CSoftwareDriver2.cpp

4838 lines
145 KiB
C++
Raw Permalink Blame History

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "CSoftwareDriver2.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
#include "SoftwareDriver2_helper.h"
#include "CSoftwareTexture.h"
#include "CSoftwareTexture2.h"
#include "CSoftware2MaterialRenderer.h"
#include "S3DVertex.h"
#include "S4DVertex.h"
#include "CBlit.h"
// Matrix now here
template <class T>
bool mat33_transposed_inverse(irr::core::CMatrix4<T>& out, const irr::core::CMatrix4<T>& M)
{
const T* burning_restrict m = M.pointer();
double d =
(m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
(m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
(m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
(m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
(m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
(m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
if (fabs(d) < DBL_MIN)
{
out.makeIdentity();
return false;
}
d = 1.0 / d;
T* burning_restrict o = out.pointer();
o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13])));
o[4] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13])));
o[8] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5])));
o[12] = 0.f;
o[1] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15])));
o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15])));
o[9] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7])));
o[13] = 0.f;
o[2] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15])));
o[6] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15])));
o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7])));
o[14] = 0.f;
o[3] = 0.f;
o[7] = 0.f;
o[11] = 0.f;
o[15] = 1.f;
return true;
}
#if 0
template <class T>
bool mat44_transposed_inverse(irr::core::CMatrix4<T>& out, const irr::core::CMatrix4<T>& M)
{
const T* burning_restrict m = M.pointer();
double d =
(m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
(m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
(m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
(m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
(m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
(m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
if (fabs(d) < DBL_MIN)
{
out.makeIdentity();
return false;
}
d = 1.0 / d;
T* burning_restrict o = out.pointer();
o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13])));
o[4] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13])));
o[8] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5])));
o[12] = (T)(d * (m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10])));
o[1] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15])));
o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15])));
o[9] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7])));
o[13] = (T)(d * (m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10])));
o[2] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15])));
o[6] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15])));
o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7])));
o[14] = (T)(d * (m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8])));
o[3] = (T)(d * (m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13])));
o[7] = (T)(d * (m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13])));
o[11] = (T)(d * (m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5])));
o[15] = (T)(d * (m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8])));
return true;
}
#endif
// difference to CMatrix4<T>::getInverse . higher precision in determinant. return identity on failure
template <class T>
bool mat44_inverse(irr::core::CMatrix4<T>& out, const irr::core::CMatrix4<T>& M)
{
const T* burning_restrict m = M.pointer();
double d =
(m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
(m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
(m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
(m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
(m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
(m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
if (fabs(d) < DBL_MIN)
{
out.makeIdentity();
return false;
}
d = 1.0 / d;
T* burning_restrict o = out.pointer();
o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13])));
o[1] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13])));
o[2] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5])));
o[3] = (T)(d * (m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10])));
o[4] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15])));
o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15])));
o[6] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7])));
o[7] = (T)(d * (m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10])));
o[8] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15])));
o[9] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15])));
o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7])));
o[11] = (T)(d * (m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8])));
o[12] = (T)(d * (m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13])));
o[13] = (T)(d * (m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13])));
o[14] = (T)(d * (m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5])));
o[15] = (T)(d * (m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8])));
return true;
}
// void CMatrix4<T>::transformVec4(T *out, const T * in) const
template <class T>
inline void transformVec4Vec4(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const T* burning_restrict in)
{
const T* burning_restrict M = m.pointer();
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12];
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13];
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14];
out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15];
}
template <class T>
inline void transformVec3Vec3(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const T* burning_restrict in)
{
const T* burning_restrict M = m.pointer();
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + M[12];
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + M[13];
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + M[14];
}
#if 0
// void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
template <class T>
inline void transformVec3Vec4(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const core::vector3df& in)
{
const T* burning_restrict M = m.pointer();
out[0] = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12];
out[1] = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13];
out[2] = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14];
out[3] = in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15];
}
#endif
template <class T>
inline void rotateMat44Vec3Vec4(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const T* burning_restrict in)
{
const T* burning_restrict M = m.pointer();
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8];
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9];
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10];
out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11];
//out[3] = 0.f;
}
template <class T>
inline void rotateMat33Vec3Vec4(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const T* burning_restrict in)
{
const T* burning_restrict M = m.pointer();
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8];
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9];
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10];
out[3] = 0.f; //in[0] * M[3] + in[1] * M[7] + in[2] * M[11];
}
#if 0
template <class T>
irr::video::sVec4 operator* (const irr::core::CMatrix4<T>& m, const irr::core::vector3df& in)
{
const T* burning_restrict M = m.pointer();
return irr::video::sVec4(
in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12],
in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13],
in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14],
in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15]);
}
template <class T>
irr::video::sVec4 operator* (const irr::core::vector3df& in, const irr::core::CMatrix4<T>& m)
{
const T* burning_restrict M = m.pointer();
return irr::video::sVec4(
in.X * M[0] + in.Y * M[1] + in.Z * M[2] + M[3],
in.X * M[4] + in.Y * M[5] + in.Z * M[6] + M[7],
in.X * M[8] + in.Y * M[9] + in.Z * M[10] + M[11],
in.X * M[12] + in.Y * M[13] + in.Z * M[14] + M[15]);
}
#endif
template <class T>
irr::video::sVec4 operator* (const irr::core::CMatrix4<T>& m, const irr::video::sVec4& v)
{
const T* burning_restrict M = m.pointer();
const float* burning_restrict in = &v.x;
return irr::video::sVec4(
in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12],
in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13],
in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14],
in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15]);
}
template <class T>
irr::video::sVec4 operator* (const irr::video::sVec4& v, const irr::core::CMatrix4<T>& m)
{
const T* burning_restrict M = m.pointer();
const float* burning_restrict in = &v.x;
return irr::video::sVec4(
in[0] * M[0] + in[1] * M[1] + in[2] * M[2] + in[3] * M[3],
in[0] * M[4] + in[1] * M[5] + in[2] * M[6] + in[3] * M[7],
in[0] * M[8] + in[1] * M[9] + in[2] * M[10] + in[3] * M[11],
in[0] * M[12] + in[1] * M[13] + in[2] * M[14] + in[3] * M[15]);
}
static inline float dot(const irr::video::sVec4& a, const irr::video::sVec4& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
static inline float inversesqrt(const float x )
{
return x!= 0.f ? 1.f / sqrtf(x) : 0.f;
}
static inline irr::video::sVec4 operator-(const irr::video::sVec4& a)
{
return irr::video::sVec4(-a.x, -a.y, -a.z, -a.w);
}
static inline irr::video::sVec4 normalize(const irr::video::sVec4& a)
{
float l = a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w;
if (l < 0.00000001f)
return irr::video::sVec4(0.f, 0.f, 1.f, 1.f);
l = 1.f / sqrtf(l);
return irr::video::sVec4(a.x * l, a.y * l, a.z * l, a.w * l);
}
// sVec3 xyz
static inline irr::video::sVec4 cross(const irr::video::sVec4& a, const irr::video::sVec4& b)
{
return irr::video::sVec4(a.y * b.z - b.y * a.z, a.z * b.x - b.z * a.x, a.x * b.y - b.x * a.y, 0.f);
}
void irr::video::sVec4::setA8R8G8B8(const u32 argb)
{
//error term necessary. cancels out(somehow) at 255 argb((tofixpoint(r/w)+fix_0.5)
static const f32 is = 1.f / (255.f);
r = ((argb & 0x00FF0000) >> 16) * is;
g = ((argb & 0x0000FF00) >> 8) * is;
b = ((argb & 0x000000FF)) * is;
a = ((argb & 0xFF000000) >> 24) * is;
}
//need to prevent floating point over/underflow
//based on https://github.com/ekmett/approximate/blob/master/cbits/fast.c powf_fast_precise
static inline float powf_limit(const float a, const float b)
{
if (a < 0.00000001f)
return 0.f;
else if (a >= 1.f)
return a * b;
/* calculate approximation with fraction of the exponent */
int e = (int)b;
union { float f; int x; } u = { a };
u.x = (int)((b - e) * (u.x - 1065353216) + 1065353216);
float r = 1.0f;
float ua = a;
while (e) {
if (e & 1) {
r *= ua;
}
if (ua < 0.000000001f)
return 0.f;
ua *= ua;
e >>= 1;
}
r *= u.f;
return r;
}
/*
if (condition) state |= m; else state &= ~m;
*/
REALINLINE void burning_setbit32(unsigned int& state, int condition, const unsigned int mask)
{
// 0, or any positive to mask
//s32 conmask = -condition >> 31;
state ^= ((-condition >> 31) ^ state) & mask;
}
/*
if (condition) state |= mask; else state &= ~mask;
*/
static inline void burning_setbit(size_t& state, int condition, size_t mask)
{
if (condition) state |= mask;
else state &= ~mask;
}
// IImage::fill
static void image_fill(irr::video::IImage* image, const irr::video::SColor& color, const interlaced_control interlaced)
{
if (0 == image)
return;
unsigned int c = color.color;
switch (image->getColorFormat())
{
case irr::video::ECF_A1R5G5B5:
c = color.toA1R5G5B5();
c |= c << 16;
break;
default:
break;
}
irr::memset32_interlaced(image->getData(), c, image->getPitch(), image->getDimension().Height, interlaced);
}
//setup Antialias. v0.52 uses as Interlaced
void get_scale(interlaced_control& o, const irr::SIrrlichtCreationParameters& params)
{
o.raw = 0;
o.bypass = 1;
#if !defined(SOFTWARE_DRIVER_2_RENDERTARGET_SCALE)
return;
#endif
//test case
if (0 || params.WindowSize.Width <= 160 || params.WindowSize.Height <= 128)
{
return;
}
union scale_setup
{
struct
{
unsigned char x : 3;
unsigned char y : 3;
unsigned char i : 2;
};
unsigned char v;
};
scale_setup s;
s.x = 1;
s.y = 1;
s.i = 0;
switch (params.AntiAlias)
{
default:
case 0: s.x = 1; s.y = 1; s.i = 0; break;
case 2: s.x = 1; s.y = 1; s.i = 1; break;
case 4: s.x = 2; s.y = 2; s.i = 0; break;
case 8: s.x = 2; s.y = 2; s.i = params.Vsync ? 1 : 0; break;
case 16:s.x = 4; s.y = 4; s.i = 0; break;
case 32:s.x = 4; s.y = 4; s.i = 1; break;
case 3: s.x = 3; s.y = 3; s.i = 0; break;
case 5: s.x = 3; s.y = 3; s.i = 1; break;
}
/*
if (params.WindowSize.Height > 384)
{
s.i = params.Vsync ? 0 : 1;
s.x = params.AntiAlias ? 1 : 2;
s.y = params.AntiAlias ? 1 : 2;
}
*/
o.enable = s.i;
o.target_scalex = s.x - 1;
o.tex_scalex = 0; // s.x >= 2 ? s.x - 1 : 0;
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
o.enable = params.Vsync ? 0 : 1;
switch (params.AntiAlias)
{
default:
case 0: o.target_scalex = 0; o.tex_scalex = 0; break;
case 2: o.target_scalex = 1; o.tex_scalex = 0; break;
case 4: o.target_scalex = 1; o.tex_scalex = 1; break;
case 8: o.target_scalex = 2; o.tex_scalex = 1; break;
}
#endif
o.bypass = o.enable == 0;
o.nr = 0;
o.target_scaley = o.target_scalex;
o.tex_scaley = o.tex_scalex;
if (o.enable || o.target_scalex || o.tex_scalex)
{
char buf[256];
snprintf_irr(buf, sizeof(buf), "Burningvideo: Interlaced:%u,%u target:%u,%u tex:%u,%u",
o.enable,
o.bypass,
o.target_scalex,
o.target_scaley,
o.tex_scalex,
o.tex_scaley
);
irr::os::Printer::log(buf, irr::ELL_NONE);
}
}
#if 0
//code snippets
#include <IrrlichtDevice.h>
#include <ICameraSceneNode.h>
#include <ISceneManager.h>
#include <EDriverTypes.h>
void switch_between_ortho_and_perspective_projection(irr::IrrlichtDevice* device, irr::video::E_DRIVER_TYPE driverType)
{
//switch between ortho and perspective projection
irr::scene::ICameraSceneNode* cam = device->getSceneManager()->addCameraSceneNode();
cam->setPosition(irr::core::vector3df(300, 250, -300));
cam->setTarget(irr::core::vector3df(0, 20, 0));
if (1 || driverType != irr::video::EDT_BURNINGSVIDEO)
{
cam->setProjectionMatrix(irr::core::matrix4().buildProjectionMatrixOrthoLH(120, 90, 0.9f, 5000.f, driverType != irr::video::EDT_OPENGL), true);
}
else
{
irr::f32 w = (2.f * 0.9f) / (2.f / 120.f * (cam->getTarget() - cam->getPosition()).getLength());
cam->setProjectionMatrix(irr::core::matrix4().buildProjectionMatrixPerspectiveLH(w, w * (90.f / 120.f), 0.9f, 5000.f, driverType != irr::video::EDT_OPENGL), true);
}
}
/*
For using an alternative camera in the examples.
Try to translate the viewpoint (Maya internal CameraRotation)
*/
static inline void switchToMayaCamera(irr::IrrlichtDevice* device)
{
if (!device) return;
irr::scene::ICameraSceneNode* camera = device->getSceneManager()->getActiveCamera();
if (!camera || camera->getID() == 54321) return;
irr::core::vector3df target = camera->getTarget() - camera->getPosition();
irr::core::vector3df relativeRotation = target.getHorizontalAngle();
irr::scene::ICameraSceneNode* maya = device->getSceneManager()->addCameraSceneNodeMaya(
0, -1500, 1000, 1500,
54321,
target.getLength(),
true,
relativeRotation.X + 90, relativeRotation.Y
);
if (maya)
{
maya->setNearValue(camera->getNearValue());
maya->setFarValue(camera->getFarValue());
}
device->getCursorControl()->setVisible(true);
device->setResizable(true);
}
#endif
//turn on/off fpu exception
void fpu_exception(int on)
{
return;
#if defined(_WIN32)
_clearfp();
_controlfp(on ? _EM_INEXACT : -1, _MCW_EM);
#endif
}
burning_namespace_start
//! constructor
CBurningVideoDriver::CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter)
: CNullDriver(io, params.WindowSize), BackBuffer(0), Presenter(presenter),
WindowId(0), SceneSourceRect(0),
RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0),
DepthBuffer(0), StencilBuffer(0)
{
//enable fpu exception
fpu_exception(1);
#ifdef _DEBUG
setDebugName("CBurningVideoDriver");
#endif
VertexCache_map_source_format();
//Use AntiAlias(hack) to shrink BackBuffer Size and keep ScreenSize the same as Input
//Control Interlaced/scaled BackBuffer
get_scale(Interlaced, params);
TexBias[ETF_STACK_3D] = 1.f;
TexBias[ETF_STACK_2D] = 1.f;
// create backbuffer.
core::dimension2du use(params.WindowSize.Width / (Interlaced.target_scalex + 1),
params.WindowSize.Height / (Interlaced.target_scaley + 1));
BackBuffer = new CImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, use);
if (BackBuffer)
{
//BackBuffer->fill(SColor(0));
image_fill(BackBuffer, SColor(0), interlaced_disabled());
// create z buffer
if (params.ZBufferBits)
DepthBuffer = video::createDepthBuffer(BackBuffer->getDimension());
// create stencil buffer
if (params.Stencilbuffer)
StencilBuffer = video::createStencilBuffer(BackBuffer->getDimension(), 8);
}
DriverAttributes->setAttribute("MaxIndices", 1 << 16);
DriverAttributes->setAttribute("MaxTextures", BURNING_MATERIAL_MAX_TEXTURES);
DriverAttributes->setAttribute("MaxTextureSize", SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE);
DriverAttributes->setAttribute("MaxLights", 1024); //glsl::gl_MaxLights);
DriverAttributes->setAttribute("MaxTextureLODBias", 16.f);
DriverAttributes->setAttribute("Version", 50);
// create triangle renderers
memset(BurningShader, 0, sizeof(BurningShader));
//BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer);
//BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer);
BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(this);
BurningShader[ETR_GOURAUD_NOZ] = createTriangleRendererGouraudNoZ2(this);
//BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(this );
BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(this); // 2D
//BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M1] = createTriangleRendererTextureLightMap2_M1(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(this);
BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(this);
BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(this);
BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(this);
BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(this);
BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(this);
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ(this);
//BurningShader[ETR_NORMAL_MAP_SOLID] = createTRNormalMap(this, EMT_NORMAL_MAP_SOLID);
BurningShader[ETR_STENCIL_SHADOW] = createTRStencilShadow(this);
BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend(this);
BurningShader[ETR_TRANSPARENT_REFLECTION_2_LAYER] = createTriangleRendererTexture_transparent_reflection_2_layer(this);
//BurningShader[ETR_REFERENCE] = createTriangleRendererReference ( this );
BurningShader[ETR_COLOR] = create_burning_shader_color(this);
// add the same renderer for all solid types
CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID(this);
CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR(this);
//CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this );
//!TODO: addMaterialRenderer depends on pushing order....
addMaterialRenderer(smr); // EMT_SOLID
addMaterialRenderer(smr); // EMT_SOLID_2_LAYER,
addMaterialRenderer(smr); // EMT_LIGHTMAP,
addMaterialRenderer(tmr); // EMT_LIGHTMAP_ADD,
addMaterialRenderer(smr); // EMT_LIGHTMAP_M2,
addMaterialRenderer(smr); // EMT_LIGHTMAP_M4,
addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING,
addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING_M2,
addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING_M4,
addMaterialRenderer(smr); // EMT_DETAIL_MAP,
addMaterialRenderer(smr); // EMT_SPHERE_MAP,
addMaterialRenderer(smr); // EMT_REFLECTION_2_LAYER,
addMaterialRenderer(tmr); // EMT_TRANSPARENT_ADD_COLOR,
addMaterialRenderer(tmr); // EMT_TRANSPARENT_ALPHA_CHANNEL,
addMaterialRenderer(tmr); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF,
addMaterialRenderer(tmr); // EMT_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer(tmr); // EMT_TRANSPARENT_REFLECTION_2_LAYER,
#if 0
addMaterialRenderer(smr); // EMT_NORMAL_MAP_SOLID,
addMaterialRenderer(tmr); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer(tmr); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer(smr); // EMT_PARALLAX_MAP_SOLID,
addMaterialRenderer(tmr); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer(tmr); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA,
#else
// add normal map renderers
s32 tmp = 0;
video::IMaterialRenderer* renderer = 0;
renderer = createTRNormalMap(this, tmp, EMT_NORMAL_MAP_SOLID); renderer->drop();
renderer = createTRNormalMap(this, tmp, EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR); renderer->drop();
renderer = createTRNormalMap(this, tmp, EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA); renderer->drop();
renderer = createTRParallaxMap(this, tmp, EMT_PARALLAX_MAP_SOLID); renderer->drop();
renderer = createTRParallaxMap(this, tmp, EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR); renderer->drop();
renderer = createTRParallaxMap(this, tmp, EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA); renderer->drop();
#endif
addMaterialRenderer(tmr); // EMT_ONETEXTURE_BLEND
smr->drop();
tmr->drop();
//umr->drop ();
// select render target
setRenderTargetImage2(BackBuffer, 0, 0);
//reset Lightspace
EyeSpace.init();
// select the right renderer
setMaterial(Material.org);
samples_passed = 0;
}
//! destructor
CBurningVideoDriver::~CBurningVideoDriver()
{
// delete Backbuffer
if (BackBuffer)
{
BackBuffer->drop();
BackBuffer = 0;
}
//release textures
if (CurrentShader)
{
}
Material.mat2D.setTexture(0, 0);
// deleteMaterialRenders
for (s32 i = 0; i < ETR2_COUNT; ++i)
{
if (BurningShader[i])
{
BurningShader[i]->drop();
BurningShader[i] = 0;
}
}
//deleteMaterialRenders();
// delete Additional buffer
if (StencilBuffer)
{
StencilBuffer->drop();
StencilBuffer = 0;
}
if (DepthBuffer)
{
DepthBuffer->drop();
DepthBuffer = 0;
}
if (RenderTargetTexture)
{
RenderTargetTexture->drop();
RenderTargetTexture = 0;
}
if (RenderTargetSurface)
{
RenderTargetSurface->drop();
RenderTargetSurface = 0;
}
fpu_exception(0);
}
//! queries the features of the driver, returns true if feature is available
bool CBurningVideoDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const
{
int on = 0;
switch (feature)
{
#ifdef SOFTWARE_DRIVER_2_BILINEAR
case EVDF_BILINEAR_FILTER:
on = 1;
break;
#endif
#if SOFTWARE_DRIVER_2_MIPMAPPING_MAX > 1
case EVDF_MIP_MAP:
on = 1;
break;
#endif
case EVDF_STENCIL_BUFFER:
on = StencilBuffer != 0;
break;
case EVDF_RENDER_TO_TARGET:
case EVDF_MULTITEXTURE:
case EVDF_HARDWARE_TL:
case EVDF_TEXTURE_NSQUARE:
case EVDF_TEXTURE_MATRIX:
on = 1;
break;
case EVDF_ARB_FRAGMENT_PROGRAM_1:
case EVDF_ARB_VERTEX_PROGRAM_1:
on = 1;
break;
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
case EVDF_TEXTURE_NPOT:
case EVDF_ARB_GLSL:
on = 1;
break;
#else
case EVDF_TEXTURE_NPOT: // for 2D
on = 0;
break;
case EVDF_DEPTH_CLAMP: // shadow
on = 1;
break;
#endif
#if defined(SOFTWARE_DRIVER_2_2D_AS_3D)
#if defined(IRRLICHT_FREE_CANVAS)
case EVDF_VIEWPORT_SCALE_GUI:
on = 1;
break;
#endif
#endif
case EVDF_OCCLUSION_QUERY:
on = 1;
break;
default:
on = 0;
break;
}
return on && FeatureEnabled[feature];
}
//matrix multiplication
void CBurningVideoDriver::transform_calc(E_TRANSFORMATION_STATE_BURNING_VIDEO state)
{
size_t* flag = TransformationFlag[TransformationStack];
if (flag[state] & ETF_VALID) return;
//check
size_t ok = 0;
switch (state)
{
case ETS_MODEL_VIEW_PROJ:
if (0 == (flag[ETS_VIEW_PROJECTION] & ETF_VALID)) transform_calc(ETS_VIEW_PROJECTION);
ok = flag[ETS_WORLD] & flag[ETS_VIEW] & flag[ETS_PROJECTION] & flag[ETS_VIEW_PROJECTION] & ETF_VALID;
break;
case ETS_VIEW_PROJECTION:
ok = flag[ETS_VIEW] & flag[ETS_PROJECTION] & ETF_VALID;
break;
case ETS_MODEL_VIEW:
ok = flag[ETS_WORLD] & flag[ETS_VIEW] & ETF_VALID;
break;
case ETS_NORMAL:
ok = flag[ETS_MODEL_VIEW] & ETF_VALID;
break;
case ETS_MODEL_INVERSE:
ok = flag[ETS_WORLD] & ETF_VALID;
break;
default:
break;
}
if (!ok)
{
char buf[256];
sprintf(buf, "transform_calc not valid for %d", state);
os::Printer::log(buf, ELL_WARNING);
}
core::matrix4* matrix = Transformation[TransformationStack];
switch (state)
{
case ETS_MODEL_VIEW_PROJ:
if (flag[ETS_WORLD] & ETF_IDENTITY)
{
matrix[state] = matrix[ETS_VIEW_PROJECTION];
}
else
{
matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW_PROJECTION], matrix[ETS_WORLD]);
}
break;
case ETS_VIEW_PROJECTION:
matrix[state].setbyproduct_nocheck(matrix[ETS_PROJECTION], matrix[ETS_VIEW]);
break;
case ETS_MODEL_VIEW:
if (flag[ETS_WORLD] & ETF_IDENTITY)
{
matrix[state] = matrix[ETS_VIEW];
}
else
{
matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW], matrix[ETS_WORLD]);
}
break;
case ETS_NORMAL:
mat33_transposed_inverse(matrix[state], matrix[ETS_MODEL_VIEW]);
break;
case ETS_MODEL_INVERSE:
if (flag[ETS_WORLD] & ETF_IDENTITY)
{
matrix[state] = matrix[ETS_WORLD];
}
else
{
mat44_inverse(matrix[state], matrix[ETS_WORLD]);
}
break;
default:
break;
}
flag[state] |= ETF_VALID;
}
//! sets transformation
void CBurningVideoDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
size_t* flag = TransformationFlag[TransformationStack];
core::matrix4* matrix = Transformation[TransformationStack];
#if 0
int changed = 1;
if (flag[state] & ETF_VALID)
{
changed = memcmp(mat.pointer(), matrix[state].pointer(), sizeof(mat));
}
if (changed)
#endif
{
matrix[state] = mat;
flag[state] |= ETF_VALID;
}
//maybe identity (mostly for texturematrix to avoid costly multiplication)
#if defined ( USE_MATRIX_TEST )
burning_setbit(TransformationFlag[state], mat.getDefinitelyIdentityMatrix(), ETF_IDENTITY);
#else
burning_setbit(flag[state],
0 == memcmp(mat.pointer(), core::IdentityMatrix.pointer(), sizeof(mat)), ETF_IDENTITY
);
#endif
#if 0
if (changed)
#endif
switch (state)
{
case ETS_PROJECTION:
flag[ETS_MODEL_VIEW_PROJ] &= ~ETF_VALID;
flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID;
break;
case ETS_VIEW:
flag[ETS_MODEL_VIEW_PROJ] &= ~ETF_VALID;
flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID;
flag[ETS_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_NORMAL] &= ~ETF_VALID;
break;
case ETS_WORLD:
flag[ETS_MODEL_VIEW_PROJ] &= ~ETF_VALID;
flag[ETS_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_NORMAL] &= ~ETF_VALID;
flag[ETS_MODEL_INVERSE] &= ~ETF_VALID;
break;
case ETS_TEXTURE_0:
case ETS_TEXTURE_1:
case ETS_TEXTURE_2:
case ETS_TEXTURE_3:
#if _IRR_MATERIAL_MAX_TEXTURES_>4
case ETS_TEXTURE_4:
#endif
#if _IRR_MATERIAL_MAX_TEXTURES_>5
case ETS_TEXTURE_5:
#endif
#if _IRR_MATERIAL_MAX_TEXTURES_>6
case ETS_TEXTURE_6:
#endif
#if _IRR_MATERIAL_MAX_TEXTURES_>7
case ETS_TEXTURE_7:
#endif
if (0 == (flag[state] & ETF_IDENTITY))
{
flag[state] |= ETF_TEXGEN_MATRIX;
}
break;
default:
break;
}
}
//! Returns the transformation set by setTransform
const core::matrix4& CBurningVideoDriver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Transformation[TransformationStack][state];
}
bool CBurningVideoDriver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
CNullDriver::beginScene(clearFlag & ECBF_COLOR, clearFlag & ECBF_DEPTH, clearColor, videoData, sourceRect);
#else
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
#endif
Interlaced.nr = (Interlaced.nr + 1) & interlace_control_mask;
WindowId = videoData.D3D9.HWnd;
SceneSourceRect = sourceRect;
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
//memset ( TransformationFlag, 0, sizeof ( TransformationFlag ) );
return true;
}
bool CBurningVideoDriver::endScene()
{
CNullDriver::endScene();
return Presenter->present(BackBuffer, WindowId, SceneSourceRect);
}
//! Create render target.
IRenderTarget* CBurningVideoDriver::addRenderTarget()
{
CSoftwareRenderTarget2* renderTarget = new CSoftwareRenderTarget2(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
bool CBurningVideoDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color)
{
CSoftwareRenderTarget2 target(this);
target.RenderTexture = texture;
target.TargetType = ERT_RENDER_TEXTURE;
target.Textures[0] = texture;
if (texture)
texture->grab();
u16 flag = 0;
if (clearBackBuffer) flag |= ECBF_COLOR;
if (clearZBuffer) flag |= ECBF_DEPTH;
return setRenderTargetEx(texture ? &target : 0, flag, color, 1.f, true);
}
#endif
bool CBurningVideoDriver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
#if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
if (target && target->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to set a render target not owned by this driver.", ELL_ERROR);
return false;
}
#endif
if (RenderTargetTexture)
{
//switching from texture to backbuffer
if (target == 0)
{
RenderTargetTexture->regenerateMipMapLevels();
}
RenderTargetTexture->drop();
}
#if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
RenderTargetTexture = target ? target->getTexture()[0] : 0;
#else
RenderTargetTexture = target ? ((CSoftwareRenderTarget2*)target)->Textures[0] : 0;
#endif
if (RenderTargetTexture)
{
RenderTargetTexture->grab();
Interlaced.bypass = 1;
setRenderTargetImage2(((CSoftwareTexture2*)RenderTargetTexture)->getImage());
}
else
{
Interlaced.bypass = Interlaced.enable == 0;
setRenderTargetImage2(BackBuffer);
}
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
/*
static inline f32 map_value(f32 x, f32 in_min, f32 in_max, f32 out_min, f32 out_max) {
return (x - in_min) * (out_max - out_min) / (f32)(in_max - in_min) + out_min;
}
*/
//! sets a render target
void CBurningVideoDriver::setRenderTargetImage2(video::IImage* color, video::IImage* depth, video::IImage* stencil)
{
if (RenderTargetSurface)
RenderTargetSurface->drop();
core::dimension2d<u32> current = RenderTargetSize;
RenderTargetSurface = color;
RenderTargetSize.Width = 0;
RenderTargetSize.Height = 0;
if (RenderTargetSurface)
{
RenderTargetSurface->grab();
RenderTargetSize = RenderTargetSurface->getDimension();
}
RatioRenderTargetScreen.x = ScreenSize.Width ? (f32)RenderTargetSize.Width / ScreenSize.Width : 1.f;
RatioRenderTargetScreen.y = ScreenSize.Height ? (f32)RenderTargetSize.Height / ScreenSize.Height : 1.f;
int not_changed = current == RenderTargetSize;
burning_setbit(TransformationFlag[0][ETS_PROJECTION], not_changed, ETF_VALID);
burning_setbit(TransformationFlag[1][ETS_PROJECTION], not_changed, ETF_VALID);
setViewPort(core::recti(RenderTargetSize));
if (DepthBuffer)
DepthBuffer->setSize(RenderTargetSize);
if (StencilBuffer)
StencilBuffer->setSize(RenderTargetSize);
}
//--------- Transform from NDC to DC, transform TexCoo ----------------------------------------------
//--------- Transform from NDC to DC ----------------------------------------------
// used to scale <-1,-1><1,1> to viewport [scale,center]
// controls subtexel and fill convention.
// Don't tweak SOFTWARE_DRIVER_2_SUBTEXEL (-0.5f in m[1]) anymore to control texture blur effect, it's used for viewport scaling.
// naming is misleading. it will write outside memory location..
//xw = (xn+1)*(w/2) + x
void buildNDCToDCMatrix(f32* burning_restrict dc_matrix, const core::rect<s32>& viewport, const f32 center)
{
//const f32 center = -0.5f; // combined with top / left fill convention to (0,0)-(x-1,y-1)
f32 x0 = viewport.UpperLeftCorner.X + center;
f32 x1 = viewport.LowerRightCorner.X - 1 - center;
f32 y0 = viewport.UpperLeftCorner.Y + center;
f32 y1 = viewport.LowerRightCorner.Y - 1 - center;
dc_matrix[0] = (x1 - x0) * 0.5f;
dc_matrix[1] = dc_matrix[0] + x0;
dc_matrix[2] = (y0 - y1) * 0.5f;
dc_matrix[3] = dc_matrix[2] + y1;
}
//! sets a viewport
void CBurningVideoDriver::setViewPort(const core::rect<s32>& area)
{
//const core::rect<s32> rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
const core::rect<s32> rendert(0, 0, RenderTargetSize.Width, RenderTargetSize.Height);
ViewPort = area;
ViewPort.clipAgainst(rendert);
const s32 viewarea = ViewPort.getArea();
//is this even possible to be pixel-perfect if i have not the same depth range as openGL?
//fill convention maybe flipped because window space is flipped so +-1 pixel always off?
buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[ETF_STACK_3D], ViewPort, -0.5f);
//Pixel Offset in window space here and not in view-space to avoid clipping
//[-0.5,-0.5]-[w-0.5,h-0.5]
buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[ETF_STACK_2D], ViewPort, -0.5f);
TexBias[ETF_STACK_3D] = viewarea <= (160 * 120) ? 1.5f : Interlaced.target_scalex ? 0.75f : 0.75f;
TexBias[ETF_STACK_2D] = 1.5f;
if (CurrentShader)
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced);
}
void CBurningVideoDriver::setScissor(int x, int y, int width, int height)
{
//openGL
//y = rt.Height - y - height;
//coming from GUI
AbsRectangle v0;
v0.x0 = core::floor32(x * RatioRenderTargetScreen.x);
v0.y0 = core::floor32(y * RatioRenderTargetScreen.y);
v0.x1 = core::floor32((x + width) * RatioRenderTargetScreen.x);
v0.y1 = core::floor32((y + height) * RatioRenderTargetScreen.y);
AbsRectangle v1;
v1.x0 = 0;
v1.y0 = 0;
v1.x1 = RenderTargetSize.Width;
v1.y1 = RenderTargetSize.Height;
intersect(Scissor, v0, v1);
}
/*
generic plane clipping in homogenous coordinates
special case ndc frustum <-w,w>,<-w,w>,<-w,w>
can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w
cam is (0,0,-1)
*/
static const sVec4 NDCPlane[6 + 2] =
{
sVec4(0.f, 0.f, 1.f, -1.f), // near
sVec4(0.f, 0.f, -1.f, -1.f), // far
sVec4(1.f, 0.f, 0.f, -1.f), // left
sVec4(-1.f, 0.f, 0.f, -1.f), // right
sVec4(0.f, 1.f, 0.f, -1.f), // bottom
sVec4(0.f, -1.f, 0.f, -1.f) // top
};
/*
test a vertex if it's inside the standard frustum
this is the generic one..
f32 dotPlane;
for ( u32 i = 0; i!= 6; ++i )
{
dotPlane = v->Pos.dotProduct ( NDCPlane[i] );
burning_setbit32( flag, dotPlane <= 0.f, 1 << i );
}
// this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w>
burning_setbit32( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 );
burning_setbit32( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 );
burning_setbit32( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 );
burning_setbit32( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 );
burning_setbit32( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 );
burning_setbit32( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 );
*/
#ifdef IRRLICHT_FAST_MATH
REALINLINE size_t CBurningVideoDriver::clipToFrustumTest(const s4DVertex* v) const
{
size_t flag;
f32 test[8];
const f32 w = -v->Pos.w;
// a conditional move is needed....FCOMI ( but we don't have it )
// so let the fpu calculate and write it back.
// cpu makes the compare, interleaving
test[0] = v->Pos.z + w;
test[1] = -v->Pos.z + w;
test[2] = v->Pos.x + w;
test[3] = -v->Pos.x + w;
test[4] = v->Pos.y + w;
test[5] = -v->Pos.y + w;
const u32* a = F32_AS_U32_POINTER(test);
flag = (a[0]) >> 31;
flag |= (a[1] & 0x80000000) >> 30;
flag |= (a[2] & 0x80000000) >> 29;
flag |= (a[3] & 0x80000000) >> 28;
flag |= (a[4] & 0x80000000) >> 27;
flag |= (a[5] & 0x80000000) >> 26;
/*
flag = (IR ( test[0] ) ) >> 31;
flag |= (IR ( test[1] ) & 0x80000000 ) >> 30;
flag |= (IR ( test[2] ) & 0x80000000 ) >> 29;
flag |= (IR ( test[3] ) & 0x80000000 ) >> 28;
flag |= (IR ( test[4] ) & 0x80000000 ) >> 27;
flag |= (IR ( test[5] ) & 0x80000000 ) >> 26;
*/
/*
flag = F32_LOWER_EQUAL_0 ( test[0] );
flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1;
flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2;
flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3;
flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4;
flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5;
*/
return flag;
}
#else
REALINLINE u32 clipToFrustumTest(const s4DVertex* v)
{
u32 flag = 0;
flag |= v->Pos.z <= v->Pos.w ? (size_t)VERTEX4D_CLIP_NEAR : 0;
flag |= -v->Pos.z <= v->Pos.w ? (size_t)VERTEX4D_CLIP_FAR : 0;
flag |= v->Pos.x <= v->Pos.w ? (size_t)VERTEX4D_CLIP_LEFT : 0;
flag |= -v->Pos.x <= v->Pos.w ? (size_t)VERTEX4D_CLIP_RIGHT : 0;
flag |= v->Pos.y <= v->Pos.w ? (size_t)VERTEX4D_CLIP_BOTTOM : 0;
flag |= -v->Pos.y <= v->Pos.w ? (size_t)VERTEX4D_CLIP_TOP : 0;
//verify with plane
/*
size_t flag2 = 0;
for ( u32 i = 0; i < 6; ++i )
{
if (v->Pos.dot_xyzw(NDCPlane[i]) <= 0.f) flag2 |= ((size_t)1) << i;
}
if (flag != flag2)
{
int g = 1;
}
*/
return flag;
}
#endif // _MSC_VER
u32 clipToHyperPlane(
s4DVertexPair* burning_restrict dest,
const s4DVertexPair* burning_restrict source,
const u32 inCount,
const sVec4& plane
)
{
u32 outCount = 0;
s4DVertexPair* out = dest;
const s4DVertex* a;
const s4DVertex* b = source;
ipoltype bDotPlane;
bDotPlane = b->Pos.dot_xyzw(plane);
/*
for( u32 i = 1; i < inCount + 1; ++i)
{
#if 0
a = source + (i%inCount)*2;
#else
const s32 condition = i - inCount;
const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1;
a = source + index;
#endif
*/
// polygon scan conversion edge sharing opposite side?
//Sutherland<6E>Hodgman
for (u32 i = 0; i < inCount; ++i)
{
a = source + (i == inCount - 1 ? 0 : s4DVertex_ofs(i + 1));
// current point inside
if (ipol_lower_equal_0(a->Pos.dot_xyzw(plane)))
{
// last point outside
if (ipol_greater_0(bDotPlane))
{
// intersect line segment with plane
//out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane));
ipoltype denom = (b->Pos - a->Pos).dot_xyzw(plane);
out->interpolate(*b, *a, bDotPlane / denom);
out += sizeof_s4DVertexPairRel;
outCount += 1;
}
// copy current to out
//*out = *a;
memcpy_s4DVertexPair(out, a);
b = out;
out += sizeof_s4DVertexPairRel;
outCount += 1;
}
else
{
// current point outside
if (ipol_lower_0(bDotPlane))
{
// previous was inside
// intersect line segment with plane
//out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane));
ipoltype denom = (b->Pos - a->Pos).dot_xyzw(plane);
out->interpolate(*b, *a, bDotPlane / denom);
out += sizeof_s4DVertexPairRel;
outCount += 1;
}
// pointer
b = a;
}
bDotPlane = b->Pos.dot_xyzw(plane);
}
return outCount;
}
/*
Clip on all planes. Clipper.data
clipmask per face
*/
u32 CBurningVideoDriver::clipToFrustum(const u32 vIn /*, const size_t clipmask_for_face*/)
{
s4DVertexPair* v0 = Clipper.data;
s4DVertexPair* v1 = Clipper_disjoint.data;
u32 vOut = vIn;
//clear all clipping & projected flags
const u32 flag = v0[0].flag & VERTEX4D_FORMAT_MASK;
for (u32 g = 0; g != Clipper.ElementSize; ++g)
{
v0[g].flag = flag;
v1[g].flag = flag;
}
#if 0
for (size_t i = 0; i < 6; ++i)
{
v0 = i & 1 ? Clipper_disjoint.data : Clipper.data;
v1 = i & 1 ? Clipper.data : Clipper_disjoint.data;
//clipMask checked outside - always clip all planes
#if 0
if (0 == (clipMask & ((size_t)1 << i)))
{
vOut = vIn;
memcpy_s4DVertexPair(v1, v0);
}
else
#endif
{
vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[i]);
if (vOut < vIn) return vOut;
}
}
#endif
vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[0]); if (vOut < vIn) return vOut;
vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[1]); if (vOut < vIn) return vOut;
vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[2]); if (vOut < vIn) return vOut;
vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[3]); if (vOut < vIn) return vOut;
vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[4]); if (vOut < vIn) return vOut;
vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[5]);
return vOut;
}
/*!
Part I:
apply Clip Scale matrix
From Normalized Device Coordiante ( NDC ) Space to Device Coordinate ( DC ) Space
Part II:
Project homogeneous vector
homogeneous to non-homogenous coordinates ( dividebyW )
Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A )
Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w )
replace w/w by 1/w
*/
//aliasing problems! [dest = source + 1]
inline void ndc_2_dc_and_project(s4DVertexPair* burning_restrict v, const u32 vIn,
const f32* burning_restrict dc_matrix
)
{
#define src v[g]
#define dst v[g+1]
for (u32 g = 0; g < vIn; g += sizeof_s4DVertexPairRel)
{
//cache doesn't work anymore?
//if ( dst.flag & VERTEX4D_PROJECTED ) continue;
//dst.flag = src.flag | VERTEX4D_PROJECTED;
const f32 iw = reciprocal_zero_pos_underflow(src.Pos.w);
// from normalized device to window coordinates (-1,-1) viewport
//limit sub pixel for consistent fill convention (wrong place)
#if SOFTWARE_DRIVER_2_SUBPIXEL_LIMIT > 0 && 0
dst.Pos.x = floorf((iw * src.Pos.x * dc_matrix[0] + dc_matrix[1]) * 128.f+0.5f) * (1.f / 128.f);
dst.Pos.y = floorf((iw * src.Pos.y * dc_matrix[2] + dc_matrix[3]) * 128.f + 0.5f) * (1.f/ 128.f);
#else
dst.Pos.x = iw * src.Pos.x * dc_matrix[0] + dc_matrix[1];
dst.Pos.y = iw * src.Pos.y * dc_matrix[2] + dc_matrix[3];
#endif
//burning uses direct Z. for OpenGL it should be -Z,[-1;1] and texture flip
#if !defined(SOFTWARE_DRIVER_2_USE_WBUFFER) || 1
dst.Pos.z = -iw * src.Pos.z * 0.5f + 0.5f;
#endif
dst.Pos.w = iw;
//ortographic projection w == 1 looses stencil
//dest[g].Pos.w = 1.f - dest[g].Pos.z;
// Texture Coordinates will be projected after mipmap selection
// satisfy write-combiner
//todo: only set on flag
#if 1
#if BURNING_MATERIAL_MAX_TEXTURES > 0
dst.Tex[0].x = src.Tex[0].x;
dst.Tex[0].y = src.Tex[0].y;
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 1
dst.Tex[1].x = src.Tex[1].x;
dst.Tex[1].y = src.Tex[1].y;
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 2
dst.Tex[2].x = src.Tex[2].x;
dst.Tex[2].y = src.Tex[2].y;
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 3
dst.Tex[3].x = src.Tex[3].x;
dst.Tex[3].y = src.Tex[3].y;
#endif
#endif
// alpha?
#if BURNING_MATERIAL_MAX_COLORS > 0
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.Color[0].r = src.Color[0].r * iw;
dst.Color[0].g = src.Color[0].g * iw;
dst.Color[0].b = src.Color[0].b * iw;
dst.Color[0].a = src.Color[0].a * iw;
#else
dst.Color[0] = src.Color[0];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 1
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.Color[1].r = src.Color[1].r * iw;
dst.Color[1].g = src.Color[1].g * iw;
dst.Color[1].b = src.Color[1].b * iw;
dst.Color[1].a = src.Color[1].a * iw;
#else
dst.Color[1] = src.Color[1];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 2
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.Color[2].r = src.Color[2].r * iw;
dst.Color[2].g = src.Color[2].g * iw;
dst.Color[2].b = src.Color[2].b * iw;
dst.Color[2].a = src.Color[2].a * iw;
#else
dst.Color[2] = src.Color[2];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 3
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.Color[3].r = src.Color[3].r * iw;
dst.Color[3].g = src.Color[3].g * iw;
dst.Color[3].b = src.Color[3].b * iw;
dst.Color[3].a = src.Color[3].a * iw;
#else
dst.Color[3] = src.Color[3];
#endif
#endif
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.LightTangent[0].x = src.LightTangent[0].x * iw;
dst.LightTangent[0].y = src.LightTangent[0].y * iw;
dst.LightTangent[0].z = src.LightTangent[0].z * iw;
#else
dst.LightTangent[0] = src.LightTangent[0];
#endif
#endif
}
#undef src
#undef dst
}
inline void ndc_2_dc_and_project_grid(s4DVertexPair* burning_restrict v, const u32 vIn,
const f32* burning_restrict dc_matrix
)
{
#define src v[g]
#define dst v[g+1]
u32 i;
u32 size;
for (u32 g = 0; g < vIn; g += sizeof_s4DVertexPairRel)
{
const f32 iw = reciprocal_zero_pos_underflow(src.Pos.w);
// from normalized device to window coordinates (-1,-1) viewport
//limit sub pixel for consistent fill convention (wrong place)
dst.Pos.x = floorf((iw * src.Pos.x * dc_matrix[0] + dc_matrix[1]) * 4096.f + 0.5f) * (1.f / 4096.f);
dst.Pos.y = floorf((iw * src.Pos.y * dc_matrix[2] + dc_matrix[3]) * 4096.f + 0.5f) * (1.f / 4096.f);
//burning uses direct Z. for OpenGL it should be -Z,[-1;1] and texture flip
#if !defined(SOFTWARE_DRIVER_2_USE_WBUFFER) || 1
dst.Pos.z = -iw * src.Pos.z * 0.5f + 0.5f;
#endif
dst.Pos.w = iw;
#if BURNING_MATERIAL_MAX_TEXTURES > 0
size = (src.flag & VERTEX4D_FORMAT_MASK_TEXTURE) >> 16;
for (i = 0; i != size; ++i)
{
dst.Tex[i].x = src.Tex[i].x;
dst.Tex[i].y = src.Tex[i].y;
}
#endif
#if BURNING_MATERIAL_MAX_COLORS > 0
size = (src.flag & VERTEX4D_FORMAT_MASK_COLOR) >> 20;
for (i = 0; i != size; ++i)
{
// alpha?
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.Color[i].r = src.Color[i].r * iw;
dst.Color[i].g = src.Color[i].g * iw;
dst.Color[i].b = src.Color[i].b * iw;
dst.Color[i].a = src.Color[i].a * iw;
#else
dst.Color[i] = src.Color[i];
#endif
}
#endif
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
size = (src.flag & VERTEX4D_FORMAT_MASK_LIGHT) >> 24;
for (i = 0; i != size; ++i)
{
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dst.LightTangent[i].x = src.LightTangent[i].x * iw;
dst.LightTangent[i].y = src.LightTangent[i].y * iw;
dst.LightTangent[i].z = src.LightTangent[i].z * iw;
#else
dst.LightTangent[i] = src.LightTangent[i];
#endif
}
#endif
}
#undef src
#undef dst
}
#define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.TextureLayer[tex].Texture )
//! clamp(value,0,1)
#if 0
static inline float clampfuv(const float v, const float b)
{
// b = 1.f - (2.f * (1/width))
return v < b ? b : v > 1.f - b ? 1.f - b : v;
//return v < b ? b : v > 1.f-b ? 1.f-b : v;
}
#endif
static inline float clampf01(const float v)
{
return v < 0.f ? 0.f : v > 1.f ? 1.f : v;
}
// Vertex Cache
//! setup Vertex Format
void CBurningVideoDriver::VertexCache_map_source_format()
{
const u32 s0 = sizeof(s4DVertex);
const u32 s1 = sizeof(s4DVertex_proxy);
if (s1 <= sizeof_s4DVertex / 2)
{
os::Printer::log("BurningVideo vertex format unnecessary to large", ELL_WARNING);
}
//memcpy_vertex
if (s0 != sizeof_s4DVertex || ((sizeof_s4DVertex * sizeof_s4DVertexPairRel) & 31))
{
os::Printer::log("BurningVideo vertex format compile problem", ELL_ERROR);
IRR_DEBUG_BREAK_IF(1);
}
#if defined(ENV64BIT)
if (sizeof(void*) != 8)
{
os::Printer::log("BurningVideo pointer should be 8 bytes", ELL_ERROR);
IRR_DEBUG_BREAK_IF(1);
}
if (((unsigned long long)Transformation & 15) || ((unsigned long long)TransformationFlag & 15))
{
os::Printer::log("BurningVideo Matrix Stack not 16 byte aligned", ELL_ERROR);
IRR_DEBUG_BREAK_IF(1);
}
#endif
SVSize* vSize = VertexShader.vSize;
vSize[E4VT_STANDARD].Format = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_2_FOG;
vSize[E4VT_STANDARD].Pitch = sizeof(S3DVertex);
vSize[E4VT_STANDARD].TexSize = 1;
vSize[E4VT_STANDARD].TexCooSize = 1;
vSize[E4VT_STANDARD].ColSize = 2;
vSize[E4VT_2TCOORDS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_2_FOG;
vSize[E4VT_2TCOORDS].Pitch = sizeof(S3DVertex2TCoords);
vSize[E4VT_2TCOORDS].TexSize = 2;
vSize[E4VT_2TCOORDS].TexCooSize = 2;
vSize[E4VT_2TCOORDS].ColSize = 2;
// EMT_NORMAL_MAP_SOLID,EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA
vSize[E4VT_TANGENTS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_4 | VERTEX4D_FORMAT_BUMP_DOT3;
vSize[E4VT_TANGENTS].Pitch = sizeof(S3DVertexTangents);
vSize[E4VT_TANGENTS].TexSize = 2;
vSize[E4VT_TANGENTS].TexCooSize = 2;
vSize[E4VT_TANGENTS].ColSize = 4;
// EMT_PARALLAX_MAP_SOLID,EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA
vSize[E4VT_TANGENTS_PARALLAX].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_4 | VERTEX4D_FORMAT_PARALLAX;
vSize[E4VT_TANGENTS_PARALLAX].Pitch = sizeof(S3DVertexTangents);
vSize[E4VT_TANGENTS_PARALLAX].TexSize = 2;
vSize[E4VT_TANGENTS_PARALLAX].TexCooSize = 2;
vSize[E4VT_TANGENTS_PARALLAX].ColSize = 4;
// EMT_TRANSPARENT_REFLECTION_2_LAYER map
vSize[E4VT_REFLECTION_MAP].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_2_FOG;
vSize[E4VT_REFLECTION_MAP].Pitch = sizeof(S3DVertex);
vSize[E4VT_REFLECTION_MAP].TexSize = 2;
vSize[E4VT_REFLECTION_MAP].TexCooSize = 1; //TexCoo2 generated
vSize[E4VT_REFLECTION_MAP].ColSize = 2;
// shadow
vSize[E4VT_SHADOW].Format = 0;
vSize[E4VT_SHADOW].Pitch = sizeof(f32) * 3; // core::vector3df*
vSize[E4VT_SHADOW].TexSize = 0;
vSize[E4VT_SHADOW].TexCooSize = 0;
vSize[E4VT_SHADOW].ColSize = 0;
// color shading only (no texture)
vSize[E4VT_NO_TEXTURE].Format = VERTEX4D_FORMAT_COLOR_2_FOG;
vSize[E4VT_NO_TEXTURE].Pitch = sizeof(S3DVertex);
vSize[E4VT_NO_TEXTURE].TexSize = 0;
vSize[E4VT_NO_TEXTURE].TexCooSize = 0;
vSize[E4VT_NO_TEXTURE].ColSize = 2;
//Line
vSize[E4VT_LINE].Format = VERTEX4D_FORMAT_COLOR_1;
vSize[E4VT_LINE].Pitch = sizeof(S3DVertex);
vSize[E4VT_LINE].TexSize = 0;
vSize[E4VT_LINE].TexCooSize = 0;
vSize[E4VT_LINE].ColSize = 1;
//verify with global defines
u32 size;
for (size_t i = 0; i < E4VT_COUNT; ++i)
{
u32& flag = vSize[i].Format;
#if !defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR)
//flag &= ~VERTEX4D_FORMAT_SPECULAR;
#endif
if (vSize[i].TexSize > BURNING_MATERIAL_MAX_TEXTURES)
vSize[i].TexSize = BURNING_MATERIAL_MAX_TEXTURES;
size = (flag & VERTEX4D_FORMAT_MASK_TEXTURE) >> 16;
if (size > BURNING_MATERIAL_MAX_TEXTURES)
{
flag = (flag & ~VERTEX4D_FORMAT_MASK_TEXTURE) | (BURNING_MATERIAL_MAX_TEXTURES << 16);
}
size = (flag & VERTEX4D_FORMAT_MASK_COLOR) >> 20;
if (size > BURNING_MATERIAL_MAX_COLORS)
{
flag = (flag & ~VERTEX4D_FORMAT_MASK_COLOR) | (BURNING_MATERIAL_MAX_COLORS << 20);
}
size = (flag & VERTEX4D_FORMAT_MASK_LIGHT) >> 24;
if (size > BURNING_MATERIAL_MAX_LIGHT_TANGENT)
{
flag = (flag & ~VERTEX4D_FORMAT_MASK_LIGHT) | (BURNING_MATERIAL_MAX_LIGHT_TANGENT << 24);
}
}
VertexShader.mem.resize(VERTEXCACHE_ELEMENT * 2);
VertexShader.vType = E4VT_STANDARD;
Clipper.resize(VERTEXCACHE_ELEMENT * 2);
Clipper_disjoint.resize(VERTEXCACHE_ELEMENT * 2);
TransformationStack = ETF_STACK_3D;
memset(TransformationFlag, 0, sizeof(TransformationFlag));
memset(Transformation_ETS_CLIPSCALE, 0, sizeof(Transformation_ETS_CLIPSCALE));
Material.resetRenderStates = true;
Material.Fallback_MaterialType = EMT_SOLID;
Material.VertexShader = BVT_Fix;
PushShader.CurrentShader = 0;
PushShader.EdgeTestPass = 0;
}
/*!
fill a cache line with transformed, light and clip test triangles
overhead - if primitive is outside or culled, vertexLighting and TextureTransform is still done
*/
void CBurningVideoDriver::VertexCache_fill(const u32 sourceIndex, const u32 destIndex)
{
const u8* burning_restrict source;
s4DVertex* burning_restrict dest;
source = (u8*)VertexShader.vertices + (sourceIndex * VertexShader.vSize[VertexShader.vType].Pitch);
// it's a look ahead so we never hit it..
// but give priority...
//VertexShader.info[ destIndex ].hit = hitCount;
// store info
VertexShader.info[destIndex].index = sourceIndex;
VertexShader.info[destIndex].hit = 0;
// destination Vertex
dest = VertexShader.mem.data + s4DVertex_ofs(destIndex);
dest->reset_interpolate();
//Irrlicht S3DVertex,S3DVertex2TCoords,S3DVertexTangents
const S3DVertex* base = ((S3DVertex*)source);
const core::matrix4* matrix = Transformation[TransformationStack];
if (Material.VertexShader == BVT_Fix) goto fftransform;
{
IBurningShader* shader = (u32)Material.org.MaterialType < MaterialRenderers.size() ?
(IBurningShader*)MaterialRenderers[Material.org.MaterialType].Renderer : CurrentShader;
// Vertex program attribute inputs:
sVec4 gl_Vertex(base->Pos.X, base->Pos.Y, base->Pos.Z, 1.f);
sVec4 gl_Normal(base->Normal.X, base->Normal.Y, base->Normal.Z, 1.f);
sVec4 gl_Color; gl_Color.setA8R8G8B8(base->Color.color);
// Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address!
sVec4 gl_MultiTexCoord[4];
const sVec2Pack* baseTCoord = (const sVec2Pack*)&base->TCoords.X;
for (u32 m = 0; m < array_size(gl_MultiTexCoord); ++m)
{
if (m < VertexShader.vSize[VertexShader.vType].TexCooSize)
{
gl_MultiTexCoord[m].s = baseTCoord[m].x;
gl_MultiTexCoord[m].t = baseTCoord[m].y;
}
else
{
gl_MultiTexCoord[m].s = 0.f;
gl_MultiTexCoord[m].t = 0.f;
}
gl_MultiTexCoord[m].p = 1.f;
gl_MultiTexCoord[m].q = 1.f;
}
#define gl_MultiTexCoord0 gl_MultiTexCoord[0]
#define gl_MultiTexCoord1 gl_MultiTexCoord[1]
#define gl_MultiTexCoord2 gl_MultiTexCoord[2]
#define gl_MultiTexCoord3 gl_MultiTexCoord[3]
#define gl_Position dest->Pos
#define gl_TexCoord dest->Tex
#define gl_FrontColor dest->Color[0]
#define gl_BackColor dest->Color[1]
#define vec2 sVec2
#define vec3 sVec4
#define vec4 sVec4
#define mat4 core::matrix4
#define gl_NormalMatrix matrix[ETS_NORMAL]
#define gl_ModelViewMatrix matrix[ETS_MODEL_VIEW]
#define gl_ModelViewProjectionMatrix matrix[ETS_MODEL_VIEW_PROJ]
#define ftransform() (matrix[ETS_MODEL_VIEW_PROJ] * gl_Vertex)
#define uniform(var,name) const var& name = (const var&)*shader->getUniform(#name,BL_VERTEX_FLOAT)
#define varying(var,name) var& name = (var&)*shader->getUniform(#name,BL_FRAGMENT_FLOAT)
#ifdef _MSC_VER
#pragma warning (disable: 4244) // float/double conversion
#pragma warning (disable: 4305) // truncation
#endif
//init for default pixelshader
gl_FrontColor = gl_Color;
//gl_FrontColor.setA8R8G8B8(gl_Color);
if (Material.VertexShader == BVT_815_0x1f847599)
{
//varying(vec2,TexCoords);
gl_Position = gl_Vertex;
// TexCoords = (gl_Vertex.xy * 0.5 + 0.5);
gl_TexCoord[0].x = gl_Vertex.x * 0.5f + 0.5f;
gl_TexCoord[0].y = gl_Vertex.y * -0.5f + 0.5f; // runtime flip
}
else if (Material.VertexShader == BVT_opengl_vsh_shaderexample)
{
uniform(mat4, mWorldViewProj);
uniform(mat4, mInvWorld);
uniform(mat4, mTransWorld);
uniform(vec3, mLightPos); // actually just camera-pos in this case
uniform(vec4, mLightColor);
gl_Position = mWorldViewProj * gl_Vertex;
// transform normal somehow (NOTE: for the real vertex normal you would use an inverse-transpose world matrix instead of mInvWorld)
vec4 normal = vec4(gl_Normal, 0.0);
normal = mInvWorld * normal;
normal = normalize(normal);
// (NOTE: not sure why transposed world is used instead of world?)
vec4 worldpos = gl_Vertex * mTransWorld;
vec4 lightVector = worldpos - vec4(mLightPos, 1.0);
lightVector = normalize(lightVector);
float tmp2 = dot(-lightVector, normal);
sVec4 tmp = mLightColor * tmp2;
gl_FrontColor = gl_BackColor = vec4(tmp.x, tmp.y, tmp.z, 0.0);
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_FrontColor.clampf01();
}
else if (Material.VertexShader == STK_1259_0xc8226e1a)
{
// Creates a bubble (wave) effect by distorting the texture depending on time
uniform(float, time);
varying(vec2, uv);
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();
float delta_x = cos(time * 3.0) * sin(4.0 * gl_TexCoord[0].st.s * 6.28318531);
float delta_y = cos(time * 2.0) * sin(3.0 * gl_TexCoord[0].st.t * 6.28318531);
uv = gl_TexCoord[0].st_op() + vec2(0.02 * delta_x, 0.02 * delta_y);
//fragment
uniform(float, transparency);
gl_TexCoord[0] = uv;
gl_FrontColor.a *= transparency;
}
else if (Material.VertexShader == STK_958_0xa048973b)
{
// motion_blur.vert
gl_TexCoord[0].st_op() = vec2(gl_MultiTexCoord0.s, gl_MultiTexCoord0.t);
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = gl_Vertex;
}
else if (Material.VertexShader == STK_1309_0x1fd689c2)
{
varying(vec3, lightVec);
varying(vec3, halfVec);
varying(vec3, eyeVec);
uniform(vec3, lightdir);
gl_TexCoord[0] = gl_MultiTexCoord0;
// Building the matrix Eye Space -> Tangent Space
vec3 n = normalize(gl_NormalMatrix * gl_Normal);
vec3 t = normalize(gl_NormalMatrix * gl_MultiTexCoord1.xyz()); // tangent
vec3 b = cross(n, t);
vec3 vertexPosition = vec3(gl_ModelViewMatrix * gl_Vertex);
// transform light and half angle vectors by tangent basis
vec3 v;
v.x = dot(lightdir, t);
v.y = dot(lightdir, b);
v.z = dot(lightdir, n);
v.w = 0;
lightVec = normalize(v);
v.x = dot(vertexPosition, t);
v.y = dot(vertexPosition, b);
v.z = dot(vertexPosition, n);
v.w = 0;
eyeVec = normalize(v);
vertexPosition = normalize(vertexPosition);
// Normalize the halfVector to pass it to the fragment shader
// No need to divide by two, the result is normalized anyway.
// vec3 halfVector = normalize((vertexPosition + lightDir) / 2.0);
vec3 halfVector = normalize(vertexPosition + lightdir);
v.x = dot(halfVector, t);
v.y = dot(halfVector, b);
v.z = dot(halfVector, n);
// No need to normalize, t,b,n and halfVector are normal vectors.
//normalize (v);
halfVec = v;
gl_Position = ftransform();
}
else if (Material.VertexShader == STK_1204_0x072a4094)
{
varying(vec3, normal);
varying(vec4, vertex_color);
varying(vec3, lightdir2);
uniform(vec3, lightdir);
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_TexCoord[1] = gl_MultiTexCoord1;
gl_Position = ftransform();
vertex_color = gl_Color;
//normal = normalize(gl_NormalMatrix * gl_Normal);
normal = normalize(gl_Normal);
lightdir2 = normalize(lightdir);
}
else if (Material.VertexShader == STK_1303_0xd872cdb6)
{
// Shader based on work by Fabien Sanglard
// Released under the terms of CC-BY 3.0
varying(vec3,lightVec);
varying(vec3,halfVec);
varying(vec3,eyeVec);
uniform(vec3,lightdir);
//void main()
{
gl_TexCoord[0] = gl_MultiTexCoord0;
// Building the matrix Eye Space -> Tangent Space
vec3 n = normalize(gl_NormalMatrix * gl_Normal);
// gl_MultiTexCoord1.xyz
vec3 t = normalize(gl_NormalMatrix * vec3(1.0, 0.0, 0.0)); // tangent
vec3 b = cross(n, t);
vec3 vertexPosition = vec3(gl_ModelViewMatrix * gl_Vertex);
// transform light and half angle vectors by tangent basis
vec3 v;
v.x = dot(lightdir, t);
v.y = dot(lightdir, b);
v.z = dot(lightdir, n);
lightVec = normalize(v);
vertexPosition = normalize(vertexPosition);
eyeVec = normalize(-vertexPosition); // we are in Eye Coordinates, so EyePos is (0,0,0)
// Normalize the halfVector to pass it to the fragment shader
// No need to divide by two, the result is normalized anyway.
// vec3 halfVector = normalize((vertexPosition + lightDir) / 2.0);
vec3 halfVector = normalize(vertexPosition + lightdir);
v.x = dot(halfVector, t);
v.y = dot(halfVector, b);
v.z = dot(halfVector, n);
// No need to normalize, t,b,n and halfVector are normal vectors.
//normalize (v);
halfVec = v;
gl_Position = ftransform();
}
}
#ifdef _MSC_VER
#pragma warning (default: 4244) // conversion
#pragma warning (default: 4305) // truncation
#endif
#undef gl_MultiTexCoord0
#undef gl_MultiTexCoord1
#undef gl_MultiTexCoord2
#undef gl_MultiTexCoord3
#undef vec2
#undef vec3
#undef vec4
#undef mat4
#undef uniform
#undef varying
#undef gl_TexCoord
#undef gl_FrontColor
#undef gl_BackColor
#undef ftransform
#undef gl_NormalMatrix
#undef gl_ModelViewMatrix
#undef gl_ModelViewProjectionMatrix
goto clipandproject;
}
fftransform:
// transform Model * World * Camera * Projection * NDCSpace matrix
matrix[ETS_MODEL_VIEW_PROJ].transformVect(&dest[0].Pos.x, base->Pos);
/*
ieee754* p = (ieee754*) &dest[0].Pos.x;
p[0].fields.frac &= 0xFFFFFFF0;
p[1].fields.frac &= 0xFFFFFFF0;
p[2].fields.frac &= 0xFFFFFFF0;
//p[3].fields.frac &= 0xFFFFFFF0;
*/
//dest[0].Pos.x = floorf(dest[0].Pos.x * 4096.f + 0.5f) * (1.f / 4096.f);
//dest[0].Pos.y = floorf(dest[0].Pos.y * 4096.f + 0.5f) * (1.f / 4096.f);
//dest[0].Pos.z = floorf(dest[0].Pos.z * 4096.f + 0.5f) * (1.f / 4096.f);
//dest[0].Pos.w = floorf(dest[0].Pos.w * 4096.f + 0.5f) * (1.f / 4096.f);
//mhm ... maybe no goto
if (VertexShader.vType == E4VT_SHADOW)
{
//core::vector3df i = base->Pos;
//i.Z -= 0.5f;
//matrix[ETS_MODEL_VIEW_PROJ].transformVect(&dest->Pos.x, i);
//GL_DEPTH_CLAMP,EVDF_DEPTH_CLAMP
//if ( dest->Pos.z < dest->Pos.w)
// dest->Pos.z = dest->Pos.w*0.99f;
//glPolygonOffset // self shadow wanted or not?
dest->Pos.w *= 1.005f;
//flag |= v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_NEAR : 0;
//flag |= -v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_FAR : 0;
goto clipandproject;
}
#if defined (SOFTWARE_DRIVER_2_LIGHTING) || defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM )
// vertex, normal in light(eye) space
if (EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG | TL_LIGHT))
{
sVec4 vertex4; //eye coordinate position of vertex
matrix[ETS_MODEL_VIEW].transformVect(&vertex4.x, base->Pos);
f32 iw = reciprocal_zero_pos_underflow(vertex4.w);
EyeSpace.vertex.x = vertex4.x * iw;
EyeSpace.vertex.y = vertex4.y * iw;
EyeSpace.vertex.z = vertex4.z * iw;
EyeSpace.vertex.w = iw;
//EyeSpace.cam_distance = EyeSpace.vertex.length_xyz();
/*
if ( GL_LIGHT_MODEL_LOCAL_VIEWER == 0 )
{
EyeSpace.cam_dir.x = 0.f;
EyeSpace.cam_dir.y = 0.f;
EyeSpace.cam_dir.z = 1.f;
}
*/
EyeSpace.vertexn = EyeSpace.vertex;
EyeSpace.vertexn.normalize_dir_xyz();
//matrix[ETS_NORMAL].rotateVect(&EyeSpace.normal.x, base->Normal);
rotateMat33Vec3Vec4(matrix[ETS_NORMAL], &EyeSpace.normal.x, &base->Normal.X);
if (EyeSpace.TL_Flag & TL_NORMALIZE_NORMALS)
{
EyeSpace.normal.normalize_dir_xyz_zero();
}
}
#endif
#if BURNING_MATERIAL_MAX_COLORS > 0
// apply lighting model
#if defined (SOFTWARE_DRIVER_2_LIGHTING)
if (EyeSpace.TL_Flag & TL_LIGHT)
{
lightVertex_eye(dest, base->Color.color);
}
else
{
dest->Color[0].setA8R8G8B8(base->Color.color);
}
#else
dest->Color[0].setA8R8G8B8(base->Color.color);
#endif
#endif
//vertex fog
if (EyeSpace.TL_Flag & TL_FOG) //Material.org.FogEnable
{
f32 fog_factor = 1.f;
// GL_FRAGMENT_DEPTH -> abs(EyeSpace.vertex.z)
ieee754 fog_frag_coord;
fog_frag_coord.f = EyeSpace.vertex.z;
fog_frag_coord.fields.sign = 0;
switch (FogType)
{
case EFT_FOG_LINEAR:
fog_factor = (FogEnd - fog_frag_coord.f) * EyeSpace.fog_scale;
break;
case EFT_FOG_EXP:
fog_factor = (f32)exp(-FogDensity * fog_frag_coord.f);
break;
case EFT_FOG_EXP2:
fog_factor = (f32)exp(-FogDensity * FogDensity * fog_frag_coord.f * fog_frag_coord.f);
break;
}
sVec4* a = dest->Color + (((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_COLOR)>=VERTEX4D_FORMAT_COLOR_2_FOG) ? 1 : 0);
a->a = clampf01(fog_factor);
}
// Texture Coo Generation and Transform
for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m)
{
sVec4 r;
f32 tx, ty;
// texgen
const size_t& flag = TransformationFlag[TransformationStack][ETS_TEXTURE_0 + m];
if (flag & ETF_TEXGEN_CAMERA_SPHERE)
{
//reflect(u,N) u - 2.0 * dot(N, u) * N
const sVec4& u = EyeSpace.vertexn; // EyeSpace.vertex.normalized
const sVec4& n = EyeSpace.normal;
f32 dot = -2.f * n.dot_xyz(u);
r.x = u.x + dot * n.x;
r.y = u.y + dot * n.y;
r.z = u.z + dot * n.z;
//openGL
f32 m = 2.f * sqrtf(r.x * r.x + r.y * r.y + (r.z + 1.f) * (r.z + 1.f));
tx = r.x / m + 0.5f;
ty = -(r.y / m + 0.5f); // tex flipped
/*
//~d3d with spheremap scale
f32 m = 0.25f / (0.00001f + sqrtf(r.x*r.x+r.y*r.y+r.z*r.z));
dest[0].Tex[t].x = r.x * m + 0.5f;
dest[0].Tex[t].y = -r.y * m + 0.5f;
*/
}
else if (flag & ETF_TEXGEN_CAMERA_REFLECTION)
{
//reflect(u,N) u - 2.0 * dot(N, u) * N
const sVec4& u = EyeSpace.vertexn; // EyeSpace.vertex.normalized
const sVec4& n = EyeSpace.normal;
f32 dot = -2.f * n.dot_xyz(u);
//openGL
tx = /*r.x =*/ u.x + dot * n.x;
ty = /*r.y =*/ u.y + dot * n.y;
//r.z = u.z + dot * n.z;
//~d3d with spheremap transform
//tx = r.x * 0.5f + 0.5f;
//ty = r.y * -0.5f + 0.5f;
}
else if (m < VertexShader.vSize[VertexShader.vType].TexCooSize)
{
// Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address!
const sVec2Pack* baseTCoord = (const sVec2Pack*)&base->TCoords.X;
tx = baseTCoord[m].x;
ty = baseTCoord[m].y;
}
else
{
tx = 0.f;
ty = 0.f;
}
#if 0
static const CSoftwareTexture2_Bound empty_bound = { 0.f,0.f,0.f,0.f,0 };
const video::CSoftwareTexture2* tex = MAT_TEXTURE(t);
const CSoftwareTexture2_Bound& texb = tex ? tex->getTexBound_index()[0] : empty_bound;
const bool filter = Material.org.TextureLayer[t].BilinearFilter;
#endif
//Texture Matrix Transform
if (flag & ETF_TEXGEN_MATRIX) // !(flag & ETF_IDENTITY)
{
/*
Generate texture coordinates as linear functions so that:
u = Ux*x + Uy*y + Uz*z + Uw
v = Vx*x + Vy*y + Vz*z + Vw
The matrix M for this case is:
Ux Vx 0 0
Uy Vy 0 0
Uz Vz 0 0
Uw Vw 0 0
*/
const f32* M = matrix[ETS_TEXTURE_0 + m].pointer();
f32 _tx = tx;
f32 _ty = ty;
tx = M[0] * _tx + M[4] * _ty + M[8];
ty = M[1] * _tx + M[5] * _ty + M[9];
}
switch (Material.org.TextureLayer[m].TextureWrapU)
{
case ETC_CLAMP:
tx = clampf01(tx);
break;
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
tx = clampf01(tx);
break;
case ETC_MIRROR:
if (core::fract(tx) > 0.5f)
tx = 1.f - tx;
break;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
tx = clampf01(tx);
if (core::fract(tx) > 0.5f)
tx = 1.f - tx;
break;
case ETC_REPEAT:
// texel access is always modulo
default:
break;
}
switch (Material.org.TextureLayer[m].TextureWrapV)
{
case ETC_CLAMP:
ty = clampf01(ty);
break;
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
//if (ty < 0.f) ty = 0.f;
//else if (ty > texb.pixelclampy) ty = texb.pixelclampy;
//ty = clampfuv(ty, filter ? texb.pixelclampy : 0.f);
ty = clampf01(ty);
break;
case ETC_MIRROR:
if (core::fract(ty) > 0.5f)
ty = 1.f - ty;
break;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
ty = clampf01(ty);
if (core::fract(ty) > 0.5f)
ty = 1.f - ty;
break;
case ETC_REPEAT:
// texel access is always modulo
default:
break;
}
dest->Tex[m].x = tx;
dest->Tex[m].y = ty;
}
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
if ((EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) &&
((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) >= VERTEX4D_FORMAT_BUMP_DOT3)
)
{
const S3DVertexTangents* tangent = ((S3DVertexTangents*)source);
sVec4 vp;
sVec4 light_accu;
light_accu.set(0.f);
/*
* Color[0] lightcolor[0] a: vertexalpha
* Color[1] lightcolor[1] a: fogdistance
* Color[2] lightvector[0]
* Color[3] lightvector[1]
* LightVector[0] eyevector
*/
if ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) >= VERTEX4D_FORMAT_PARALLAX)
{
vp.x = EyeSpace.leye.x - base->Pos.X;
vp.y = EyeSpace.leye.y - base->Pos.Y;
vp.z = EyeSpace.leye.z - base->Pos.Z;
light_accu.x = vp.dot(tangent->Tangent);
light_accu.y = -vp.dot(tangent->Binormal);
light_accu.z = -vp.dot(tangent->Normal);
light_accu.normalize_pack_xyz(dest->LightTangent[0], 1.f, 0.f);
}
const u32 maxLight = core::min_((u32)BURNING_MATERIAL_MAX_COLORS,(u32)2, EyeSpace.Light.size());
for (u32 i = 0; i < maxLight; ++i)
{
const SBurningShaderLight& light = EyeSpace.Light[i];
if (!light.LightIsOn)
continue;
vp.x = light.pos_local.x - base->Pos.X;
vp.y = light.pos_local.y - base->Pos.Y;
vp.z = light.pos_local.z - base->Pos.Z;
f32 attenuation = inversesqrt(vp.dot_xyz(vp) * light.nmap_linearAttenuation);
dest->Color[i].r = light.DiffuseColor.r * attenuation;
dest->Color[i].g = light.DiffuseColor.g * attenuation;
dest->Color[i].b = light.DiffuseColor.b * attenuation;
dest->Color[i].clampf01();
// lightvector transform by tangent matrix
#if BURNING_MATERIAL_MAX_COLORS >=4
dest->Color[2+i].x = vp.dot(tangent->Tangent);
dest->Color[2+i].y = vp.dot(tangent->Binormal);
dest->Color[2+i].z = vp.dot(tangent->Normal);
dest->Color[2 + i].normalize_dir_xyz_zero();
#else
light_accu.x += (vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z);
light_accu.y += (vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z);
light_accu.z += (vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z);
#endif
}
#if BURNING_MATERIAL_MAX_COLORS >=4
#else
//normalize [-1,+1] to [0,1] -> obsolete
light_accu.normalize_pack_xyz(dest->LightTangent[0], 1.f, 0.f);
#endif
dest->Tex[1].x = dest->Tex[0].x;
dest->Tex[1].y = dest->Tex[0].y;
}
else if (EyeSpace.TL_Flag & TL_LIGHT)
{
//dest->LightTangent[0].x = 0.f;
//dest->LightTangent[0].y = 0.f;
//dest->LightTangent[0].z = 0.f;
}
#endif //if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
//#endif // SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM
clipandproject:
// test vertex visibility
const u32 flag = clipToFrustumTest(dest) | VertexShader.vSize[VertexShader.vType].Format;
dest[s4DVertex_ofs(0)].flag =
dest[s4DVertex_pro(0)].flag = flag;
// to DC Space, project homogenous vertex
if ((flag & VERTEX4D_CLIPMASK) == VERTEX4D_INSIDE)
{
ndc_2_dc_and_project(dest, s4DVertex_ofs(1), Transformation_ETS_CLIPSCALE[TransformationStack]);
}
}
void SVertexShader::setIndices(const void* _indices, const video::E_INDEX_TYPE _iType)
{
indices = _indices;
indicesIndex = 0;
indicesRun = 0;
switch (_iType)
{
case EIT_16BIT: iType = E4IT_16BIT; break;
case EIT_32BIT: iType = E4IT_32BIT; break;
default: iType = (e4DIndexType)iType; break;
}
if (!indices)
iType = E4IT_NONE;
}
void SVertexShader::setPrimitiveType(const scene::E_PRIMITIVE_TYPE primitiveType, const u32 primitiveCount)
{
pType = primitiveType;
primitiveHasVertex = 3;
indicesPitch = 1;
switch (pType)
{
default:
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
indexCount = primitiveCount;
indicesPitch = 1;
primitiveHasVertex = 1;
break;
case scene::EPT_LINE_STRIP:
case scene::EPT_LINE_LOOP:
indexCount = primitiveCount + 1;
indicesPitch = 1;
primitiveHasVertex = 2;
break;
case scene::EPT_LINES:
indexCount = 2 * primitiveCount;
indicesPitch = 2;
primitiveHasVertex = 2;
break;
case scene::EPT_TRIANGLE_STRIP:
indexCount = primitiveCount + 2;
indicesPitch = 1;
primitiveHasVertex = 3;
break;
case scene::EPT_TRIANGLES:
indexCount = primitiveCount + primitiveCount + primitiveCount;
indicesPitch = 3;
primitiveHasVertex = 3;
break;
case scene::EPT_TRIANGLE_FAN:
indexCount = primitiveCount + 2;
indicesPitch = 1;
primitiveHasVertex = 3;
break;
case scene::EPT_POLYGON:
indexCount = primitiveCount;
indicesPitch = 1;
primitiveHasVertex = 3; // drawn a triangle fan
break;
case scene::EPT_QUAD_STRIP:
indexCount = 2 * primitiveCount + 2;
indicesPitch = 2;
primitiveHasVertex = 4;
break;
case scene::EPT_QUADS:
indexCount = 4 * primitiveCount;
indicesPitch = 4;
primitiveHasVertex = 4;
//draw two triangles..
break;
}
}
void SVertexShader::set_info_miss()
{
//memset(info, VERTEXCACHE_MISS, sizeof(info));
for (size_t i = 0; i != VERTEXCACHE_ELEMENT; ++i)
{
info[i].hit = VERTEXCACHE_MISS;
info[i].index = VERTEXCACHE_MISS;
}
}
// get the next unique index cache line
void SVertexShader::get_next_index_cacheline()
{
u32 i;
// cache element 0
switch (pType)
{
case scene::EPT_POLYGON:
case scene::EPT_TRIANGLE_FAN:
fillIndex = indicesRun ? 1 : 0;
break;
default:
fillIndex = 0;
break;
}
// set_info_temp_miss
for (i = fillIndex; i != VERTEXCACHE_ELEMENT; ++i)
{
info_temp[i].hit = VERTEXCACHE_MISS;
info_temp[i].index = VERTEXCACHE_MISS;
}
// rewind to start of primitive
indicesIndex = indicesRun;
while (indicesIndex < indexCount && fillIndex < VERTEXCACHE_ELEMENT)
{
u32 sourceIndex = index(indicesIndex);
indicesIndex += 1;
// if not exist, push back
u32 exist = 0;
for (u32 dIndex = 0; dIndex < fillIndex; ++dIndex)
{
if (info_temp[dIndex].index == sourceIndex)
{
exist = 1;
break;
}
}
if (0 == exist)
{
info_temp[fillIndex].index = sourceIndex;
fillIndex += 1;
}
}
// clear marks
for (i = 0; i != VERTEXCACHE_ELEMENT; ++i)
{
info[i].hit = 0;
}
// mark all existing
for (i = 0; i != fillIndex; ++i)
{
for (u32 dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex)
{
if (info[dIndex].index == info_temp[i].index)
{
info_temp[i].hit = dIndex;
info[dIndex].hit = 1;
break;
}
}
}
}
/*
Cache based on linear walk indices
fill blockwise on the next 16(Cache_Size) unique vertices in indexlist
merge the next 16 vertices with the current
*/
void SVertexShader::getPrimitive(s4DVertexPair* face[4], CBurningVideoDriver* driver)
{
// next primitive must be complete in cache
if (indicesIndex - indicesRun < primitiveHasVertex && indicesIndex < indexCount)
{
// get the next unique indices cache line
get_next_index_cacheline();
// fill new
for (u32 i = 0; i != fillIndex; ++i)
{
if (info_temp[i].hit != VERTEXCACHE_MISS)
continue;
for (u32 dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex)
{
if (0 == info[dIndex].hit)
{
driver->VertexCache_fill(info_temp[i].index, dIndex);
info[dIndex].hit += 1;
info_temp[i].hit = dIndex;
break;
}
}
}
}
// all primitive indices are in the index cache line
switch (pType)
{
case scene::EPT_POLYGON:
case scene::EPT_TRIANGLE_FAN:
face[0] = vertex(index(0));
face[1] = vertex(index(indicesRun + 1));
face[2] = vertex(index(indicesRun + 2));
break;
case scene::EPT_TRIANGLE_STRIP:
face[0] = vertex(index(indicesRun + 0));
face[(primitiveRun & 1) ? 2 : 1] = vertex(index(indicesRun + 1));
face[(primitiveRun & 1) ? 1 : 2] = vertex(index(indicesRun + 2));
break;
default:
for (u32 i = 0; i < primitiveHasVertex; ++i)
{
face[i] = vertex(index(indicesRun + i));
}
break;
}
indicesRun += indicesPitch;
}
/*!
*/
int CBurningVideoDriver::VertexCache_reset(const void* vertices, u32 vertexCount,
const void* indices, u32 primitiveCount,
E_VERTEX_TYPE vType,
scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType)
{
if (0 == CurrentShader)
{
return 1;
}
VertexShader.vertices = vertices;
VertexShader.vertexCount = vertexCount;
switch (Material.org.MaterialType) // (Material.Fallback_MaterialType)
{
case EMT_PARALLAX_MAP_SOLID:
case EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR:
case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA:
VertexShader.vType = vType == EVT_TANGENTS ? E4VT_TANGENTS_PARALLAX : (e4DVertexType)vType;
break;
case EMT_REFLECTION_2_LAYER:
case EMT_TRANSPARENT_REFLECTION_2_LAYER:
VertexShader.vType = vType == EVT_STANDARD ? E4VT_REFLECTION_MAP : (e4DVertexType)vType;
break;
default:
VertexShader.vType = (e4DVertexType)vType;
break;
}
//check material material->OnRender(VertexType)
SVSize* vSize = VertexShader.vSize;
for (int m = (int)vSize[VertexShader.vType].TexSize - 1; m >= 0; --m)
{
const ITexture* tex = MAT_TEXTURE(m);
if (!tex)
{
//vSize[E4VT_NO_TEXTURE] = vSize[VertexShader.vType];
vSize[E4VT_NO_TEXTURE].Format = (vSize[VertexShader.vType].Format & ~VERTEX4D_FORMAT_MASK_COLOR) | VERTEX4D_FORMAT_COLOR_1;
vSize[E4VT_NO_TEXTURE].Pitch = vSize[VertexShader.vType].Pitch;
vSize[E4VT_NO_TEXTURE].TexSize = m;
vSize[E4VT_NO_TEXTURE].TexCooSize = m;
VertexShader.vType = E4VT_NO_TEXTURE;
//flags downconvert?
}
}
VertexShader.setIndices(indices, iType);
VertexShader.setPrimitiveType(pType, primitiveCount);
VertexShader.set_info_miss();
return 0;
}
//! draws a vertex primitive list
void CBurningVideoDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
if (VertexCache_reset(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType))
return;
pushShader(pType, 1);
//Matrices needed for this primitive
transform_calc(ETS_MODEL_VIEW_PROJ);
if ((EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG | TL_LIGHT)) ||
Material.VertexShader != BVT_Fix)
{
transform_calc(ETS_MODEL_VIEW);
transform_calc(ETS_NORMAL);
}
//objectspace
if (EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP)
{
transform_calc(ETS_MODEL_INVERSE);
const core::matrix4* matrix = Transformation[TransformationStack];
if ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) >= VERTEX4D_FORMAT_PARALLAX)
{
transform_calc(ETS_MODEL_VIEW);
mat44_inverse(EyeSpace.mvi, matrix[ETS_MODEL_VIEW]);
sVec4 eye(0.f, 0.f, 0.f, 1.f);
transformVec3Vec3(EyeSpace.mvi, &EyeSpace.leye.x, &eye.x);
}
const u32 maxLight = core::min_((u32)BURNING_MATERIAL_MAX_COLORS, (u32)2, EyeSpace.Light.size());
for (u32 i = 0; i < maxLight; ++i)
{
SBurningShaderLight& light = EyeSpace.Light[i];
if (!light.LightIsOn)
continue;
transformVec3Vec3(matrix[ETS_MODEL_INVERSE], &light.pos_local.x, &light.pos.x);
}
}
if ((u32)Material.org.MaterialType < MaterialRenderers.size())
{
MaterialRenderers[Material.org.MaterialType].Renderer->OnRender(this, (video::E_VERTEX_TYPE)VertexShader.vType);
}
s4DVertexPair* face[4];
u32 vOut;
u32 vertex_from_clipper; // from VertexShader or CurrentOut
u32 has_vertex_run;
// magnitude crossproduct (area of parallelogram * 0.5 = triangle screen size, winding)
ieee754 dc_area;
CurrentShader->fragment_draw_count = 0;
for (VertexShader.primitiveRun = 0; VertexShader.primitiveRun < primitiveCount; ++VertexShader.primitiveRun)
{
//collect pointer to face vertices
VertexShader.getPrimitive(face, this);
size_t clipMask_i;
size_t clipMask_o;
clipMask_i = face[0]->flag;
clipMask_o = face[0]->flag;
for (has_vertex_run = 1; has_vertex_run < VertexShader.primitiveHasVertex; ++has_vertex_run)
{
clipMask_i |= face[has_vertex_run]->flag; // if fully outside or outside on same side
clipMask_o &= face[has_vertex_run]->flag; // if fully inside
}
clipMask_i &= VERTEX4D_CLIPMASK;
clipMask_o &= VERTEX4D_CLIPMASK;
if (clipMask_i != VERTEX4D_INSIDE)
{
// if primitive fully outside or outside on same side
continue;
//vOut = 0;
//vertex_from_clipper = 0;
}
else if (clipMask_o == VERTEX4D_INSIDE)
{
// if primitive fully inside
vOut = VertexShader.primitiveHasVertex;
vertex_from_clipper = 0;
}
else
#if defined(SOFTWARE_DRIVER_2_CLIPPING)
{
// else if not complete inside clipping necessary
// todo: clipping should reuse vertexcache (try to minimize clipping)
for (has_vertex_run = 0; has_vertex_run < VertexShader.primitiveHasVertex; ++has_vertex_run)
{
memcpy_s4DVertexPair(Clipper.data + s4DVertex_ofs(has_vertex_run), face[has_vertex_run]);
}
//clipping should happen in R^3 before perspective divide, avoid flipping points
//x = A_x * (1 - da/(da - db)) + A_y * (da/(da-db))
vOut = clipToFrustum(VertexShader.primitiveHasVertex);
vertex_from_clipper = 1;
// to DC Space, project homogenous vertex
if (vOut > VertexShader.primitiveHasVertex )
ndc_2_dc_and_project_grid(Clipper.data, s4DVertex_ofs(vOut), Transformation_ETS_CLIPSCALE[TransformationStack]);
else
ndc_2_dc_and_project(Clipper.data, s4DVertex_ofs(vOut), Transformation_ETS_CLIPSCALE[TransformationStack]);
}
#else
{
continue;
vOut = 0;
vertex_from_clipper = 0;
}
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 0
s32 lod_max[BURNING_MATERIAL_MAX_TEXTURES];
for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m)
{
lod_max[m] = 0;
}
#endif
f32 t[4];
#define BURNING_MAX_MIP_CLIPPER 1
#if BURNING_MAX_MIP_CLIPPER == 1
//select largest texture for clipped triangle
//very small long triangles are very undersampled here ("skybox flicker")
int use_max_mip = vertex_from_clipper && VertexShader.vSize[VertexShader.vType].TexSize &&
vOut > VertexShader.primitiveHasVertex ? 1 : 0;
for (int probe = use_max_mip; probe >= 0; probe -= 1)
#endif
{
// re-tesselate
for (has_vertex_run = 0; (has_vertex_run + VertexShader.primitiveHasVertex) <= vOut; has_vertex_run += 1)
{
// set from clipped geometry ( triangle fan 0-1-2,0-2-3.. )
if (vertex_from_clipper)
{
face[0] = Clipper.data + s4DVertex_ofs(0);
face[1] = Clipper.data + s4DVertex_ofs(has_vertex_run + 1);
face[2] = Clipper.data + s4DVertex_ofs(has_vertex_run + 2);
face[3] = Clipper.data + s4DVertex_ofs(has_vertex_run + 3);
}
//area of primitive in device space
// projected triangle screen area is used for culling ( sign of normal ) and mipmap selection
//f32 dc_area = screenarea_inside(face);
// magnitude crossproduct
dc_area.f = 1.f;
if (VertexShader.primitiveHasVertex >= 3)
{
const sVec4& v0 = (face[0] + s4DVertex_pro(0))->Pos;
const sVec4& v1 = (face[1] + s4DVertex_pro(0))->Pos;
const sVec4& v2 = (face[2] + s4DVertex_pro(0))->Pos;
//dc_area = 2d triangle normal.crossproduct (a.x * b.y - b.x * a.y).length/2;
dc_area.f = ((v1.x - v0.x) * (v2.y - v0.y) - (v2.x - v0.x) * (v1.y - v0.y)) /* * 0.5f */;
//geometric clipping has problem with invisible or very small Triangles
//size_t sign = dc_area < 0.001f ? CULL_BACK : dc_area > 0.001f ? CULL_FRONT : CULL_INVISIBLE;
size_t sign = dc_area.fields.sign ? CULL_BACK : CULL_FRONT;
sign |= dc_area.abs.frac_exp < CULL_EPSILON_00001 ? CULL_INVISIBLE : 0;
if (Material.CullFlag & sign)
continue; //not break; per clipper triangle
// select mipmap
#if BURNING_MAX_MIP_CLIPPER == 1
if (probe == use_max_mip)
#endif
for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m)
{
video::CSoftwareTexture2* tex = MAT_TEXTURE(m);
const sVec2& v0 = (face[0] + s4DVertex_ofs(0))->Tex[m];
const sVec2& v1 = (face[1] + s4DVertex_ofs(0))->Tex[m];
const sVec2& v2 = (face[2] + s4DVertex_ofs(0))->Tex[m];
//todo: get triangle setup here
//bbox
t[0] = t[2] = v0.x;
t[1] = t[3] = v0.y;
if (v1.x < t[0]) t[0] = v1.x;
if (v1.y < t[1]) t[1] = v1.y;
if (v1.x > t[2]) t[2] = v1.x;
if (v1.y > t[3]) t[3] = v1.y;
if (v2.x < t[0]) t[0] = v2.x;
if (v2.y < t[1]) t[1] = v2.y;
if (v2.x > t[2]) t[2] = v2.x;
if (v2.y > t[3]) t[3] = v2.y;
f32 tex_area = fabsf((t[2] - t[0]) * (t[3] - t[1]));
//tex_area = |a.x * b.y - b.x * a.y| * 0.5; // crossproduct
//f32 tex_area = fabsf((v1.x - v0.x) * (v2.y - v0.y) - (v2.x - v0.x) * (v1.y - v0.y));
//various over and underflow cases
if (tex_area <= 0.000001f)
tex_area = 0.000001f;
else if (tex_area > 1.01f)
tex_area = 1.f / tex_area;
/* 2.f * tex_area * 1.6f bias. 1.6 too much for detailsmap3 */
//not dc_area * 0.5 cancel out 2 * TexBias
const u32 dc_area_over_tex_area = (u32)floorf( /*/tex_area > 0.0000001f ? */
fabsf(dc_area.f) * TexBias[TransformationStack] / tex_area
/*: 0.f*/
);
// get a near 1:1 ratio between pixel and texel
// tex_area * b[lodFactor].w * b[lodFactor].h > dc_area_abs
s32 lodFactor = 0;
const CSoftwareTexture2_Bound* b = tex->getTexBound_index();
while (lodFactor < SOFTWARE_DRIVER_2_MIPMAPPING_MAX &&
b[lodFactor].area > dc_area_over_tex_area
)
{
lodFactor += 1;
}
//clipped triangle should take single area based mipmap from unclipped face
//skybox,billboard test case
//if (vertex_from_clipper) lodFactor -= 1;
if (has_vertex_run == 0) lod_max[m] = lodFactor;
else if (lodFactor < lod_max[m]) lod_max[m] = lodFactor;
//CurrentShader->setTextureParam(m, tex, lodFactor);
//select_polygon_mipmap_inside(face, m, tex->getTexBound());
}
}
//else /* if (VertexShader.primitiveHasVertex == 3) */
#if BURNING_MAX_MIP_CLIPPER == 1
if (probe > 0)
continue;
#endif
// set single mipmap
for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m)
{
video::CSoftwareTexture2* tex = MAT_TEXTURE(m);
CurrentShader->setTextureParam(m, tex, lod_max[m]);
//select_polygon_mipmap_inside(face, m, tex->getTexBound());
//currently shader receives texture coordinate as Pixelcoo of 1 Texture
const CSoftwareTexture2_Bound& b = tex->getTexBound();
for (u32 v = 0; v < VertexShader.primitiveHasVertex; ++v)
{
const sVec2& src = (face[v] + s4DVertex_ofs(0))->Tex[m];
sVec2& dst = (face[v] + s4DVertex_pro(0))->Tex[m];
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
const f32 iw = (face[v] + s4DVertex_pro(0))->Pos.w;
dst.x = src.x * iw * b.mat[0] + b.mat[1];
dst.y = src.y * iw * b.mat[2] + b.mat[3];
#else
dst.x = src.x * b.mat[0] + b.mat[1];
dst.y = src.y * b.mat[2] + b.mat[3];
#endif
}
}
switch (VertexShader.primitiveHasVertex)
{
case 1:
CurrentShader->drawPoint(face[0] + s4DVertex_pro(0));
break;
case 2:
CurrentShader->drawLine(face[0] + s4DVertex_pro(0), face[1] + s4DVertex_pro(0));
break;
case 3:
CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_pro(0), face[1] + s4DVertex_pro(0), face[2] + s4DVertex_pro(0));
break;
case 4:
//todo:
CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_pro(0), face[1] + s4DVertex_pro(0), face[2] + s4DVertex_pro(0));
CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_pro(0), face[2] + s4DVertex_pro(0), face[3] + s4DVertex_pro(0));
break;
}
//vertex_from_clipper = 1;
}
} // probe
}
this->samples_passed += CurrentShader->fragment_draw_count;
//release texture
for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m)
{
CurrentShader->setTextureParam(m, 0, 0);
}
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void CBurningVideoDriver::setAmbientLight(const SColorf& color)
{
EyeSpace.Global_AmbientLight.setColorf(color);
}
void CBurningVideoDriver::assignHardwareLight(SBurningShaderLight& l, const SLight& dl)
{
// l.org = dl;
l.Type = dl.Type;
l.LightIsOn = true;
l.AmbientColor.setColorf(dl.AmbientColor);
l.DiffuseColor.setColorf(dl.DiffuseColor);
l.SpecularColor.setColorf(dl.SpecularColor);
//should always be valid?
sVec4 nDirection;
nDirection.x = dl.Direction.X;
nDirection.y = dl.Direction.Y;
nDirection.z = dl.Direction.Z;
nDirection.normalize_dir_xyz();
switch (dl.Type)
{
case ELT_DIRECTIONAL:
l.pos.x = -nDirection.x;
l.pos.y = -nDirection.y;
l.pos.z = -nDirection.z;
l.pos.w = 0.f;
l.constantAttenuation = 1.f;
l.linearAttenuation = 0.f;
l.quadraticAttenuation = 0.f;
l.spotDirection.x = 0.f;
l.spotDirection.y = 0.f;
l.spotDirection.z = -1.f;
l.spotDirection.w = 0.f;
l.spotCosCutoff = -1.f;
l.spotCosInnerCutoff = 1.f;
l.spotExponent = 0.f;
break;
case ELT_POINT:
l.pos.x = dl.Position.X;
l.pos.y = dl.Position.Y;
l.pos.z = dl.Position.Z;
l.pos.w = 1.f;
l.constantAttenuation = dl.Attenuation.X;
l.linearAttenuation = dl.Attenuation.Y;
l.quadraticAttenuation = dl.Attenuation.Z;
l.spotDirection.x = 0.f;
l.spotDirection.y = 0.f;
l.spotDirection.z = -1.f;
l.spotDirection.w = 0.f;
l.spotCosCutoff = -1.f;
l.spotCosInnerCutoff = 1.f;
l.spotExponent = 0.f;
break;
case ELT_SPOT:
l.pos.x = dl.Position.X;
l.pos.y = dl.Position.Y;
l.pos.z = dl.Position.Z;
l.pos.w = 1.f;
l.constantAttenuation = dl.Attenuation.X;
l.linearAttenuation = dl.Attenuation.Y;
l.quadraticAttenuation = dl.Attenuation.Z;
l.spotDirection.x = nDirection.x;
l.spotDirection.y = nDirection.y;
l.spotDirection.z = nDirection.z;
l.spotDirection.w = 0.0f;
l.spotCosCutoff = cosf(dl.OuterCone * 2.0f * core::DEGTORAD * 0.5f);
l.spotCosInnerCutoff = cosf(dl.InnerCone * 2.0f * core::DEGTORAD * 0.5f);
l.spotExponent = dl.Falloff;
break;
default:
break;
}
//which means ETS_VIEW, irrlicht openGL
setTransform(ETS_WORLD, irr::core::IdentityMatrix);
transform_calc(ETS_MODEL_VIEW);
//transform_calc(ETS_NORMAL);
const core::matrix4* matrix = Transformation[TransformationStack];
transformVec4Vec4(matrix[ETS_MODEL_VIEW], &l.pos4.x, &l.pos.x);
rotateMat44Vec3Vec4(matrix[ETS_MODEL_VIEW], &l.spotDirection4.x, &l.spotDirection.x);
l.nmap_linearAttenuation = 1.f / (0.001f + dl.Radius * dl.Radius);
/*
//case ELT_DIRECTIONAL:
if (l.pos.w == 0.f)
{
l.pos4n = l.pos4;
l.pos4n.normalize_dir_xyz();
//GL_LIGHT_MODEL_LOCAL_VIEWER = 0
l.halfVector = l.pos4n;
l.halfVector.z += 1.f;
l.halfVector.normalize_dir_xyz();
}
*/
}
//! adds a dynamic light
s32 CBurningVideoDriver::addDynamicLight(const SLight& dl)
{
/*s32 i0 = */CNullDriver::addDynamicLight(dl);
SBurningShaderLight l;
EyeSpace.Light.push_back(l);
s32 i1 = EyeSpace.Light.size() - 1;
//i0 and i1 must be in sync
assignHardwareLight(EyeSpace.Light[i1], dl);
return i1;
}
//! Turns a dynamic light on or off
void CBurningVideoDriver::turnLightOn(s32 lightIndex, bool turnOn)
{
if ((u32)lightIndex < EyeSpace.Light.size())
{
SBurningShaderLight& l = EyeSpace.Light[lightIndex];
// some glitches with STK, always set, currently twice. openGL forces ModelMatrix to Identity
if (!l.LightIsOn && turnOn)
{
assignHardwareLight(l, CNullDriver::getDynamicLight(lightIndex));
}
l.LightIsOn = turnOn;
}
}
//! deletes all dynamic lights there are
void CBurningVideoDriver::deleteAllDynamicLights()
{
EyeSpace.deleteAllDynamicLights();
CNullDriver::deleteAllDynamicLights();
}
//! returns the maximal amount of dynamic lights the device can handle
u32 CBurningVideoDriver::getMaximalDynamicLightAmount() const
{
return 8; //no limit 8 only for convenience
}
// a != b
size_t compare_3d_material(const SMaterial& a, const SMaterial& b)
{
size_t flag = 0;
flag |= a.MaterialType == b.MaterialType ? 0 : 1;
flag |= a.TextureLayer[0].Texture == b.TextureLayer[0].Texture ? 0 : 4;
if (flag) return flag;
return a != b;
}
//! sets a material
void CBurningVideoDriver::setMaterial(const SMaterial& material)
{
// ---------- Override
Material.org = material;
OverrideMaterial.apply(Material.org);
const SMaterial& in = Material.org;
const u32 shaderid = (u32)in.MaterialType;
//basically set always. 2d does its own compare
//if (TransformationStack == ETF_STACK_2D || Material.resetRenderStates || compare_3d_material(Material.lastMaterial,in))
{
// ---------- Notify Shader
// unset old material
u32 shaderid_old = (u32)Material.lastMaterial.MaterialType;
if (shaderid != shaderid_old && shaderid_old < MaterialRenderers.size())
{
MaterialRenderers[shaderid_old].Renderer->OnUnsetMaterial();
}
// set new material.
if (shaderid < MaterialRenderers.size())
{
MaterialRenderers[shaderid].Renderer->OnSetMaterial(
in, Material.lastMaterial, Material.resetRenderStates, this);
}
Material.lastMaterial = in;
Material.resetRenderStates = false;
}
//CSoftware2MaterialRenderer sets Material.Fallback_MaterialType
//Material.Fallback_MaterialType = material.MaterialType;
//-----------------
//Material.org = material;
Material.CullFlag = CULL_INVISIBLE | (in.BackfaceCulling ? CULL_BACK : 0) | (in.FrontfaceCulling ? CULL_FRONT : 0);
size_t* flag = TransformationFlag[TransformationStack];
EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP);
#ifdef SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM
//vertextype not set!
for (u32 m = 0; m < BURNING_MATERIAL_MAX_TEXTURES /*VertexShader.vSize[VertexShader.vType].TexSize*/; ++m)
{
flag[ETS_TEXTURE_0 + m] &= ~ETF_TEXGEN_MASK;
setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + m), in.getTextureMatrix(m));
}
#endif
#ifdef SOFTWARE_DRIVER_2_LIGHTING
burning_setbit(EyeSpace.TL_Flag, in.FogEnable, TL_FOG);
burning_setbit(EyeSpace.TL_Flag, in.NormalizeNormals, TL_NORMALIZE_NORMALS);
burning_setbit(EyeSpace.TL_Flag, in.Lighting, TL_LIGHT);
if (EyeSpace.TL_Flag & TL_LIGHT)
{
burning_setbit(EyeSpace.TL_Flag, in.ColorMaterial == ECM_AMBIENT || in.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT, TL_COLORMAT_AMBIENT);
burning_setbit(EyeSpace.TL_Flag, in.ColorMaterial == ECM_DIFFUSE || in.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT, TL_COLORMAT_DIFFUSE);
burning_setbit(EyeSpace.TL_Flag, in.ColorMaterial == ECM_SPECULAR, TL_COLORMAT_SPECULAR);
Material.AmbientColor.setA8R8G8B8(in.AmbientColor.color);
Material.DiffuseColor.setA8R8G8B8(in.DiffuseColor.color);
Material.EmissiveColor.setA8R8G8B8(in.EmissiveColor.color);
Material.SpecularColor.setA8R8G8B8(in.SpecularColor.color);
burning_setbit(EyeSpace.TL_Flag, (in.Shininess != 0.f) && (in.SpecularColor.color & 0x00ffffff), TL_SPECULAR);
}
#endif
//--------------- setCurrentShader
ITexture* texture0 = in.getTexture(0);
ITexture* texture1 = in.getTexture(1);
//ITexture* texture2 = in.getTexture(2);
//ITexture* texture3 = in.getTexture(3);
//visual studio code analysis
u32 maxTex = BURNING_MATERIAL_MAX_TEXTURES;
if (maxTex < 1) texture0 = 0;
if (maxTex < 2) texture1 = 0;
//if (maxTex < 3) texture2 = 0;
//if (maxTex < 4) texture3 = 0;
//todo: seperate depth test from depth write
Material.depth_write = getWriteZBuffer(in);
Material.depth_test = in.ZBuffer != ECFN_DISABLED && Material.depth_write;
EBurningFFShader shader = Material.depth_test ? ETR_TEXTURE_GOURAUD : ETR_TEXTURE_GOURAUD_NOZ;
switch (Material.Fallback_MaterialType) //(Material.org.MaterialType) // Material.Fallback_MaterialType)
{
case EMT_ONETEXTURE_BLEND:
shader = ETR_TEXTURE_BLEND;
break;
case EMT_TRANSPARENT_ALPHA_CHANNEL_REF:
Material.org.MaterialTypeParam = 0.5f;
//fallthrough
case EMT_TRANSPARENT_ALPHA_CHANNEL:
if (texture0 && texture0->hasAlpha())
{
shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ALPHA : ETR_TEXTURE_GOURAUD_ALPHA_NOZ;
}
else
{
//fall back to EMT_TRANSPARENT_VERTEX_ALPHA
shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA;
}
break;
case EMT_TRANSPARENT_ADD_COLOR:
shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ADD : ETR_TEXTURE_GOURAUD_ADD_NO_Z;
if (Material.org.BlendOperation == EBO_ADD)
shader = ETR_TEXTURE_GOURAUD_ADD_NO_Z;
break;
case EMT_TRANSPARENT_VERTEX_ALPHA:
shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA;
break;
case EMT_LIGHTMAP:
case EMT_LIGHTMAP_LIGHTING:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1;
break;
case EMT_LIGHTMAP_M2:
case EMT_LIGHTMAP_LIGHTING_M2:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2;
break;
case EMT_LIGHTMAP_LIGHTING_M4:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_M4:
if (texture1)
shader = ETR_TEXTURE_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_ADD:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD;
break;
case EMT_DETAIL_MAP:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP;
break;
case EMT_SPHERE_MAP:
flag[ETS_TEXTURE_0] |= ETF_TEXGEN_CAMERA_SPHERE;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM;
break;
case EMT_REFLECTION_2_LAYER:
case EMT_TRANSPARENT_REFLECTION_2_LAYER:
if (texture1)
{
shader = ETR_TRANSPARENT_REFLECTION_2_LAYER;
flag[ETS_TEXTURE_1] |= ETF_TEXGEN_CAMERA_REFLECTION;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM;
}
break;
case EMT_NORMAL_MAP_SOLID:
case EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR:
case EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA:
if (texture1)
{
shader = ETR_NORMAL_MAP_SOLID;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP;
EyeSpace.TL_Flag &= ~TL_LIGHT;
}
break;
case EMT_PARALLAX_MAP_SOLID:
case EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR:
case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA:
if (texture1)
{
shader = ETR_PARALLAX_MAP_SOLID;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP;
EyeSpace.TL_Flag &= ~TL_LIGHT;
}
break;
default:
break;
}
if (!texture0)
{
shader = Material.depth_test ? ETR_GOURAUD :
shader == ETR_TEXTURE_GOURAUD_VERTEX_ALPHA ?
ETR_GOURAUD_ALPHA_NOZ : // 2D Gradient
ETR_GOURAUD_NOZ;
shader = ETR_COLOR;
}
if (in.Wireframe)
{
IBurningShader* candidate = BurningShader[shader];
if (!candidate || (candidate && !candidate->canWireFrame()))
{
shader = ETR_TEXTURE_GOURAUD_WIRE;
}
}
if (in.PointCloud)
{
IBurningShader* candidate = BurningShader[shader];
if (!candidate || (candidate && !candidate->canPointCloud()))
{
shader = ETR_TEXTURE_GOURAUD_WIRE;
}
}
//shader = ETR_REFERENCE;
// switchToTriangleRenderer
CurrentShader = BurningShader[shader];
if (!CurrentShader && shaderid < MaterialRenderers.size())
{
CurrentShader = (IBurningShader *) MaterialRenderers[shaderid].Renderer;
}
if (CurrentShader)
{
CurrentShader->setTLFlag(EyeSpace.TL_Flag);
if (EyeSpace.TL_Flag & TL_FOG) CurrentShader->setFog(FogColor);
if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor);
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced);
CurrentShader->OnSetMaterialBurning(Material);
CurrentShader->setEdgeTest(in.Wireframe, in.PointCloud);
}
#if 0
{
//u32 shaderid = (u32)Material.org.MaterialType;
if (shaderid < MaterialRenderers.size())
MaterialRenderers[shaderid].Renderer->OnRender(this, (video::E_VERTEX_TYPE)VertexShader.vType);
}
#endif
}
//! Sets the fog mode.
void CBurningVideoDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog);
EyeSpace.fog_scale = reciprocal_zero(FogEnd - FogStart);
}
#if defined(SOFTWARE_DRIVER_2_LIGHTING) && BURNING_MATERIAL_MAX_COLORS > 0
/*!
applies lighting model
*/
void CBurningVideoDriver::lightVertex_eye(s4DVertex* dest, const u32 vertexargb)
{
//gl_FrontLightModelProduct.sceneColor = gl_FrontMaterial.emission + gl_FrontMaterial.ambient * gl_LightModel.ambient
sVec3Color ambient;
sVec3Color diffuse;
sVec3Color specular;
// the universe started in darkness..
ambient.set(0.f);
diffuse.set(0.f);
specular.set(0.f);
u32 i;
f32 dot;
f32 distance;
f32 attenuation;
sVec4 vp; // vertex to light
sVec4 lightHalf; // blinn-phong reflection
f32 spotDot; // cos of angle between spotlight and point on surface
for (i = 0; i < EyeSpace.Light.size(); ++i)
{
const SBurningShaderLight& light = EyeSpace.Light[i];
if (!light.LightIsOn)
continue;
switch (light.Type | (EyeSpace.TL_Flag & TL_SPECULAR))
{
case ELT_DIRECTIONAL:
case ELT_DIRECTIONAL | TL_SPECULAR:
// surface to light vp = light.pos4n = light.pos4
// attenuation = 1
// distance = 1
// accumulate ambient
ambient.add_rgb(light.AmbientColor);
//angle between normal and light vector
dot = EyeSpace.normal.dot_xyz(light.pos4);
if (dot <= 0.f) continue;
diffuse.mad_rgb(light.DiffuseColor, dot);
if (!(EyeSpace.TL_Flag & TL_SPECULAR))
continue;
//light.halfvector
lightHalf.x = light.pos4.x - EyeSpace.vertexn.x; // + 0.f;
lightHalf.y = light.pos4.y - EyeSpace.vertexn.y; // + 0.f;
lightHalf.z = light.pos4.z - EyeSpace.vertexn.z; // + 1.f;
//lightHalf.normalize_dir_xyz();
dot = EyeSpace.normal.dot_xyz(lightHalf);
if (dot <= 0.f) continue;
distance = lightHalf.length_xyz();
distance = reciprocal_zero(distance);
specular.mad_rgb(light.SpecularColor, powf_limit(dot * distance, Material.org.Shininess));
break;
case ELT_POINT:
// surface to light
vp.x = light.pos4.x - EyeSpace.vertex.x;
vp.y = light.pos4.y - EyeSpace.vertex.y;
vp.z = light.pos4.z - EyeSpace.vertex.z;
distance = vp.length_xyz();
attenuation = light.constantAttenuation
+ distance * (light.linearAttenuation + light.quadraticAttenuation * distance);
attenuation = reciprocal_one(attenuation);
//att = clamp(1.0 - dist/radius, 0.0, 1.0); att *= att
// accumulate ambient
ambient.mad_rgb(light.AmbientColor, attenuation);
// build diffuse reflection
//angle between normal and light vector
//vp.mul_xyz(reciprocal_zero(distance)); //normalize
dot = EyeSpace.normal.dot_xyz(vp);
if (dot <= 0.f) continue;
distance = reciprocal_zero(distance);
// diffuse component
diffuse.mad_rgb(light.DiffuseColor, (dot * distance) * attenuation);
break;
case ELT_POINT | TL_SPECULAR:
// surface to light
vp.x = light.pos4.x - EyeSpace.vertex.x;
vp.y = light.pos4.y - EyeSpace.vertex.y;
vp.z = light.pos4.z - EyeSpace.vertex.z;
distance = vp.length_xyz();
attenuation = light.constantAttenuation
+ distance * (light.linearAttenuation + light.quadraticAttenuation * distance);
attenuation = reciprocal_one(attenuation);
// accumulate ambient
ambient.mad_rgb(light.AmbientColor, attenuation);
// build diffuse reflection
dot = EyeSpace.normal.dot_xyz(vp);
if (dot <= 0.f) continue;
distance = reciprocal_zero(distance);
// diffuse component
diffuse.mad_rgb(light.DiffuseColor, (dot * distance) * attenuation);
//vp.mul_xyz(distance); //normalize
//halfVector = normalize(VP + eye), GL_LIGHT_MODEL_LOCAL_VIEWER
lightHalf.x = vp.x * distance - EyeSpace.vertexn.x; // + 0.f;
lightHalf.y = vp.y * distance - EyeSpace.vertexn.y; // + 0.f;
lightHalf.z = vp.z * distance - EyeSpace.vertexn.z; // + 1.f;
//lightHalf.normalize_dir_xyz();
dot = EyeSpace.normal.dot_xyz(lightHalf);
if (dot <= 0.f) continue;
distance = lightHalf.length_xyz();
dot *= reciprocal_zero(distance);
//specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation
specular.mad_rgb(light.SpecularColor, powf_limit(dot, Material.org.Shininess) * attenuation);
break;
case ELT_SPOT:
case ELT_SPOT | TL_SPECULAR:
// surface to light
vp.x = light.pos4.x - EyeSpace.vertex.x;
vp.y = light.pos4.y - EyeSpace.vertex.y;
vp.z = light.pos4.z - EyeSpace.vertex.z;
distance = vp.length_xyz();
//normalize
vp.mul_xyz(reciprocal_zero(distance));
// point on surface inside cone of illumination
spotDot = vp.dot_minus_xyz(light.spotDirection4);
if (spotDot < light.spotCosCutoff)
continue;
attenuation = light.constantAttenuation
+ light.linearAttenuation * distance
+ light.quadraticAttenuation * distance * distance;
attenuation = reciprocal_one(attenuation);
attenuation *= powf_limit(spotDot, light.spotExponent);
// accumulate ambient
ambient.mad_rgb(light.AmbientColor, attenuation);
// build diffuse reflection
//angle between normal and light vector
dot = EyeSpace.normal.dot_xyz(vp);
if (dot < 0.f) continue;
// diffuse component
diffuse.mad_rgb(light.DiffuseColor, dot * attenuation);
if (!(EyeSpace.TL_Flag & TL_SPECULAR))
continue;
lightHalf.x = vp.x - EyeSpace.vertexn.x; // + 0.f;
lightHalf.y = vp.y - EyeSpace.vertexn.y; // + 0.f;
lightHalf.z = vp.z - EyeSpace.vertexn.z; // + 1.f;
lightHalf.normalize_dir_xyz();
//specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation
specular.mad_rgb(light.SpecularColor,
powf_limit(EyeSpace.normal.dot_xyz(lightHalf), Material.org.Shininess) * attenuation
);
break;
default:
break;
}
}
sVec3Color vertexColor;
vertexColor.setA8R8G8B8(vertexargb);
// sum up lights
//If = Ia + Id + Is
sVec3Color dColor;
dColor.set(0.f);
//Ia = gl_light_model_ambient* ambient_material + ambient_light * ambient_material
const sVec4& amb_mat = (EyeSpace.TL_Flag & TL_COLORMAT_AMBIENT) ? vertexColor : Material.AmbientColor;
dColor.mad_rgbv(EyeSpace.Global_AmbientLight, amb_mat);
dColor.mad_rgbv(ambient, amb_mat);
//Id = diffuse_light * lambertTerm dot(N,L) * diffuse_material
dColor.mad_rgbv(diffuse, (EyeSpace.TL_Flag & TL_COLORMAT_DIFFUSE) ? vertexColor : Material.DiffuseColor);
#if 0
dColor.mad_rgbv(diffuse, Material.DiffuseColor);
//diffuse * vertex color.
//has to move to shader (for vertex color only this will fit [except clamping])
dColor.r *= vertexColor.r;
dColor.g *= vertexColor.g;
dColor.b *= vertexColor.b;
#endif
//separate specular
const sVec4& spec_mat = (EyeSpace.TL_Flag & TL_COLORMAT_SPECULAR) ? vertexColor : Material.SpecularColor;
#if defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR)
if ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_COLOR)>=VERTEX4D_FORMAT_COLOR_2_FOG)
{
specular.sat_mul_xyz(dest->Color[1], spec_mat);
}
else if (!(EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) &&
(VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_LIGHT)
)
{
specular.sat_mul_xyz(dest->LightTangent[0], spec_mat);
}
else
#endif
{
dColor.mad_rgbv(specular, spec_mat);
}
dColor.add_rgb(Material.EmissiveColor);
dColor.sat_alpha_pass(dest->Color[0], vertexColor.a);
}
#endif
/*
draw2DImage with single color scales into destination quad & cliprect(more like viewport)
draw2DImage with 4 color scales on destination and cliprect is scissor
*/
static const u32 quad_triangle_indexList[6 + 2] = { 0,1,2,0,2,3, 3,3 };
#if defined(SOFTWARE_DRIVER_2_2D_AS_2D)
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getOriginalSize() != texture->getSize())
{
core::rect<s32> destRect(destPos, sourceRect.getSize());
SColor c4[4] = { color,color,color,color };
draw2DImage(texture, destRect, sourceRect, clipRect, c4, useAlphaChannelOfTexture);
return;
}
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
if (useAlphaChannelOfTexture)
((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha(
RenderTargetSurface, destPos, sourceRect, color, clipRect);
else
((CSoftwareTexture2*)texture)->getImage()->copyTo(
RenderTargetSurface, destPos, sourceRect, clipRect);
}
}
//! Draws a part of the texture into the rectangle.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture,
const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
u32 argb = (colors ? colors[0].color : 0xFFFFFFFF);
eBlitter op = useAlphaChannelOfTexture ?
(argb == 0xFFFFFFFF ? BLITTER_TEXTURE_ALPHA_BLEND : BLITTER_TEXTURE_ALPHA_COLOR_BLEND) : BLITTER_TEXTURE;
StretchBlit(op, RenderTargetSurface, clipRect, &destRect,
((CSoftwareTexture2*)texture)->getImage(), &sourceRect, &texture->getOriginalSize(), argb
);
}
}
//!Draws an 2d rectangle with a gradient.
void CBurningVideoDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> p(position);
if (clip) p.clipAgainst(*clip);
if (p.isValid()) drawRectangle(RenderTargetSurface, p, colorLeftUp);
}
#endif //defined(SOFTWARE_DRIVER_2_2D_AS_2D)
//! Enable the 2d override material
void CBurningVideoDriver::enableMaterial2D(bool enable)
{
CNullDriver::enableMaterial2D(enable);
//burning_setbit(TransformationFlag[1][ETS_PROJECTION], 0, ETF_VALID);
}
// a != b
size_t compare_2d_material(const SMaterial& a, const SMaterial& b)
{
size_t flag = 0;
flag |= a.MaterialType == b.MaterialType ? 0 : 1;
flag |= a.ZBuffer == b.ZBuffer ? 0 : 2;
flag |= a.TextureLayer[0].Texture == b.TextureLayer[0].Texture ? 0 : 4;
flag |= a.TextureLayer[0].BilinearFilter == b.TextureLayer[0].BilinearFilter ? 0 : 8;
flag |= a.TextureLayer[0].TextureWrapU == b.TextureLayer[0].TextureWrapU ? 0 : 16;
flag |= a.MaterialTypeParam == b.MaterialTypeParam ? 0 : 32;
if (flag) return flag;
flag |= a.TextureLayer[1].Texture == b.TextureLayer[1].Texture ? 0 : 64;
flag |= a.ZWriteEnable == b.ZWriteEnable ? 0 : 128;
return flag;
}
void CBurningVideoDriver::setRenderStates2DMode(const video::SColor& color, const video::ITexture* texture, bool useAlphaChannelOfTexture)
{
//save current 3D Material
//Material.save3D = Material.org;
//build new 2D Material
bool vertexAlpha = color.getAlpha() < 255;
//2D uses textureAlpa*vertexAlpha 3D not..
if (useAlphaChannelOfTexture && texture && texture->hasAlpha())
{
Material.mat2D.MaterialType = EMT_TRANSPARENT_ALPHA_CHANNEL;
}
else if (vertexAlpha)
{
Material.mat2D.MaterialType = EMT_TRANSPARENT_VERTEX_ALPHA;
}
else
{
Material.mat2D.MaterialType = EMT_SOLID;
}
Material.mat2D.ZBuffer = ECFN_DISABLED;
Material.mat2D.ZWriteEnable = EZW_OFF;
Material.mat2D.Lighting = false;
Material.mat2D.setTexture(0, (video::ITexture*)texture);
//used for text. so stay as sharp as possible (like HW Driver)
bool filter = false;
const SMaterial& currentMaterial = (!OverrideMaterial2DEnabled) ? InitMaterial2D : OverrideMaterial2D;
filter = texture && currentMaterial.TextureLayer[0].BilinearFilter;
Material.mat2D.setFlag(video::EMF_BILINEAR_FILTER, filter);
Material.mat2D.TextureLayer[0].TextureWrapU = currentMaterial.TextureLayer[0].TextureWrapU;
Material.mat2D.TextureLayer[0].TextureWrapV = currentMaterial.TextureLayer[0].TextureWrapV;
//compare
size_t cmp_mat = compare_2d_material(Material.org, Material.mat2D);
//switch to 2D Matrix Stack [ Material set Texture Matrix ]
//if (TransformationStack != ETF_STACK_2D) cmp_mat |= 256;
TransformationStack = ETF_STACK_2D;
//2D GUI Matrix
if ((cmp_mat & 256) || !(TransformationFlag[TransformationStack][ETS_PROJECTION] & ETF_VALID))
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
core::matrix4 m(core::matrix4::EM4CONST_NOTHING);
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f);
m.setTranslation(core::vector3df(-1.f, 1.f, 0));
setTransform(ETS_PROJECTION, m);
m.makeIdentity();
setTransform(ETS_WORLD, m);
// pixel perfect
//if(filter)
//currently done in ndc to dc -0.5f
//m.setTranslation(core::vector3df(-0.5f, -0.5f, 0.0f));
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
m.setTranslation(core::vector3df(0.375f, 0.375f, 0.0f));
#endif
setTransform(ETS_VIEW, m);
cmp_mat |= 8;
}
//compare
if (cmp_mat)
{
setMaterial(Material.mat2D);
}
if (CurrentShader)
{
CurrentShader->setPrimitiveColor(color.color);
CurrentShader->setTLFlag(EyeSpace.TL_Flag);
if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor);
}
}
void CBurningVideoDriver::setRenderStates3DMode()
{
//restoreRenderStates3DMode
//setMaterial(Material.save3D);
//switch to 3D Matrix Stack
TransformationStack = ETF_STACK_3D;
}
//! draws a vertex primitive list in 2d
void CBurningVideoDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
bool useAlphaChannelOfTexture = false;
video::SColor color(0xFFFFFFFF);
switch (Material.org.MaterialType)
{
case EMT_TRANSPARENT_ALPHA_CHANNEL:
useAlphaChannelOfTexture = true;
break;
case EMT_TRANSPARENT_VERTEX_ALPHA:
color.setAlpha(127);
break;
default:
break;
}
setRenderStates2DMode(color, Material.org.getTexture(0), useAlphaChannelOfTexture);
drawVertexPrimitiveList(vertices, vertexCount,
indexList, primitiveCount,
vType, pType, iType);
setRenderStates3DMode();
}
//wrapper if both enabled
#if defined(SOFTWARE_DRIVER_2_2D_AS_2D) && defined(SOFTWARE_DRIVER_2_2D_AS_3D)
#endif
//setup a quad
#if defined(SOFTWARE_DRIVER_2_2D_AS_3D)
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
// clip these coordinates
core::rect<s32> targetRect(destPos, sourceRect.getSize());
if (clipRect)
{
targetRect.clipAgainst(*clipRect);
if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0)
return;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
targetRect.clipAgainst(core::rect<s32>(0, 0, (s32)renderTargetSize.Width, (s32)renderTargetSize.Height));
if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0)
return;
// ok, we've clipped everything.
// now draw it.
const core::dimension2d<s32> sourceSize(targetRect.getSize());
core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner + (targetRect.UpperLeftCorner - destPos));
const core::dimension2d<u32>& tex_orgsize = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(tex_orgsize.Width);
const f32 invH = 1.f / static_cast<f32>(tex_orgsize.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
sourcePos.Y * invH,
(sourcePos.X + sourceSize.Width) * invW,
(sourcePos.Y + sourceSize.Height) * invH);
Quad2DVertices[0].Color = color;
Quad2DVertices[1].Color = color;
Quad2DVertices[2].Color = color;
Quad2DVertices[3].Color = color;
Quad2DVertices[0].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[1].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[2].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[3].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
setRenderStates2DMode(color, texture, useAlphaChannelOfTexture);
drawVertexPrimitiveList(Quad2DVertices, 4,
quad_triangle_indexList, 2,
EVT_STANDARD, scene::EPT_TRIANGLES, EIT_32BIT);
setRenderStates3DMode();
}
//! Draws a part of the texture into the rectangle.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
const core::dimension2d<u32>& st = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(st.Width);
const f32 invH = 1.f / static_cast<f32>(st.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
sourceRect.UpperLeftCorner.Y * invH,
sourceRect.LowerRightCorner.X * invW,
sourceRect.LowerRightCorner.Y * invH);
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
Quad2DVertices[0].Color = useColor[0];
Quad2DVertices[1].Color = useColor[3];
Quad2DVertices[2].Color = useColor[2];
Quad2DVertices[3].Color = useColor[1];
Quad2DVertices[0].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[1].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[2].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[3].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
if (clipRect)
{
if (!clipRect->isValid())
return;
//glEnable(GL_SCISSOR_TEST);
EyeSpace.TL_Flag |= TL_SCISSOR;
setScissor(clipRect->UpperLeftCorner.X, clipRect->UpperLeftCorner.Y,//renderTargetSize.Height - clipRect->LowerRightCorner.Y
clipRect->getWidth(), clipRect->getHeight());
}
video::SColor alphaTest;
alphaTest.color = useColor[0].color & useColor[0].color & useColor[0].color & useColor[0].color;
setRenderStates2DMode(alphaTest, texture, useAlphaChannelOfTexture);
drawVertexPrimitiveList(Quad2DVertices, 4,
quad_triangle_indexList, 2,
EVT_STANDARD, scene::EPT_TRIANGLES, EIT_32BIT);
if (clipRect)
EyeSpace.TL_Flag &= ~TL_SCISSOR;
setRenderStates3DMode();
}
//!Draws an 2d rectangle with a gradient.
void CBurningVideoDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
Quad2DVertices[0].Color = colorLeftUp;
Quad2DVertices[1].Color = colorRightUp;
Quad2DVertices[2].Color = colorRightDown;
Quad2DVertices[3].Color = colorLeftDown;
Quad2DVertices[0].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[1].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[2].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f);
Quad2DVertices[3].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f);
Quad2DVertices[0].TCoords.X = 0.f;
Quad2DVertices[0].TCoords.Y = 0.f;
Quad2DVertices[1].TCoords.X = 0.f;
Quad2DVertices[1].TCoords.Y = 0.f;
Quad2DVertices[2].TCoords.X = 0.f;
Quad2DVertices[3].TCoords.Y = 0.f;
Quad2DVertices[3].TCoords.X = 0.f;
Quad2DVertices[3].TCoords.Y = 0.f;
video::SColor alphaTest;
alphaTest.color = colorLeftUp.color & colorRightUp.color & colorRightDown.color & colorLeftDown.color;
setRenderStates2DMode(alphaTest, 0, 0);
drawVertexPrimitiveList(Quad2DVertices, 4,
quad_triangle_indexList, 2,
EVT_STANDARD, scene::EPT_TRIANGLES, EIT_32BIT);
setRenderStates3DMode();
}
#endif // SOFTWARE_DRIVER_2_2D_AS_3D
//! Draws a 2d line.
void CBurningVideoDriver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
drawLine(RenderTargetSurface, start, end, color);
}
//! Draws a pixel
void CBurningVideoDriver::drawPixel(u32 x, u32 y, const SColor& color)
{
RenderTargetSurface->setPixel(x, y, color, true);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void CBurningVideoDriver::OnResize(const core::dimension2d<u32>& size)
{
// make sure width and height are multiples of 2
core::dimension2d<u32> realSize(size);
/*
if (realSize.Width % 2)
realSize.Width += 1;
if (realSize.Height % 2)
realSize.Height += 1;
*/
if (ScreenSize != realSize)
{
if (ViewPort.getWidth() == (s32)ScreenSize.Width &&
ViewPort.getHeight() == (s32)ScreenSize.Height)
{
ViewPort.UpperLeftCorner.X = 0;
ViewPort.UpperLeftCorner.Y = 0;
ViewPort.LowerRightCorner.X = realSize.Width;
ViewPort.LowerRightCorner.X = realSize.Height;
}
ScreenSize = realSize;
bool resetRT = (RenderTargetSurface == BackBuffer);
if (BackBuffer)
BackBuffer->drop();
BackBuffer = new CImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, realSize);
if (resetRT)
setRenderTargetImage2(BackBuffer);
}
}
//! returns the current render target size
const core::dimension2d<u32>& CBurningVideoDriver::getCurrentRenderTargetSize() const
{
return (RenderTargetSurface == BackBuffer) ? ScreenSize : RenderTargetSize;
}
//! Draws a 3d line.
void CBurningVideoDriver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color_start)
{
SColor color_end = color_start;
VertexShader.primitiveHasVertex = 2;
VertexShader.vType = E4VT_LINE;
s4DVertex* v = Clipper.data;
transform_calc(ETS_MODEL_VIEW_PROJ);
const core::matrix4* matrix = Transformation[TransformationStack];
matrix[ETS_MODEL_VIEW_PROJ].transformVect(&v[s4DVertex_ofs(0)].Pos.x, start);
matrix[ETS_MODEL_VIEW_PROJ].transformVect(&v[s4DVertex_ofs(1)].Pos.x, end);
u32 has_vertex_run;
const u32 flag = (VertexShader.vSize[VertexShader.vType].Format);
for (has_vertex_run = 0; has_vertex_run < VertexShader.primitiveHasVertex; has_vertex_run += 1)
{
v[s4DVertex_ofs(has_vertex_run)].reset_interpolate();
v[s4DVertex_ofs(has_vertex_run)].flag = flag;
v[s4DVertex_pro(has_vertex_run)].flag = flag;
}
#if BURNING_MATERIAL_MAX_COLORS > 0
v[s4DVertex_ofs(0)].Color[0].setA8R8G8B8(color_start.color);
v[s4DVertex_ofs(1)].Color[0].setA8R8G8B8(color_end.color);
#endif
u32 vOut;
// vertices count per line
vOut = clipToFrustum(VertexShader.primitiveHasVertex);
if (vOut < VertexShader.primitiveHasVertex)
return;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project(v, s4DVertex_ofs(vOut), Transformation_ETS_CLIPSCALE[TransformationStack]);
// unproject vertex color
#if 0
#if BURNING_MATERIAL_MAX_COLORS > 0
for (g = 0; g != vOut; g += 2)
{
v[g + 1].Color[0].setA8R8G8B8(color.color);
}
#endif
#endif
pushShader(scene::EPT_LINES, 0);
for (has_vertex_run = 0; (has_vertex_run + VertexShader.primitiveHasVertex) <= vOut; has_vertex_run += 1)
{
CurrentShader->drawLine(v + s4DVertex_pro(has_vertex_run), v + s4DVertex_pro(has_vertex_run + 1));
}
PushShader.pop();
}
// set Shader Mode based on primitive type
void CBurningVideoDriver::pushShader(scene::E_PRIMITIVE_TYPE pType, int testCurrent)
{
int wireFrame = 0;
int pointCloud = 0;
switch (pType)
{
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
pointCloud = 1;
break;
case scene::EPT_LINE_STRIP:
case scene::EPT_LINE_LOOP:
case scene::EPT_LINES:
wireFrame = 1;
break;
default:
return;
}
IBurningShader* shader = 0;
if (wireFrame)
{
if (testCurrent && CurrentShader && CurrentShader->canWireFrame()) shader = CurrentShader;
else shader = BurningShader[ETR_TEXTURE_GOURAUD_WIRE];
}
if (pointCloud)
{
if (testCurrent && CurrentShader && CurrentShader->canPointCloud()) shader = CurrentShader;
else shader = BurningShader[ETR_TEXTURE_GOURAUD_WIRE];
}
if (shader)
{
if (shader != CurrentShader)
{
PushShader.push(CurrentShader);
CurrentShader = shader;
shader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced);
shader->OnSetMaterialBurning(Material);
}
shader->setEdgeTest(wireFrame, pointCloud);
}
}
//! \return Returns the name of the video driver. Example: In case of the DirectX8
//! driver, it would return "Direct3D8.1".
const wchar_t* CBurningVideoDriver::getName() const
{
#ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL
return L"Burning's Video 0.54 beautiful";
#elif defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
return L"Burning's Video 0.54 STK";
#elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST )
return L"Burning's Video 0.54 ultra fast";
#elif defined ( BURNINGVIDEO_RENDERER_FAST )
return L"Burning's Video 0.54 fast";
#elif defined ( BURNINGVIDEO_RENDERER_CE )
return L"Burning's Video 0.54 CE";
#else
return L"Burning's Video 0.54";
#endif
}
//! Returns the graphics card vendor name.
core::stringc CBurningVideoDriver::getVendorInfo()
{
return "Burning's Video: Ing. Thomas Alten (c) 2006-2022";
}
//! Returns type of video driver
E_DRIVER_TYPE CBurningVideoDriver::getDriverType() const
{
return EDT_BURNINGSVIDEO;
}
//! returns color format
ECOLOR_FORMAT CBurningVideoDriver::getColorFormat() const
{
return BackBuffer ? BackBuffer->getColorFormat() : CNullDriver::getColorFormat();
}
//! Creates a render target texture.
ITexture* CBurningVideoDriver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
, const bool useStencil
#endif
)
{
if (IImage::isCompressedFormat(format))
return 0;
//IImage* img = createImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, size);
//empty proxy image
IImage* img = createImageFromData(format, size, 0, true, false);
ITexture* tex = new CSoftwareTexture2(img, name, CSoftwareTexture2::IS_RENDERTARGET /*| CSoftwareTexture2::GEN_MIPMAP */, this);
if (img) img->drop();
addTexture(tex);
tex->drop();
return tex;
}
void CBurningVideoDriver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
if ((flag & ECBF_COLOR) && RenderTargetSurface) image_fill(RenderTargetSurface, color, Interlaced);
if ((flag & ECBF_DEPTH) && DepthBuffer) DepthBuffer->clear(depth, Interlaced);
if ((flag & ECBF_STENCIL) && StencilBuffer) StencilBuffer->clear(stencil, Interlaced);
}
#if 0
void CBurningVideoDriver::saveBuffer()
{
static int shotCount = 0;
char buf[256];
if (BackBuffer)
{
sprintf(buf, "shot/%04d_b.png", shotCount);
writeImageToFile(BackBuffer, buf);
}
if (StencilBuffer)
{
CImage stencil(ECF_A8R8G8B8, StencilBuffer->getSize(), StencilBuffer->lock(), true, false);
sprintf(buf, "shot/%04d_s.ppm", shotCount);
writeImageToFile(&stencil, buf);
}
shotCount += 1;
}
#endif
//! Returns an image created from the last rendered frame.
IImage* CBurningVideoDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target != video::ERT_FRAME_BUFFER)
return 0;
if (BackBuffer)
{
IImage* tmp = createImage(BackBuffer->getColorFormat(), BackBuffer->getDimension());
BackBuffer->copyTo(tmp);
return tmp;
}
else
return 0;
}
ITexture* CBurningVideoDriver::createDeviceDependentTexture(const io::path& name, IImage* image)
{
u32 flags =
((TextureCreationFlags & ETCF_CREATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP : 0)
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
| CSoftwareTexture2::GEN_MIPMAP_AUTO
#else
| ((TextureCreationFlags & ETCF_AUTO_GENERATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP_AUTO : 0)
#endif
| ((TextureCreationFlags & ETCF_ALLOW_NON_POWER_2) ? CSoftwareTexture2::ALLOW_NPOT : 0)
#if defined(IRRLICHT_sRGB)
| ((TextureCreationFlags & ETCF_IMAGE_IS_LINEAR) ? CSoftwareTexture2::IMAGE_IS_LINEAR : 0)
| ((TextureCreationFlags & ETCF_TEXTURE_IS_LINEAR) ? CSoftwareTexture2::TEXTURE_IS_LINEAR : 0)
#endif
;
CSoftwareTexture2* texture = new CSoftwareTexture2(image, name, flags, this);
return texture;
}
ITexture* CBurningVideoDriver::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image)
{
return 0;
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 CBurningVideoDriver::getMaximalPrimitiveCount() const
{
return 0x7FFFFFFF;
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow.
void CBurningVideoDriver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible)
{
const u32 count = triangles.size();
if (!StencilBuffer || !count)
return;
Material.org.MaterialType = video::EMT_SOLID;
Material.org.Lighting = false;
Material.org.ZWriteEnable = video::EZW_OFF;
Material.org.ZBuffer = ECFN_LESS;
CurrentShader = BurningShader[ETR_STENCIL_SHADOW];
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced);
CurrentShader->setEdgeTest(Material.org.Wireframe, 0);
//setMaterial
EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP);
CurrentShader->setTLFlag(EyeSpace.TL_Flag);
//glStencilMask(~0);
//glStencilFunc(GL_ALWAYS, 0, ~0);
//glEnable(GL_DEPTH_CLAMP);
if (zfail)
{
Material.org.BackfaceCulling = false;
Material.org.FrontfaceCulling = true;
Material.CullFlag = CULL_FRONT | CULL_INVISIBLE;
CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_INCR, StencilOp_KEEP);
drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE);
Material.org.BackfaceCulling = true;
Material.org.FrontfaceCulling = false;
Material.CullFlag = CULL_BACK | CULL_INVISIBLE;
CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_DECR, StencilOp_KEEP);
drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE);
}
else // zpass
{
Material.org.BackfaceCulling = true;
Material.org.FrontfaceCulling = false;
Material.CullFlag = CULL_BACK | CULL_INVISIBLE;
CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_INCR);
drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE);
Material.org.BackfaceCulling = false;
Material.org.FrontfaceCulling = true;
Material.CullFlag = CULL_FRONT | CULL_INVISIBLE;
CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_DECR);
drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE);
}
//glDisable(GL_DEPTH_CLAMP);
}
//! Fills the stencil shadow with color. After the shadow volume has been drawn
//! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this
//! to draw the color of the shadow.
void CBurningVideoDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
// draw a shadow rectangle covering the entire screen using stencil buffer
const u32 h = RenderTargetSurface->getDimension().Height;
const u32 w = RenderTargetSurface->getDimension().Width;
const bool bit32 = RenderTargetSurface->getColorFormat() == ECF_A8R8G8B8;
const tVideoSample alpha = extractAlpha(leftUpEdge.color) >> (bit32 ? 0 : 3);
const tVideoSample src = bit32 ? leftUpEdge.color : video::A8R8G8B8toA1R5G5B5(leftUpEdge.color);
interlace_scanline_data line;
for (line.y = 0; line.y < h; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
if_interlace_scanline
{
tVideoSample * dst = (tVideoSample*)RenderTargetSurface->getData() + (line.y * w);
const tStencilSample* stencil = (tStencilSample*)StencilBuffer->lock() + (line.y * w);
if (bit32)
{
for (u32 x = 0; x < w; x += SOFTWARE_DRIVER_2_STEP_X)
{
if (stencil[x]) dst[x] = PixelBlend32(dst[x], src, alpha);
}
}
else
{
for (u32 x = 0; x < w; x += SOFTWARE_DRIVER_2_STEP_X)
{
if (stencil[x]) dst[x] = PixelBlend16(dst[x], src, alpha);
}
}
}
}
if (clearStencilBuffer)
StencilBuffer->clear(0, Interlaced);
}
core::dimension2du CBurningVideoDriver::getMaxTextureSize() const
{
return core::dimension2du(SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE, SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE);
}
bool CBurningVideoDriver::queryTextureFormat(ECOLOR_FORMAT format) const
{
return format == SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT || format == SOFTWARE_DRIVER_2_TEXTURE_COLOR_FORMAT;
}
#if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
bool CBurningVideoDriver::needsTransparentRenderPass(const irr::video::SMaterial& material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); // || material.isTransparent();
}
#endif
s32 CBurningVideoDriver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 materialID = -1;
IBurningShader* shader = new IBurningShader(
this, materialID,
vertexShaderProgram, 0, video::EVST_VS_1_1,
pixelShaderProgram, 0, video::EPST_PS_1_1,
0, 0, EGST_GS_4_0,
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0,
callback, baseMaterial, userData);
shader->drop();
return materialID;
}
//! Adds a new material renderer to the VideoDriver, based on a high level shading language.
s32 CBurningVideoDriver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
, E_GPU_SHADING_LANGUAGE shadingLang
#endif
)
{
s32 materialID = -1;
IBurningShader* shader = new IBurningShader(
this, materialID,
vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget,
pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget,
geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget,
inType, outType, verticesOut,
callback, baseMaterial, userData);
shader->drop();
return materialID;
}
void CBurningVideoDriver::setFallback_Material(E_MATERIAL_TYPE fallback_MaterialType, eBurningVertexShader vertexShader)
{
//this should be in material....
Material.Fallback_MaterialType = fallback_MaterialType;
Material.VertexShader = vertexShader;
}
void CBurningVideoDriver::setBasicRenderStates(const SMaterial& material,
const SMaterial& lastMaterial,
bool resetAllRenderstates)
{
}
//! Return an index constant for the vertex shader based on a name.
s32 CBurningVideoDriver::getVertexShaderConstantID(const c8* name)
{
return getPixelShaderConstantID(name);
}
bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const f32* floats, int count)
{
return setPixelShaderConstant(index, floats, count);
}
bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const s32* ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const u32* ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
void CBurningVideoDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
//used?
if (CurrentShader)
{
CurrentShader->setVertexShaderConstant(data, startRegister, constantAmount);
}
}
//! Return an index constant for the pixel shader based on a name.
s32 CBurningVideoDriver::getPixelShaderConstantID(const c8* name)
{
return -1;
}
bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const f32* floats, int count)
{
return false;
}
bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const s32* ints, int count)
{
return false;
}
bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const u32* ints, int count)
{
return false;
}
void CBurningVideoDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount = 1)
{
//used?
if (CurrentShader)
{
CurrentShader->setPixelShaderConstant(data, startRegister, constantAmount);
}
}
//! Get pointer to the IVideoDriver interface
/** \return Pointer to the IVideoDriver interface */
IVideoDriver* CBurningVideoDriver::getVideoDriver()
{
return this;
}
//! Run occlusion query. Draws mesh stored in query.
/** If the mesh shall not be rendered visible, use
overrideMaterial to disable the color and depth buffer. */
void CBurningVideoDriver::runOcclusionQuery(scene::ISceneNode* node, bool visible)
{
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if (index != -1)
{
//extGlBeginQuery(GL_SAMPLES_PASSED_ARB, OcclusionQueries[index].UID);
samples_passed = 0;
CNullDriver::runOcclusionQuery(node, visible);
//extGlEndQuery(GL_SAMPLES_PASSED_ARB);
}
}
//! Update occlusion query. Retrieves results from GPU.
/** If the query shall not block, set the flag to false.
Update might not occur in this case, though */
void CBurningVideoDriver::updateOcclusionQuery(scene::ISceneNode* node, bool block)
{
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
if (index < 0) return;
OcclusionQueries[index].Result = samples_passed;
}
//! Return query result.
/** Return value is the number of visible pixels/fragments.
The value is a safe approximation, i.e. can be larger than the
actual value of pixels. */
u32 CBurningVideoDriver::getOcclusionQueryResult(scene::ISceneNode* node) const
{
const s32 index = OcclusionQueries.linear_search(SOccQuery(node));
return index < 0 ? ~0 : OcclusionQueries[index].Result;
}
burning_namespace_end
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
burning_namespace_start
//! creates a video driver
IVideoDriver* createBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CBurningVideoDriver(params, io, presenter);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
burning_namespace_end