irrlicht/examples/13.RenderToTexture/main.cpp

230 lines
7.5 KiB
C++

/** Example 013 Render To Texture
This tutorial shows how to render to a texture using Irrlicht. Render to
texture is a feature where everything which would usually be rendered to
the screen is instead written to a (special) texture. This can be used to
create nice special effects.
In addition, this tutorial shows how to enable specular highlights.
In the beginning, everything as usual. Include the needed headers, ask the user
for the rendering driver, create the Irrlicht device:
*/
#include <irrlicht.h>
#include "driverChoice.h"
#include "exampleHelper.h"
using namespace irr;
#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
#endif
int main()
{
// ask user for driver
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
// create device and exit if creation failed
IrrlichtDevice *device =
createDevice(driverType, core::dimension2d<u32>(640, 480),
16, false, false);
if (device == 0)
return 1; // could not create selected driver.
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
gui::IGUIEnvironment* env = device->getGUIEnvironment();
const io::path mediaPath = getExampleMediaPath();
/*
Now, we load an animated mesh to be displayed. As in most examples,
we'll take the fairy md2 model. The difference here: We set the
shininess of the model to a value other than 0 which is the default
value. This enables specular highlights on the model if dynamic
lighting is on. The value influences the size of the highlights.
*/
// load and display animated fairy mesh
scene::IAnimatedMeshSceneNode* fairy = smgr->addAnimatedMeshSceneNode(
smgr->getMesh(mediaPath + "faerie.md2"));
if (fairy)
{
fairy->setMaterialTexture(0,
driver->getTexture(mediaPath + "faerie2.bmp")); // set diffuse texture
fairy->setMaterialFlag(video::EMF_LIGHTING, true); // enable dynamic lighting
fairy->getMaterial(0).Shininess = 20.0f; // set size of specular highlights
fairy->setPosition(core::vector3df(-10,0,-100));
fairy->setMD2Animation ( scene::EMAT_STAND );
}
/*
To make specular highlights appear on the model, we need a dynamic
light in the scene. We add one directly in vicinity of the model. In
addition, to make the model not that dark, we set the ambient light to
gray.
*/
// add white light
smgr->addLightSceneNode(0, core::vector3df(-15,5,-105),
video::SColorf(1.0f, 1.0f, 1.0f));
// set ambient light
smgr->setAmbientLight(video::SColor(0,60,60,60));
/*
The next is just some standard stuff: Add a test cube and let it rotate
to make the scene more interesting. The user defined camera and cursor
setup is made later on, right before the render loop.
*/
// create test cube
scene::ISceneNode* cube = smgr->addCubeSceneNode(60);
// let the cube rotate and set some light settings
scene::ISceneNodeAnimator* anim = smgr->createRotationAnimator(
core::vector3df(0.3f, 0.3f,0));
cube->setPosition(core::vector3df(-100,0,-100));
cube->setMaterialFlag(video::EMF_LIGHTING, false); // disable dynamic lighting
cube->addAnimator(anim);
anim->drop();
// set window caption
device->setWindowCaption(L"Irrlicht Engine - Render to Texture and Specular Highlights example");
/*
To test out the render to texture feature, we need to define our
new rendertarget. The rendertarget will need one texture to receive
the result you would otherwise see on screen and one texture
which is used as depth-buffer.
(Note: If you worked with older Irrlicht versions (before 1.9) you might be
used to only create a rendertarget texture and no explicit rendertarget. While
that's still possible, it's no longer recommended.)
The rendertarget textures are not like standard textures, but need to be created
first. To create them, we call IVideoDriver::addRenderTargetTexture()
and specify the size of the texture and the type.
For depth-maps you can use types ECF_D16, ECF_D32 or ECF_D24S8. When ECF_D24S8
you can also use a stencil-buffer.
Because we want to render the scene not from the user camera into the
texture, we add another fixed camera to the scene. But before we do all
this, we check if the current running driver is able to render to
textures. If it is not, we simply display a warning text.
*/
// create render target
video::IRenderTarget* renderTarget = 0;
scene::ICameraSceneNode* fixedCam = 0;
if (driver->queryFeature(video::EVDF_RENDER_TO_TARGET))
{
const core::dimension2d<u32> rtDim(256, 256); // always use same size for render target texture and it's depth-buffer
video::ITexture* renderTargetTex = driver->addRenderTargetTexture(rtDim, "RTT1", video::ECF_A8R8G8B8);
video::ITexture* renderTargetDepth = driver->addRenderTargetTexture(rtDim, "DepthStencil", video::ECF_D16);
renderTarget = driver->addRenderTarget();
renderTarget->setTexture(renderTargetTex, renderTargetDepth);
cube->setMaterialTexture(0, renderTargetTex); // set material of cube to render target
// add fixed camera
fixedCam = smgr->addCameraSceneNode(0, core::vector3df(10,10,-80),
core::vector3df(-10,10,-100));
}
else
{
// create problem text
gui::IGUISkin* skin = env->getSkin();
gui::IGUIFont* font = env->getFont(mediaPath + "fonthaettenschweiler.bmp");
if (font)
skin->setFont(font);
gui::IGUIStaticText* text = env->addStaticText(
L"Your hardware or this renderer is not able to use the "\
L"render to texture feature. RTT Disabled.",
core::rect<s32>(150,20,470,60));
text->setOverrideColor(video::SColor(100,255,255,255));
}
// add fps camera
scene::ICameraSceneNode* fpsCamera = smgr->addCameraSceneNodeFPS();
fpsCamera->setPosition(core::vector3df(-50,50,-150));
// disable mouse cursor
device->getCursorControl()->setVisible(false);
/*
Nearly finished. Now we need to draw everything. Every frame, we draw
the scene twice. Once from the fixed camera into the render target
texture and once as usual. When rendering into the render target, we
need to disable the visibility of the test cube, because it has the
render target texture applied to it. That's it, wasn't too complicated
I hope. :)
*/
int lastFPS = -1;
while(device->run())
if (device->isWindowActive())
{
driver->beginScene(video::ECBF_COLOR | video::ECBF_DEPTH, video::SColor(0));
if (renderTarget)
{
// draw scene into render target
// set render target
driver->setRenderTargetEx(renderTarget, video::ECBF_COLOR | video::ECBF_DEPTH, video::SColor(0,0,0,255));
// make cube invisible and set fixed camera as active camera
cube->setVisible(false);
smgr->setActiveCamera(fixedCam);
// draw whole scene into render buffer
smgr->drawAll();
// set back old render target (the screen)
driver->setRenderTargetEx(0, 0);
// make the cube visible and set the user controlled camera as active one
cube->setVisible(true);
smgr->setActiveCamera(fpsCamera);
}
// draw scene normally
smgr->drawAll();
env->drawAll();
driver->endScene();
// display frames per second in window title
int fps = driver->getFPS();
if (lastFPS != fps)
{
core::stringw str = L"Irrlicht Engine - Render to Texture and Specular Highlights example";
str += " FPS:";
str += fps;
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
device->drop(); // drop device
return 0;
}
/*
**/