irrlicht/source/Irrlicht/CD3D9Driver.cpp

2216 lines
69 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#define _IRR_DONT_DO_MEMORY_DEBUGGING_HERE
#include "CD3D9Driver.h"
#ifdef _IRR_COMPILE_WITH_DIRECT3D_9_
#include "os.h"
#include "S3DVertex.h"
#include "CD3D9Texture.h"
#include "CImage.h"
#include "CD3D9MaterialRenderer.h"
#include "CD3D9ShaderMaterialRenderer.h"
#include "CD3D9NormalMapRenderer.h"
#include "CD3D9ParallaxMapRenderer.h"
#include "CD3D9HLSLMaterialRenderer.h"
#include <float.h>
namespace irr
{
namespace video
{
//! constructor
CD3D9Driver::CD3D9Driver(const core::dimension2d<s32>& screenSize, HWND window,
bool fullscreen, bool stencilbuffer,
io::IFileSystem* io, bool pureSoftware)
: CNullDriver(io, screenSize), CurrentRenderMode(ERM_NONE),
ResetRenderStates(true), Transformation3DChanged(false), StencilBuffer(stencilbuffer),
D3DLibrary(0), pID3D(0), pID3DDevice(0), PrevRenderTarget(0),
LastVertexType((video::E_VERTEX_TYPE)-1), MaxTextureUnits(0), MaxUserClipPlanes(0),
MaxLightDistance(sqrtf(FLT_MAX)), LastSetLight(-1), DeviceLost(false),
Fullscreen(fullscreen)
{
#ifdef _DEBUG
setDebugName("CD3D9Driver");
#endif
printVersion();
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
{
CurrentTexture[i] = 0;
LastTextureMipMapsAvailable[i] = false;
}
// create sphere map matrix
SphereMapMatrixD3D9._11 = 0.5f; SphereMapMatrixD3D9._12 = 0.0f;
SphereMapMatrixD3D9._13 = 0.0f; SphereMapMatrixD3D9._14 = 0.0f;
SphereMapMatrixD3D9._21 = 0.0f; SphereMapMatrixD3D9._22 =-0.5f;
SphereMapMatrixD3D9._23 = 0.0f; SphereMapMatrixD3D9._24 = 0.0f;
SphereMapMatrixD3D9._31 = 0.0f; SphereMapMatrixD3D9._32 = 0.0f;
SphereMapMatrixD3D9._33 = 1.0f; SphereMapMatrixD3D9._34 = 0.0f;
SphereMapMatrixD3D9._41 = 0.5f; SphereMapMatrixD3D9._42 = 0.5f;
SphereMapMatrixD3D9._43 = 0.0f; SphereMapMatrixD3D9._44 = 1.0f;
core::matrix4 mat;
UnitMatrixD3D9 = *(D3DMATRIX*)((void*)mat.pointer());
// init direct 3d is done in the factory function
}
//! destructor
CD3D9Driver::~CD3D9Driver()
{
deleteMaterialRenders();
// drop d3d9
if (pID3DDevice)
pID3DDevice->Release();
if (pID3D)
pID3D->Release();
}
void CD3D9Driver::createMaterialRenderers()
{
// create D3D9 material renderers
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SOLID(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SOLID_2_LAYER(pID3DDevice, this));
// add the same renderer for all lightmap types
CD3D9MaterialRenderer_LIGHTMAP* lmr = new CD3D9MaterialRenderer_LIGHTMAP(pID3DDevice, this);
addMaterialRenderer(lmr); // for EMT_LIGHTMAP:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4:
lmr->drop();
// add remaining fixed function pipeline material renderers
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_DETAIL_MAP(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SPHERE_MAP(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_REFLECTION_2_LAYER(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ADD_COLOR(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_VERTEX_ALPHA(pID3DDevice, this));
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(pID3DDevice, this));
// add normal map renderers
s32 tmp = 0;
video::IMaterialRenderer* renderer = 0;
renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add parallax map renderers
renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp,
MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add basic 1 texture blending
addAndDropMaterialRenderer(new CD3D9MaterialRenderer_ONETEXTURE_BLEND(pID3DDevice, this));
}
//! initialises the Direct3D API
bool CD3D9Driver::initDriver(const core::dimension2d<s32>& screenSize, HWND hwnd,
u32 bits, bool fullScreen, bool pureSoftware,
bool highPrecisionFPU, bool vsync, bool antiAlias)
{
HRESULT hr;
Fullscreen = fullScreen;
if (!pID3D)
{
D3DLibrary = LoadLibrary( "d3d9.dll" );
if (!D3DLibrary)
{
os::Printer::log("Error, could not load d3d9.dll.", ELL_ERROR);
return false;
}
typedef IDirect3D9 * (__stdcall *D3DCREATETYPE)(UINT);
D3DCREATETYPE d3dCreate = (D3DCREATETYPE) GetProcAddress(D3DLibrary, "Direct3DCreate9");
if (!d3dCreate)
{
os::Printer::log("Error, could not get proc adress of Direct3DCreate9.", ELL_ERROR);
return false;
}
//just like pID3D = Direct3DCreate9(D3D_SDK_VERSION);
pID3D = (*d3dCreate)(D3D_SDK_VERSION);
if (!pID3D)
{
os::Printer::log("Error initializing D3D.", ELL_ERROR);
return false;
}
}
// print device information
D3DADAPTER_IDENTIFIER9 dai;
if (!FAILED(pID3D->GetAdapterIdentifier(D3DADAPTER_DEFAULT, 0, &dai)))
{
char tmp[512];
s32 Product = HIWORD(dai.DriverVersion.HighPart);
s32 Version = LOWORD(dai.DriverVersion.HighPart);
s32 SubVersion = HIWORD(dai.DriverVersion.LowPart);
s32 Build = LOWORD(dai.DriverVersion.LowPart);
sprintf(tmp, "%s %s %d.%d.%d.%d", dai.Description, dai.Driver, Product, Version,
SubVersion, Build);
os::Printer::log(tmp, ELL_INFORMATION);
}
D3DDISPLAYMODE d3ddm;
hr = pID3D->GetAdapterDisplayMode(D3DADAPTER_DEFAULT, &d3ddm);
if (FAILED(hr))
{
os::Printer::log("Error: Could not get Adapter Display mode.", ELL_ERROR);
return false;
}
ZeroMemory(&present, sizeof(present));
present.BackBufferCount = 1;
present.EnableAutoDepthStencil = TRUE;
if (vsync)
present.PresentationInterval = D3DPRESENT_INTERVAL_ONE;
else
present.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
if (fullScreen)
{
present.BackBufferWidth = screenSize.Width;
present.BackBufferHeight = screenSize.Height;
// request 32bit mode if user specified 32 bit, added by Thomas St<53>fe
if (bits == 32)
present.BackBufferFormat = D3DFMT_X8R8G8B8;
else
present.BackBufferFormat = D3DFMT_R5G6B5;
present.SwapEffect = D3DSWAPEFFECT_FLIP;
present.Windowed = FALSE;
present.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
}
else
{
present.BackBufferFormat = d3ddm.Format;
present.SwapEffect = D3DSWAPEFFECT_COPY;
present.Windowed = TRUE;
}
D3DDEVTYPE devtype = D3DDEVTYPE_HAL;
#ifndef _IRR_D3D_NO_SHADER_DEBUGGING
devtype = D3DDEVTYPE_REF;
#endif
// enable anti alias if possible and desired
if (antiAlias)
{
DWORD qualityLevels = 0;
if (SUCCEEDED(pID3D->CheckDeviceMultiSampleType(D3DADAPTER_DEFAULT,
devtype, present.BackBufferFormat, !fullScreen,
D3DMULTISAMPLE_4_SAMPLES, &qualityLevels)))
{
// enable multi sampling
present.MultiSampleType = D3DMULTISAMPLE_4_SAMPLES;
present.MultiSampleQuality = qualityLevels-1;
present.SwapEffect = D3DSWAPEFFECT_DISCARD;
}
else
if (SUCCEEDED(pID3D->CheckDeviceMultiSampleType(D3DADAPTER_DEFAULT,
devtype, present.BackBufferFormat, !fullScreen,
D3DMULTISAMPLE_2_SAMPLES, &qualityLevels)))
{
// enable multi sampling
present.MultiSampleType = D3DMULTISAMPLE_2_SAMPLES;
present.MultiSampleQuality = qualityLevels-1;
present.SwapEffect = D3DSWAPEFFECT_DISCARD;
}
else
if (SUCCEEDED(pID3D->CheckDeviceMultiSampleType(D3DADAPTER_DEFAULT,
devtype, present.BackBufferFormat, !fullScreen,
D3DMULTISAMPLE_NONMASKABLE, &qualityLevels)))
{
// enable non maskable multi sampling
present.SwapEffect = D3DSWAPEFFECT_DISCARD;
present.MultiSampleType = D3DMULTISAMPLE_NONMASKABLE;
present.MultiSampleQuality = qualityLevels-1;
}
else
{
os::Printer::log("Anti aliasing disabled because hardware/driver lacks necessary caps.", ELL_WARNING);
antiAlias = false;
}
}
// check stencil buffer compatibility
if (StencilBuffer)
{
present.AutoDepthStencilFormat = D3DFMT_D24S8;
if(FAILED(pID3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D24X4S4;
if(FAILED(pID3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D15S1;
if(FAILED(pID3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
os::Printer::log("Device does not support stencilbuffer, disabling stencil buffer.", ELL_WARNING);
StencilBuffer = false;
}
}
}
else
if(FAILED(pID3D->CheckDepthStencilMatch(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, present.BackBufferFormat, present.AutoDepthStencilFormat)))
{
os::Printer::log("Depth-stencil format is not compatible with display format, disabling stencil buffer.", ELL_WARNING);
StencilBuffer = false;
}
}
// do not use else here to cope with flag change in previous block
if (!StencilBuffer)
{
present.AutoDepthStencilFormat = D3DFMT_D32;
if(FAILED(pID3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D24X8;
if(FAILED(pID3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
present.AutoDepthStencilFormat = D3DFMT_D16;
if(FAILED(pID3D->CheckDeviceFormat(D3DADAPTER_DEFAULT, devtype,
present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL,
D3DRTYPE_SURFACE, present.AutoDepthStencilFormat)))
{
os::Printer::log("Device does not support required depth buffer.", ELL_WARNING);
return false;
}
}
}
}
// create device
DWORD fpuPrecision = highPrecisionFPU ? D3DCREATE_FPU_PRESERVE : 0;
if (pureSoftware)
{
hr = pID3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, hwnd,
fpuPrecision | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &present, &pID3DDevice);
if (FAILED(hr))
os::Printer::log("Was not able to create Direct3D9 software device.", ELL_ERROR);
}
else
{
hr = pID3D->CreateDevice(D3DADAPTER_DEFAULT, devtype, hwnd,
fpuPrecision | D3DCREATE_HARDWARE_VERTEXPROCESSING, &present, &pID3DDevice);
if(FAILED(hr))
hr = pID3D->CreateDevice(D3DADAPTER_DEFAULT, devtype, hwnd,
fpuPrecision | D3DCREATE_MIXED_VERTEXPROCESSING , &present, &pID3DDevice);
if(FAILED(hr))
hr = pID3D->CreateDevice(D3DADAPTER_DEFAULT, devtype, hwnd,
fpuPrecision | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &present, &pID3DDevice);
if (FAILED(hr))
os::Printer::log("Was not able to create Direct3D9 device.", ELL_ERROR);
}
if (!pID3DDevice)
{
os::Printer::log("Was not able to create DIRECT3D9 device.", ELL_ERROR);
return false;
}
// get caps
pID3DDevice->GetDeviceCaps(&Caps);
// disable stencilbuffer if necessary
if (StencilBuffer &&
(!(Caps.StencilCaps & D3DSTENCILCAPS_DECRSAT) ||
!(Caps.StencilCaps & D3DSTENCILCAPS_INCRSAT) ||
!(Caps.StencilCaps & D3DSTENCILCAPS_KEEP)))
{
os::Printer::log("Device not able to use stencil buffer, disabling stencil buffer.", ELL_WARNING);
StencilBuffer = false;
}
// set default vertex shader
setVertexShader(EVT_STANDARD);
// enable antialiasing
if (antiAlias)
pID3DDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE);
// set fog mode
setFog(FogColor, LinearFog, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// set exposed data
ExposedData.D3D9.D3D9 = pID3D;
ExposedData.D3D9.D3DDev9 = pID3DDevice;
ExposedData.D3D9.HWnd = reinterpret_cast<s32>(hwnd);
ResetRenderStates = true;
// create materials
createMaterialRenderers();
MaxTextureUnits = core::min_((u32)Caps.MaxSimultaneousTextures, MATERIAL_MAX_TEXTURES);
MaxUserClipPlanes = (u32)Caps.MaxUserClipPlanes;
// set the renderstates
setRenderStates3DMode();
// set maximal anisotropy
pID3DDevice->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, min(16ul, Caps.MaxAnisotropy));
pID3DDevice->SetSamplerState(1, D3DSAMP_MAXANISOTROPY, min(16ul, Caps.MaxAnisotropy));
pID3DDevice->SetSamplerState(2, D3DSAMP_MAXANISOTROPY, min(16ul, Caps.MaxAnisotropy));
pID3DDevice->SetSamplerState(3, D3DSAMP_MAXANISOTROPY, min(16ul, Caps.MaxAnisotropy));
// so far so good.
return true;
}
//! applications must call this method before performing any rendering. returns false if failed.
bool CD3D9Driver::beginScene(bool backBuffer, bool zBuffer, SColor color)
{
CNullDriver::beginScene(backBuffer, zBuffer, color);
HRESULT hr;
if (!pID3DDevice)
return false;
if (DeviceLost)
{
if(FAILED(hr = pID3DDevice->TestCooperativeLevel()))
{
if (hr == D3DERR_DEVICELOST)
return false;
if (hr == D3DERR_DEVICENOTRESET)
reset();
return false;
}
}
DWORD flags = 0;
if (backBuffer)
flags |= D3DCLEAR_TARGET;
if (zBuffer)
flags |= D3DCLEAR_ZBUFFER;
if (StencilBuffer)
flags |= D3DCLEAR_STENCIL;
hr = pID3DDevice->Clear( 0, NULL, flags, color.color, 1.0, 0);
if (FAILED(hr))
os::Printer::log("DIRECT3D9 clear failed.", ELL_WARNING);
hr = pID3DDevice->BeginScene();
if (FAILED(hr))
{
os::Printer::log("DIRECT3D9 begin scene failed.", ELL_WARNING);
return false;
}
return true;
}
//! applications must call this method after performing any rendering. returns false if failed.
bool CD3D9Driver::endScene( s32 windowId, core::rect<s32>* sourceRect )
{
if (DeviceLost)
return false;
CNullDriver::endScene();
HRESULT hr = pID3DDevice->EndScene();
if (FAILED(hr))
{
os::Printer::log("DIRECT3D9 end scene failed.", ELL_WARNING);
return false;
}
RECT* srcRct = 0;
RECT sourceRectData;
if ( sourceRect )
{
srcRct = &sourceRectData;
sourceRectData.left = sourceRect->UpperLeftCorner.X;
sourceRectData.top = sourceRect->UpperLeftCorner.Y;
sourceRectData.right = sourceRect->LowerRightCorner.X;
sourceRectData.bottom = sourceRect->LowerRightCorner.Y;
}
hr = pID3DDevice->Present(srcRct, NULL, (HWND)windowId, NULL);
if (hr == D3DERR_DEVICELOST)
{
DeviceLost = true;
os::Printer::log("DIRECT3D9 device lost.", ELL_WARNING);
}
else
if (FAILED(hr) && hr != D3DERR_INVALIDCALL)
{
os::Printer::log("DIRECT3D9 present failed.", ELL_WARNING);
return false;
}
return true;
}
//! queries the features of the driver, returns true if feature is available
bool CD3D9Driver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const
{
switch (feature)
{
case EVDF_MULTITEXTURE:
case EVDF_BILINEAR_FILTER:
return true;
case EVDF_RENDER_TO_TARGET:
return Caps.NumSimultaneousRTs > 0;
case EVDF_HARDWARE_TL:
return (Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) != 0;
case EVDF_MIP_MAP:
return (Caps.TextureCaps & D3DPTEXTURECAPS_MIPMAP) != 0;
case EVDF_MIP_MAP_AUTO_UPDATE:
// always return false because a lot of drivers claim they do
// this but actually don't do this at all.
return false; //(Caps.Caps2 & D3DCAPS2_CANAUTOGENMIPMAP) != 0;
case EVDF_STENCIL_BUFFER:
return StencilBuffer && Caps.StencilCaps;
case EVDF_VERTEX_SHADER_1_1:
return Caps.VertexShaderVersion >= D3DVS_VERSION(1,1);
case EVDF_VERTEX_SHADER_2_0:
return Caps.VertexShaderVersion >= D3DVS_VERSION(2,0);
case EVDF_VERTEX_SHADER_3_0:
return Caps.VertexShaderVersion >= D3DVS_VERSION(3,0);
case EVDF_PIXEL_SHADER_1_1:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,1);
case EVDF_PIXEL_SHADER_1_2:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,2);
case EVDF_PIXEL_SHADER_1_3:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,3);
case EVDF_PIXEL_SHADER_1_4:
return Caps.PixelShaderVersion >= D3DPS_VERSION(1,4);
case EVDF_PIXEL_SHADER_2_0:
return Caps.PixelShaderVersion >= D3DPS_VERSION(2,0);
case EVDF_PIXEL_SHADER_3_0:
return Caps.PixelShaderVersion >= D3DPS_VERSION(3,0);
case EVDF_HLSL:
return Caps.VertexShaderVersion >= D3DVS_VERSION(1,1);
case EVDF_TEXTURE_NPOT:
return (Caps.TextureCaps & D3DPTEXTURECAPS_POW2) == 0;
default:
return false;
};
}
//! sets transformation
void CD3D9Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Transformation3DChanged = true;
switch(state)
{
case ETS_VIEW:
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_WORLD:
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_PROJECTION:
pID3DDevice->SetTransform( D3DTS_PROJECTION, (D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_TEXTURE_0:
case ETS_TEXTURE_1:
case ETS_TEXTURE_2:
case ETS_TEXTURE_3:
pID3DDevice->SetTextureStageState( state - ETS_TEXTURE_0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2 );
if (mat.isIdentity())
pID3DDevice->SetTransform( (D3DTRANSFORMSTATETYPE)(D3DTS_TEXTURE0+ ( state - ETS_TEXTURE_0 )), &UnitMatrixD3D9 );
else
pID3DDevice->SetTransform((D3DTRANSFORMSTATETYPE)(D3DTS_TEXTURE0+ ( state - ETS_TEXTURE_0 )),
(D3DMATRIX*)((void*)mat.pointer()));
break;
case ETS_COUNT:
break;
}
Matrices[state] = mat;
}
//! sets the current Texture
bool CD3D9Driver::setTexture(s32 stage, const video::ITexture* texture)
{
if (CurrentTexture[stage] == texture)
return true;
if (texture && texture->getDriverType() != EDT_DIRECT3D9)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
CurrentTexture[stage] = texture;
if (!texture)
{
pID3DDevice->SetTexture(stage, 0);
pID3DDevice->SetTextureStageState( stage, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE );
}
else
{
pID3DDevice->SetTexture(stage, ((const CD3D9Texture*)texture)->getDX9Texture());
}
return true;
}
//! sets a material
void CD3D9Driver::setMaterial(const SMaterial& material)
{
Material = material;
for (u32 i=0; i<MaxTextureUnits; ++i)
{
setTexture(i, Material.getTexture(i));
setTransform((E_TRANSFORMATION_STATE) ( ETS_TEXTURE_0 + i ),
material.getTextureMatrix(i));
}
}
//! returns a device dependent texture from a software surface (IImage)
video::ITexture* CD3D9Driver::createDeviceDependentTexture(IImage* surface, const char* name)
{
return new CD3D9Texture(surface, this, TextureCreationFlags, name);
}
//! Enables or disables a texture creation flag.
void CD3D9Driver::setTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag, bool enabled)
{
if (flag == video::ETCF_CREATE_MIP_MAPS && !queryFeature(EVDF_MIP_MAP))
enabled = false;
CNullDriver::setTextureCreationFlag(flag, enabled);
}
//! sets a render target
bool CD3D9Driver::setRenderTarget(video::ITexture* texture,
bool clearBackBuffer, bool clearZBuffer,
SColor color)
{
// check for right driver type
if (texture && texture->getDriverType() != EDT_DIRECT3D9)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
// check for valid render target
CD3D9Texture* tex = (CD3D9Texture*)texture;
if (texture && !tex->isRenderTarget())
{
os::Printer::log("Fatal Error: Tried to set a non render target texture as render target.", ELL_ERROR);
return false;
}
if (texture && (tex->getSize().Width > ScreenSize.Width ||
tex->getSize().Height > ScreenSize.Height ))
{
os::Printer::log("Error: Tried to set a render target texture which is bigger than the screen.", ELL_ERROR);
return false;
}
// check if we should set the previous RT back
bool ret = true;
if (tex == 0)
{
if (PrevRenderTarget)
{
if (FAILED(pID3DDevice->SetRenderTarget(0, PrevRenderTarget)))
{
os::Printer::log("Error: Could not set back to previous render target.", ELL_ERROR);
ret = false;
}
CurrentRendertargetSize = core::dimension2d<s32>(0,0);
PrevRenderTarget->Release();
PrevRenderTarget = 0;
}
}
else
{
// we want to set a new target. so do this.
// store previous target
if (!PrevRenderTarget)
if (FAILED(pID3DDevice->GetRenderTarget(0, &PrevRenderTarget)))
{
os::Printer::log("Could not get previous render target.", ELL_ERROR);
return false;
}
// set new render target
if (FAILED(pID3DDevice->SetRenderTarget(0, tex->getRenderTargetSurface())))
{
os::Printer::log("Error: Could not set render target.", ELL_ERROR);
return false;
}
CurrentRendertargetSize = tex->getSize();
}
if (clearBackBuffer || clearZBuffer)
{
DWORD flags = 0;
if (clearBackBuffer)
flags |= D3DCLEAR_TARGET;
if (clearZBuffer)
flags |= D3DCLEAR_ZBUFFER;
pID3DDevice->Clear(0, NULL, flags, color.color, 1.0f, 0);
}
return ret;
}
//! sets a viewport
void CD3D9Driver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0,0, ScreenSize.Width, ScreenSize.Height);
vp.clipAgainst(rendert);
D3DVIEWPORT9 viewPort;
viewPort.X = vp.UpperLeftCorner.X;
viewPort.Y = vp.UpperLeftCorner.Y;
viewPort.Width = vp.getWidth();
viewPort.Height = vp.getHeight();
viewPort.MinZ = 0.0f;
viewPort.MaxZ = 1.0f;
HRESULT hr = D3DERR_INVALIDCALL;
if (vp.getHeight()>0 && vp.getWidth()>0)
hr = pID3DDevice->SetViewport(&viewPort);
if (FAILED(hr))
os::Printer::log("Failed setting the viewport.", ELL_WARNING);
ViewPort = vp;
}
//! gets the area of the current viewport
const core::rect<s32>& CD3D9Driver::getViewPort() const
{
return ViewPort;
}
//! draws a vertex primitive list
void CD3D9Driver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const u16* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType);
if (!vertexCount || !primitiveCount)
return;
setVertexShader(vType);
const u32 stride = getVertexPitchFromType(vType);
if (setRenderStates3DMode())
{
switch (pType)
{
case scene::EPT_POINT_SPRITES:
case scene::EPT_POINTS:
{
if (pType==scene::EPT_POINT_SPRITES)
pID3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_POINTSCALEENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_POINTSIZE, *(DWORD*)(&Material.Thickness));
f32 tmp=1.0f;
pID3DDevice->SetRenderState(D3DRS_POINTSCALE_C, *(DWORD*)(&tmp));
tmp=0.0f;
pID3DDevice->SetRenderState(D3DRS_POINTSIZE_MIN, *(DWORD*)(&tmp));
pID3DDevice->SetRenderState(D3DRS_POINTSCALE_A, *(DWORD*)(&tmp));
pID3DDevice->SetRenderState(D3DRS_POINTSCALE_B, *(DWORD*)(&tmp));
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_POINTLIST, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
pID3DDevice->SetRenderState(D3DRS_POINTSCALEENABLE, FALSE);
if (pType==scene::EPT_POINT_SPRITES)
pID3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, FALSE);
}
break;
case scene::EPT_LINE_STRIP:
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINESTRIP, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
break;
case scene::EPT_LINE_LOOP:
{
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINESTRIP, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
u16 tmpIndices[] = {0, primitiveCount};
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINELIST, 0, vertexCount,
1, tmpIndices, D3DFMT_INDEX16, vertices, stride);
}
break;
case scene::EPT_LINES:
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINELIST, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
break;
case scene::EPT_TRIANGLE_STRIP:
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLESTRIP, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
break;
case scene::EPT_TRIANGLE_FAN:
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLEFAN, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
break;
case scene::EPT_TRIANGLES:
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, vertexCount,
primitiveCount, indexList, D3DFMT_INDEX16, vertices, stride);
break;
}
}
}
void CD3D9Driver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
video::SColor* colors, bool useAlphaChannelOfTexture)
{
if(!texture)
return;
const core::dimension2d<s32>& ss = texture->getOriginalSize();
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (f32)sourceRect.UpperLeftCorner.X / (f32)ss.Width;
tcoords.UpperLeftCorner.Y = (f32)sourceRect.UpperLeftCorner.Y / (f32)ss.Height;
tcoords.LowerRightCorner.X = (f32)sourceRect.LowerRightCorner.X / (f32)ss.Width;
tcoords.LowerRightCorner.Y = (f32)sourceRect.LowerRightCorner.Y / (f32)ss.Height;
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
core::rect<f32> npos;
f32 xFact = 2.0f / ( renderTargetSize.Width );
f32 yFact = 2.0f / ( renderTargetSize.Height );
npos.UpperLeftCorner.X = ( destRect.UpperLeftCorner.X * xFact ) - 1.0f;
npos.UpperLeftCorner.Y = 1.0f - ( destRect.UpperLeftCorner.Y * yFact );
npos.LowerRightCorner.X = ( destRect.LowerRightCorner.X * xFact ) - 1.0f;
npos.LowerRightCorner.Y = 1.0f - ( destRect.LowerRightCorner.Y * yFact );
video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
video::SColor* useColor = colors ? colors : temp;
S3DVertex vtx[4]; // clock wise
vtx[0] = S3DVertex(npos.UpperLeftCorner.X, npos.UpperLeftCorner.Y , 0.0f, 0.0f, 0.0f, 0.0f, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx[1] = S3DVertex(npos.LowerRightCorner.X, npos.UpperLeftCorner.Y , 0.0f, 0.0f, 0.0f, 0.0f, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx[2] = S3DVertex(npos.LowerRightCorner.X, npos.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx[3] = S3DVertex(npos.UpperLeftCorner.X, npos.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
s16 indices[6] = {0,1,2,0,2,3};
setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 || useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255, true, useAlphaChannelOfTexture);
setTexture(0, const_cast<video::ITexture*>(texture));
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16,&vtx[0], sizeof(S3DVertex));
}
//! draws a 2d image, using a color and the alpha channel of the texture if
//! desired. The image is drawn at pos and clipped against clipRect (if != 0).
void CD3D9Driver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
if (!setTexture(0, const_cast<video::ITexture*>(texture)))
return;
core::position2d<s32> targetPos = pos;
core::position2d<s32> sourcePos = sourceRect.UpperLeftCorner;
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
s32 xPlus = -renderTargetSize.Width / 2;
f32 xFact = 2.0f / renderTargetSize.Width;
s32 yPlus = renderTargetSize.Height / 2;
f32 yFact = 2.0f / renderTargetSize.Height;
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)+0.5f) / texture->getOriginalSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)+0.5f) / texture->getOriginalSize().Height;
tcoords.LowerRightCorner.X = (((f32)sourcePos.X +0.5f + (f32)sourceSize.Width)) / texture->getOriginalSize().Width;
tcoords.LowerRightCorner.Y = (((f32)sourcePos.Y +0.5f + (f32)sourceSize.Height)) / texture->getOriginalSize().Height;
core::rect<s32> poss(targetPos, sourceSize);
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
S3DVertex vtx[4];
vtx[0] = S3DVertex((f32)(poss.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-poss.UpperLeftCorner.Y ) * yFact , 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx[1] = S3DVertex((f32)(poss.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus- poss.UpperLeftCorner.Y) * yFact, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx[2] = S3DVertex((f32)(poss.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus-poss.LowerRightCorner.Y) * yFact, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx[3] = S3DVertex((f32)(poss.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-poss.LowerRightCorner.Y) * yFact, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
s16 indices[6] = {0,1,2,0,2,3};
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16,&vtx[0], sizeof(S3DVertex));
}
//!Draws a 2d rectangle with a gradient.
void CD3D9Driver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos(position);
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
s32 xPlus = -renderTargetSize.Width / 2;
f32 xFact = 2.0f / renderTargetSize.Width;
s32 yPlus = renderTargetSize.Height / 2;
f32 yFact = 2.0f / renderTargetSize.Height;
S3DVertex vtx[4];
vtx[0] = S3DVertex((f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.UpperLeftCorner.Y) * yFact , 0.0f, 0.0f, 0.0f, 0.0f, colorLeftUp, 0.0f, 0.0f);
vtx[1] = S3DVertex((f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus- pos.UpperLeftCorner.Y) * yFact, 0.0f, 0.0f, 0.0f, 0.0f, colorRightUp, 0.0f, 1.0f);
vtx[2] = S3DVertex((f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.0f, 0.0f, 0.0f, 0.0f, colorRightDown, 1.0f, 0.0f);
vtx[3] = S3DVertex((f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.0f, 0.0f, 0.0f, 0.0f, colorLeftDown, 1.0f, 1.0f);
s16 indices[6] = {0,1,2,0,2,3};
setRenderStates2DMode(
colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
setTexture(0,0);
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16, &vtx[0], sizeof(S3DVertex));
}
//! Draws a 2d line.
void CD3D9Driver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
// thanks to Vash TheStampede who sent in his implementation
const core::dimension2d<s32>& renderTargetSize = getCurrentRenderTargetSize();
const s32 xPlus = -renderTargetSize.Width / 2;
const f32 xFact = 2.0f / renderTargetSize.Width;
const s32 yPlus = renderTargetSize.Height / 2;
const f32 yFact = 2.0f / renderTargetSize.Height;
S3DVertex vtx[2];
vtx[0] = S3DVertex((f32)(start.X + xPlus) * xFact,
(f32)(yPlus - start.Y) * yFact,
0.0f, // z
0.0f, 0.0f, 0.0f, // normal
color,
0.0f, 0.0f); // texture
vtx[1] = S3DVertex((f32)(end.X+xPlus) * xFact,
(f32)(yPlus- end.Y) * yFact,
0.0f,
0.0f, 0.0f, 0.0f,
color,
0.0f, 0.0f);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
setTexture(0,0);
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1,
&vtx[0], sizeof(S3DVertex) );
}
//! sets right vertex shader
void CD3D9Driver::setVertexShader(E_VERTEX_TYPE newType)
{
if (newType != LastVertexType)
{
LastVertexType = newType;
HRESULT hr = 0;
switch(newType)
{
case EVT_STANDARD:
hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1);
break;
case EVT_2TCOORDS:
hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX2);
break;
case EVT_TANGENTS:
hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX3 |
D3DFVF_TEXCOORDSIZE2(0) | // real texture coord
D3DFVF_TEXCOORDSIZE3(1) | // misuse texture coord 2 for tangent
D3DFVF_TEXCOORDSIZE3(2) // misuse texture coord 3 for binormal
);
break;
}
if (FAILED(hr))
{
os::Printer::log("Could not set vertex Shader.", ELL_ERROR);
return;
}
}
}
//! sets the needed renderstates
bool CD3D9Driver::setRenderStates3DMode()
{
if (!pID3DDevice)
return false;
if (CurrentRenderMode != ERM_3D)
{
// switch back the matrices
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)&Matrices[ETS_VIEW]));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)&Matrices[ETS_WORLD]));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)&Matrices[ETS_PROJECTION]));
pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material)
{
// unset old material
if (CurrentRenderMode == ERM_3D &&
LastMaterial.MaterialType != Material.MaterialType &&
LastMaterial.MaterialType >= 0 && LastMaterial.MaterialType < (s32)MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
}
bool shaderOK = true;
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
shaderOK = MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, LastVertexType);
LastMaterial = Material;
ResetRenderStates = false;
CurrentRenderMode = ERM_3D;
return shaderOK;
}
//! Can be called by an IMaterialRenderer to make its work easier.
void CD3D9Driver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial,
bool resetAllRenderstates)
{
if (resetAllRenderstates ||
lastmaterial.AmbientColor != material.AmbientColor ||
lastmaterial.DiffuseColor != material.DiffuseColor ||
lastmaterial.SpecularColor != material.SpecularColor ||
lastmaterial.EmissiveColor != material.EmissiveColor ||
lastmaterial.Shininess != material.Shininess)
{
D3DMATERIAL9 mat;
mat.Diffuse = colorToD3D(material.DiffuseColor);
mat.Ambient = colorToD3D(material.AmbientColor);
mat.Specular = colorToD3D(material.SpecularColor);
mat.Emissive = colorToD3D(material.EmissiveColor);
mat.Power = material.Shininess;
pID3DDevice->SetMaterial(&mat);
}
// fillmode
if (resetAllRenderstates || lastmaterial.Wireframe != material.Wireframe || lastmaterial.PointCloud != material.PointCloud)
{
if (material.Wireframe)
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
else
if (material.PointCloud)
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_POINT);
else
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
}
// shademode
if (resetAllRenderstates || lastmaterial.GouraudShading != material.GouraudShading)
{
if (material.GouraudShading)
pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);
else
pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
}
// lighting
if (resetAllRenderstates || lastmaterial.Lighting != material.Lighting)
{
if (material.Lighting)
pID3DDevice->SetRenderState(D3DRS_LIGHTING, TRUE);
else
pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
}
// zbuffer
if (resetAllRenderstates || lastmaterial.ZBuffer != material.ZBuffer)
{
switch (material.ZBuffer)
{
case 0:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
break;
case 1:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESSEQUAL);
break;
case 2:
pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_EQUAL);
break;
}
}
// zwrite
if (resetAllRenderstates || lastmaterial.ZWriteEnable != material.ZWriteEnable)
{
if ( material.ZWriteEnable )
pID3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE);
else
pID3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE);
}
// back face culling
if (resetAllRenderstates || lastmaterial.BackfaceCulling != material.BackfaceCulling)
{
if (material.BackfaceCulling)
pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW);
else
pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE);
}
// fog
if (resetAllRenderstates || lastmaterial.FogEnable != material.FogEnable)
{
pID3DDevice->SetRenderState(D3DRS_FOGENABLE, material.FogEnable);
}
// specular highlights
if (resetAllRenderstates || !core::equals(lastmaterial.Shininess,material.Shininess))
{
bool enable = (material.Shininess!=0.0f);
pID3DDevice->SetRenderState(D3DRS_SPECULARENABLE, enable);
pID3DDevice->SetRenderState(D3DRS_NORMALIZENORMALS, enable);
pID3DDevice->SetRenderState(D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL);
}
// normalization
if (resetAllRenderstates || lastmaterial.NormalizeNormals != material.NormalizeNormals)
{
pID3DDevice->SetRenderState(D3DRS_NORMALIZENORMALS, material.NormalizeNormals);
}
// thickness
if (resetAllRenderstates || lastmaterial.Thickness != material.Thickness)
{
pID3DDevice->SetRenderState(D3DRS_POINTSIZE, *((DWORD*)&material.Thickness));
}
// texture address mode
for (u32 st=0; st<MaxTextureUnits; ++st)
{
if (resetAllRenderstates || lastmaterial.TextureLayer[st].TextureWrap != material.TextureLayer[st].TextureWrap)
{
u32 mode = D3DTADDRESS_WRAP;
switch (material.TextureLayer[st].TextureWrap)
{
case ETC_REPEAT:
mode=D3DTADDRESS_WRAP;
break;
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
mode=D3DTADDRESS_CLAMP;
break;
case ETC_MIRROR:
mode=D3DTADDRESS_MIRROR;
break;
case ETC_CLAMP_TO_BORDER:
mode=D3DTADDRESS_BORDER;
break;
}
pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSU, mode );
pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSV, mode );
}
// Bilinear, trilinear, and anisotropic filter
if (resetAllRenderstates ||
lastmaterial.TextureLayer[st].BilinearFilter != material.TextureLayer[st].BilinearFilter ||
lastmaterial.TextureLayer[st].TrilinearFilter != material.TextureLayer[st].TrilinearFilter ||
lastmaterial.TextureLayer[st].AnisotropicFilter != material.TextureLayer[st].AnisotropicFilter)
{
if (material.TextureLayer[st].BilinearFilter || material.TextureLayer[st].TrilinearFilter || material.TextureLayer[st].AnisotropicFilter)
{
D3DTEXTUREFILTERTYPE tftMag = ((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MAGFANISOTROPIC) && material.TextureLayer[st].AnisotropicFilter) ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR;
D3DTEXTUREFILTERTYPE tftMin = ((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MINFANISOTROPIC) && material.TextureLayer[st].AnisotropicFilter) ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR;
D3DTEXTUREFILTERTYPE tftMip = material.TextureLayer[st].TrilinearFilter ? D3DTEXF_LINEAR : D3DTEXF_POINT;
pID3DDevice->SetSamplerState(st, D3DSAMP_MAGFILTER, tftMag);
pID3DDevice->SetSamplerState(st, D3DSAMP_MINFILTER, tftMin);
pID3DDevice->SetSamplerState(st, D3DSAMP_MIPFILTER, tftMip);
}
else
{
pID3DDevice->SetSamplerState(st, D3DSAMP_MINFILTER, D3DTEXF_POINT);
pID3DDevice->SetSamplerState(st, D3DSAMP_MIPFILTER, D3DTEXF_NONE);
pID3DDevice->SetSamplerState(st, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
}
}
}
}
//! sets the needed renderstates
void CD3D9Driver::setRenderStatesStencilShadowMode(bool zfail)
{
if ((CurrentRenderMode != ERM_SHADOW_VOLUME_ZFAIL &&
CurrentRenderMode != ERM_SHADOW_VOLUME_ZPASS) ||
Transformation3DChanged)
{
// switch back the matrices
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)&Matrices[ETS_VIEW]));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)&Matrices[ETS_WORLD]));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)&Matrices[ETS_PROJECTION]));
Transformation3DChanged = false;
setTexture(0,0);
setTexture(1,0);
setTexture(2,0);
setTexture(3,0);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(2, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(3, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(3, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetFVF(D3DFVF_XYZ);
LastVertexType = (video::E_VERTEX_TYPE)(-1);
pID3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE );
pID3DDevice->SetRenderState( D3DRS_STENCILENABLE, TRUE );
pID3DDevice->SetRenderState( D3DRS_SHADEMODE, D3DSHADE_FLAT);
// unset last 3d material
if (CurrentRenderMode == ERM_3D &&
Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial();
//pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
//pID3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
}
if (CurrentRenderMode != ERM_SHADOW_VOLUME_ZPASS && !zfail)
{
// USE THE ZPASS METHOD
pID3DDevice->SetRenderState( D3DRS_STENCILFUNC, D3DCMP_ALWAYS );
pID3DDevice->SetRenderState( D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState( D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState( D3DRS_STENCILREF, 0x1 );
pID3DDevice->SetRenderState( D3DRS_STENCILMASK, 0xffffffff );
pID3DDevice->SetRenderState( D3DRS_STENCILWRITEMASK, 0xffffffff );
pID3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ZERO );
pID3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
}
else
if (CurrentRenderMode != ERM_SHADOW_VOLUME_ZFAIL && zfail)
{
// USE THE ZFAIL METHOD
pID3DDevice->SetRenderState( D3DRS_STENCILFUNC, D3DCMP_ALWAYS );
pID3DDevice->SetRenderState( D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState( D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState( D3DRS_STENCILPASS, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState( D3DRS_STENCILREF, 0x0 );
pID3DDevice->SetRenderState( D3DRS_STENCILMASK, 0xffffffff );
pID3DDevice->SetRenderState( D3DRS_STENCILWRITEMASK, 0xffffffff );
pID3DDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE );
pID3DDevice->SetRenderState( D3DRS_SRCBLEND, D3DBLEND_ZERO );
pID3DDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE );
}
CurrentRenderMode = zfail ? ERM_SHADOW_VOLUME_ZFAIL : ERM_SHADOW_VOLUME_ZPASS;
}
//! sets the needed renderstates
void CD3D9Driver::setRenderStatesStencilFillMode(bool alpha)
{
if (CurrentRenderMode != ERM_STENCIL_FILL || Transformation3DChanged)
{
core::matrix4 mat;
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)mat.pointer()));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)mat.pointer()));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)mat.pointer()));
pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(2, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(3, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(3, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetRenderState(D3DRS_STENCILREF, 0x1);
pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_LESSEQUAL);
//pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_GREATEREQUAL);
pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP );
pID3DDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff );
pID3DDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff );
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
Transformation3DChanged = false;
if (alpha)
{
pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA );
}
else
{
pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_DISABLE );
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
CurrentRenderMode = ERM_STENCIL_FILL;
}
//! sets the needed renderstates
void CD3D9Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (!pID3DDevice)
return;
if (CurrentRenderMode != ERM_2D || Transformation3DChanged)
{
core::matrix4 mat;
pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)mat.pointer()));
pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)mat.pointer()));
pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)mat.pointer()));
pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
//pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE);
pID3DDevice->SetRenderState(D3DRS_SPECULARENABLE, FALSE);
pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(2, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(2, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(3, D3DTSS_COLOROP, D3DTOP_DISABLE);
pID3DDevice->SetTextureStageState(3, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetRenderState( D3DRS_STENCILENABLE, FALSE );
pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW );
pID3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP );
pID3DDevice->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP );
pID3DDevice->SetTextureStageState( 0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, 0);
pID3DDevice->SetTransform( D3DTS_TEXTURE0, &UnitMatrixD3D9 );
Transformation3DChanged = false;
// unset last 3d material
if (CurrentRenderMode == ERM_3D &&
Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial();
}
if (texture)
{
pID3DDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);
pID3DDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_NONE);
pID3DDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
if (alphaChannel)
{
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
if (alpha)
{
pID3DDevice->SetTextureStageState (0, D3DTSS_ALPHAOP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState (0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState (0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE );
}
else
{
pID3DDevice->SetTextureStageState (0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1 );
pID3DDevice->SetTextureStageState (0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE );
}
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA );
}
else
{
if (alpha)
{
pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2);
pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA );
}
else
{
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
}
else
{
if (alpha)
{
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
pID3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE );
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA );
}
else
{
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
pID3DDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_DISABLE);
pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
}
CurrentRenderMode = ERM_2D;
}
//! deletes all dynamic lights there are
void CD3D9Driver::deleteAllDynamicLights()
{
for (s32 i=0; i<LastSetLight+1; ++i)
pID3DDevice->LightEnable(i, false);
LastSetLight = -1;
CNullDriver::deleteAllDynamicLights();
}
//! adds a dynamic light
void CD3D9Driver::addDynamicLight(const SLight& dl)
{
if ((u32)LastSetLight == Caps.MaxActiveLights-1)
return;
CNullDriver::addDynamicLight(dl);
D3DLIGHT9 light;
switch (dl.Type)
{
case ELT_POINT:
light.Type = D3DLIGHT_POINT;
break;
case ELT_SPOT:
light.Type = D3DLIGHT_SPOT;
break;
case ELT_DIRECTIONAL:
light.Type = D3DLIGHT_DIRECTIONAL;
break;
}
light.Position = *(D3DVECTOR*)((void*)(&dl.Position));
light.Direction = *(D3DVECTOR*)((void*)(&dl.Direction));
light.Range = core::min_(dl.Radius, MaxLightDistance);
light.Falloff = dl.Falloff;
light.Diffuse = *(D3DCOLORVALUE*)((void*)(&dl.DiffuseColor));
light.Specular = *(D3DCOLORVALUE*)((void*)(&dl.SpecularColor));
light.Ambient = *(D3DCOLORVALUE*)((void*)(&dl.AmbientColor));
light.Attenuation0 = dl.Attenuation.X;
light.Attenuation1 = dl.Attenuation.Y;
light.Attenuation2 = dl.Attenuation.Z;
light.Theta = dl.InnerCone * 2.0f * core::DEGTORAD;
light.Phi = dl.OuterCone * 2.0f * core::DEGTORAD;
++LastSetLight;
pID3DDevice->SetLight(LastSetLight, &light);
pID3DDevice->LightEnable(LastSetLight, true);
}
//! returns the maximal amount of dynamic lights the device can handle
u32 CD3D9Driver::getMaximalDynamicLightAmount() const
{
return Caps.MaxActiveLights;
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void CD3D9Driver::setAmbientLight(const SColorf& color)
{
if (!pID3DDevice)
return;
AmbientLight = color;
D3DCOLOR col = color.toSColor().color;
pID3DDevice->SetRenderState(D3DRS_AMBIENT, col);
}
//! \return Returns the name of the video driver. Example: In case of the DIRECT3D9
//! driver, it would return "Direct3D9.0".
const wchar_t* CD3D9Driver::getName() const
{
return L"Direct3D 9.0";
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: Frist, draw all geometry. Then use this method, to draw the shadow
//! volume. Then, use IVideoDriver::drawStencilShadow() to visualize the shadow.
void CD3D9Driver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail)
{
if (!StencilBuffer || !count)
return;
setRenderStatesStencilShadowMode(zfail);
if (!zfail)
{
// ZPASS Method
// Draw front-side of shadow volume in stencil/z only
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW );
pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCRSAT);
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles, sizeof(core::vector3df));
// Now reverse cull order so front sides of shadow volume are written.
pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CW );
pID3DDevice->SetRenderState( D3DRS_STENCILPASS, D3DSTENCILOP_DECRSAT);
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles, sizeof(core::vector3df));
}
else
{
// ZFAIL Method
// Draw front-side of shadow volume in stencil/z only
pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW );
pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCRSAT );
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles, sizeof(core::vector3df));
// Now reverse cull order so front sides of shadow volume are written.
pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW );
pID3DDevice->SetRenderState( D3DRS_STENCILZFAIL, D3DSTENCILOP_DECRSAT );
pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles, sizeof(core::vector3df));
}
}
//! Fills the stencil shadow with color. After the shadow volume has been drawn
//! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this
//! to draw the color of the shadow.
void CD3D9Driver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
S3DVertex vtx[4];
vtx[0] = S3DVertex(1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, leftUpEdge, 0.0f, 0.0f);
vtx[1] = S3DVertex(1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, rightUpEdge, 0.0f, 1.0f);
vtx[2] = S3DVertex(-1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, leftDownEdge, 1.0f, 0.0f);
vtx[3] = S3DVertex(-1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, rightDownEdge, 1.0f, 1.0f);
s16 indices[6] = {0,1,2,1,3,2};
setRenderStatesStencilFillMode(
leftUpEdge.getAlpha() < 255 ||
rightUpEdge.getAlpha() < 255 ||
leftDownEdge.getAlpha() < 255 ||
rightDownEdge.getAlpha() < 255);
setTexture(0,0);
setVertexShader(EVT_STANDARD);
pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0],
D3DFMT_INDEX16, &vtx[0], sizeof(S3DVertex));
if (clearStencilBuffer)
pID3DDevice->Clear( 0, NULL, D3DCLEAR_STENCIL,0, 1.0, 0);
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 CD3D9Driver::getMaximalPrimitiveCount() const
{
return Caps.MaxPrimitiveCount;
}
//! Sets the fog mode.
void CD3D9Driver::setFog(SColor color, bool linearFog, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(color, linearFog, start, end, density, pixelFog, rangeFog);
if (!pID3DDevice)
return;
pID3DDevice->SetRenderState(D3DRS_FOGCOLOR, color.color);
pID3DDevice->SetRenderState(
pixelFog ? D3DRS_FOGTABLEMODE : D3DRS_FOGVERTEXMODE,
linearFog ? D3DFOG_LINEAR : D3DFOG_EXP);
if(linearFog)
{
pID3DDevice->SetRenderState(D3DRS_FOGSTART, *(DWORD*)(&start));
pID3DDevice->SetRenderState(D3DRS_FOGEND, *(DWORD*)(&end));
}
else
pID3DDevice->SetRenderState(D3DRS_FOGDENSITY, *(DWORD*)(&density));
if(!pixelFog)
pID3DDevice->SetRenderState(D3DRS_RANGEFOGENABLE, rangeFog);
}
//! Draws a 3d line.
void CD3D9Driver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setVertexShader(EVT_STANDARD);
setRenderStates3DMode();
video::S3DVertex v[2];
v[0].Color = color;
v[1].Color = color;
v[0].Pos = start;
v[1].Pos = end;
pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1, v, sizeof(S3DVertex));
}
//! resets the device
bool CD3D9Driver::reset()
{
// reset
HRESULT hr;
os::Printer::log("Resetting D3D9 device.", ELL_INFORMATION);
if (FAILED(hr = pID3DDevice->Reset(&present)))
{
if (hr == D3DERR_DEVICELOST)
{
DeviceLost = true;
os::Printer::log("Resetting failed due to device lost.", ELL_WARNING);
}
else
os::Printer::log("Resetting failed.", ELL_WARNING);
return false;
}
DeviceLost = false;
ResetRenderStates = true;
LastVertexType = (E_VERTEX_TYPE)-1;
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
CurrentTexture[i] = 0;
setVertexShader(EVT_STANDARD);
setRenderStates3DMode();
setFog(FogColor, LinearFog, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
setAmbientLight(AmbientLight);
return true;
}
void CD3D9Driver::OnResize(const core::dimension2d<s32>& size)
{
if (!pID3DDevice)
return;
CNullDriver::OnResize(size);
present.BackBufferWidth = size.Width;
present.BackBufferHeight = size.Height;
reset();
}
//! Returns type of video driver
E_DRIVER_TYPE CD3D9Driver::getDriverType() const
{
return EDT_DIRECT3D9;
}
//! Returns the transformation set by setTransform
const core::matrix4& CD3D9Driver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! Sets a vertex shader constant.
void CD3D9Driver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
if (data)
pID3DDevice->SetVertexShaderConstantF(startRegister, data, constantAmount);
}
//! Sets a pixel shader constant.
void CD3D9Driver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
if (data)
pID3DDevice->SetPixelShaderConstantF(startRegister, data, constantAmount);
}
//! Sets a constant for the vertex shader based on a name.
bool CD3D9Driver::setVertexShaderConstant(const c8* name, const f32* floats, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(true, name, floats, count);
}
return false;
}
//! Sets a constant for the pixel shader based on a name.
bool CD3D9Driver::setPixelShaderConstant(const c8* name, const f32* floats, int count)
{
if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size())
{
CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer;
return r->setVariable(false, name, floats, count);
}
return false;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices* CD3D9Driver::getGPUProgrammingServices()
{
return this;
}
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
s32 CD3D9Driver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
{
s32 nr = -1;
CD3D9ShaderMaterialRenderer* r = new CD3D9ShaderMaterialRenderer(
pID3DDevice, this, nr, vertexShaderProgram, pixelShaderProgram,
callback, getMaterialRenderer(baseMaterial), userData);
r->drop();
return nr;
}
//! Adds a new material renderer to the VideoDriver, based on a high level shading
//! language.
s32 CD3D9Driver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 nr = -1;
CD3D9HLSLMaterialRenderer* hlsl = new CD3D9HLSLMaterialRenderer(
pID3DDevice, this, nr,
vertexShaderProgram,
vertexShaderEntryPointName,
vsCompileTarget,
pixelShaderProgram,
pixelShaderEntryPointName,
psCompileTarget,
callback,
getMaterialRenderer(baseMaterial),
userData);
hlsl->drop();
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* CD3D9Driver::getVideoDriver()
{
return this;
}
//! Creates a render target texture.
ITexture* CD3D9Driver::createRenderTargetTexture(const core::dimension2d<s32>& size, const c8* name)
{
return new CD3D9Texture(this, size, name);
}
//! Clears the ZBuffer.
void CD3D9Driver::clearZBuffer()
{
HRESULT hr = pID3DDevice->Clear( 0, NULL, D3DCLEAR_ZBUFFER, 0, 1.0, 0);
if (FAILED(hr))
os::Printer::log("CD3D9Driver clearZBuffer() failed.", ELL_WARNING);
}
//! Returns an image created from the last rendered frame.
IImage* CD3D9Driver::createScreenShot()
{
HRESULT hr;
// query the screen dimensions of the current adapter
D3DDISPLAYMODE displayMode;
pID3DDevice->GetDisplayMode(0, &displayMode);
// create the image surface to store the front buffer image [always A8R8G8B8]
LPDIRECT3DSURFACE9 lpSurface;
if (FAILED(hr = pID3DDevice->CreateOffscreenPlainSurface(displayMode.Width, displayMode.Height, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &lpSurface, 0)))
return 0;
// read the front buffer into the image surface
if (FAILED(hr = pID3DDevice->GetFrontBufferData(0, lpSurface)))
{
lpSurface->Release();
return 0;
}
RECT clientRect;
{
POINT clientPoint;
clientPoint.x = 0;
clientPoint.y = 0;
ClientToScreen((HWND)getExposedVideoData().D3D9.HWnd, &clientPoint);
clientRect.left = clientPoint.x;
clientRect.top = clientPoint.y;
clientRect.right = clientRect.left + ScreenSize.Width;
clientRect.bottom = clientRect.top + ScreenSize.Height;
}
// lock our area of the surface
D3DLOCKED_RECT lockedRect;
if (FAILED(lpSurface->LockRect(&lockedRect, &clientRect, D3DLOCK_READONLY)))
{
lpSurface->Release();
return 0;
}
// this could throw, but we aren't going to worry about that case very much
IImage* newImage = new CImage(ECF_A8R8G8B8, ScreenSize);
// d3d pads the image, so we need to copy the correct number of bytes
u32* dP = (u32*)newImage->lock();
u8 * sP = (u8 *)lockedRect.pBits;
for (s32 y = 0; y < ScreenSize.Height; ++y)
{
memcpy(dP, sP, ScreenSize.Width * 4);
sP += lockedRect.Pitch;
dP += ScreenSize.Width;
}
newImage->unlock();
// we can unlock and release the surface
lpSurface->UnlockRect();
// release the image surface
lpSurface->Release();
// return status of save operation to caller
return newImage;
}
// returns the current size of the screen or rendertarget
core::dimension2d<s32> CD3D9Driver::getCurrentRenderTargetSize()
{
if ( CurrentRendertargetSize.Width == 0 )
return ScreenSize;
else
return CurrentRendertargetSize;
}
// Set/unset a clipping plane.
bool CD3D9Driver::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= MaxUserClipPlanes)
return false;
pID3DDevice->SetClipPlane(index, (const float*)&plane);
enableClipPlane(index, enable);
return true;
}
// Enable/disable a clipping plane.
void CD3D9Driver::enableClipPlane(u32 index, bool enable)
{
if (index >= MaxUserClipPlanes)
return;
DWORD renderstate;
pID3DDevice->GetRenderState(D3DRS_CLIPPLANEENABLE, &renderstate);
if (enable)
renderstate |= (1 << index);
else
renderstate &= ~(1 << index);
pID3DDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, renderstate);
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_DIRECT3D_9_
namespace irr
{
namespace video
{
#ifdef _IRR_COMPILE_WITH_DIRECT3D_9_
//! creates a video driver
IVideoDriver* createDirectX9Driver(const core::dimension2d<s32>& screenSize, HWND window,
u32 bits, bool fullscreen, bool stencilbuffer,
io::IFileSystem* io, bool pureSoftware, bool highPrecisionFPU,
bool vsync, bool antiAlias)
{
CD3D9Driver* dx9 = new CD3D9Driver(screenSize, window, fullscreen, stencilbuffer, io, pureSoftware);
if (!dx9->initDriver(screenSize, window, bits, fullscreen, pureSoftware, highPrecisionFPU, vsync, antiAlias))
{
dx9->drop();
dx9 = 0;
}
return dx9;
}
#endif // _IRR_COMPILE_WITH_DIRECT3D_9_
} // end namespace video
} // end namespace irr