LuaJIT/src/vm_x86.dasc

5826 lines
154 KiB
Plaintext

|// Low-level VM code for x86 CPUs.
|// Bytecode interpreter, fast functions and helper functions.
|// Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h
|
|.if P64
|.arch x64
|.else
|.arch x86
|.endif
|.section code_op, code_sub
|
|.actionlist build_actionlist
|.globals GLOB_
|.globalnames globnames
|.externnames extnames
|
|//-----------------------------------------------------------------------
|
|.if P64
|.define X64, 1
|.if WIN
|.define X64WIN, 1
|.endif
|.endif
|
|// Fixed register assignments for the interpreter.
|// This is very fragile and has many dependencies. Caveat emptor.
|.define BASE, edx // Not C callee-save, refetched anyway.
|.if not X64
|.define KBASE, edi // Must be C callee-save.
|.define KBASEa, KBASE
|.define PC, esi // Must be C callee-save.
|.define PCa, PC
|.define DISPATCH, ebx // Must be C callee-save.
|.elif X64WIN
|.define KBASE, edi // Must be C callee-save.
|.define KBASEa, rdi
|.define PC, esi // Must be C callee-save.
|.define PCa, rsi
|.define DISPATCH, ebx // Must be C callee-save.
|.else
|.define KBASE, r15d // Must be C callee-save.
|.define KBASEa, r15
|.define PC, ebx // Must be C callee-save.
|.define PCa, rbx
|.define DISPATCH, r14d // Must be C callee-save.
|.endif
|
|.define RA, ecx
|.define RAH, ch
|.define RAL, cl
|.define RB, ebp // Must be ebp (C callee-save).
|.define RC, eax // Must be eax.
|.define RCW, ax
|.define RCH, ah
|.define RCL, al
|.define OP, RB
|.define RD, RC
|.define RDW, RCW
|.define RDL, RCL
|.if X64
|.define RAa, rcx
|.define RBa, rbp
|.define RCa, rax
|.define RDa, rax
|.else
|.define RAa, RA
|.define RBa, RB
|.define RCa, RC
|.define RDa, RD
|.endif
|
|.if not X64
|.define FCARG1, ecx // x86 fastcall arguments.
|.define FCARG2, edx
|.elif X64WIN
|.define CARG1, rcx // x64/WIN64 C call arguments.
|.define CARG2, rdx
|.define CARG3, r8
|.define CARG4, r9
|.define CARG1d, ecx
|.define CARG2d, edx
|.define CARG3d, r8d
|.define CARG4d, r9d
|.define FCARG1, CARG1d // Upwards compatible to x86 fastcall.
|.define FCARG2, CARG2d
|.else
|.define CARG1, rdi // x64/POSIX C call arguments.
|.define CARG2, rsi
|.define CARG3, rdx
|.define CARG4, rcx
|.define CARG5, r8
|.define CARG6, r9
|.define CARG1d, edi
|.define CARG2d, esi
|.define CARG3d, edx
|.define CARG4d, ecx
|.define CARG5d, r8d
|.define CARG6d, r9d
|.define FCARG1, CARG1d // Simulate x86 fastcall.
|.define FCARG2, CARG2d
|.endif
|
|// Type definitions. Some of these are only used for documentation.
|.type L, lua_State
|.type GL, global_State
|.type TVALUE, TValue
|.type GCOBJ, GCobj
|.type STR, GCstr
|.type TAB, GCtab
|.type LFUNC, GCfuncL
|.type CFUNC, GCfuncC
|.type PROTO, GCproto
|.type UPVAL, GCupval
|.type NODE, Node
|.type NARGS, int
|.type TRACE, GCtrace
|.type SBUF, SBuf
|
|// Stack layout while in interpreter. Must match with lj_frame.h.
|//-----------------------------------------------------------------------
|.if not X64 // x86 stack layout.
|
|.if WIN
|
|.define CFRAME_SPACE, aword*9 // Delta for esp (see <--).
|.macro saveregs_
| push edi; push esi; push ebx
| push extern lj_err_unwind_win
| fs; push dword [0]
| fs; mov [0], esp
| sub esp, CFRAME_SPACE
|.endmacro
|.macro restoreregs
| add esp, CFRAME_SPACE
| fs; pop dword [0]
| pop edi // Short for esp += 4.
| pop ebx; pop esi; pop edi; pop ebp
|.endmacro
|
|.else
|
|.define CFRAME_SPACE, aword*7 // Delta for esp (see <--).
|.macro saveregs_
| push edi; push esi; push ebx
| sub esp, CFRAME_SPACE
|.endmacro
|.macro restoreregs
| add esp, CFRAME_SPACE
| pop ebx; pop esi; pop edi; pop ebp
|.endmacro
|
|.endif
|
|.macro saveregs
| push ebp; saveregs_
|.endmacro
|
|.if WIN
|.define SAVE_ERRF, aword [esp+aword*19] // vm_pcall/vm_cpcall only.
|.define SAVE_NRES, aword [esp+aword*18]
|.define SAVE_CFRAME, aword [esp+aword*17]
|.define SAVE_L, aword [esp+aword*16]
|//----- 16 byte aligned, ^^^ arguments from C caller
|.define SAVE_RET, aword [esp+aword*15] //<-- esp entering interpreter.
|.define SAVE_R4, aword [esp+aword*14]
|.define SAVE_R3, aword [esp+aword*13]
|.define SAVE_R2, aword [esp+aword*12]
|//----- 16 byte aligned
|.define SAVE_R1, aword [esp+aword*11]
|.define SEH_FUNC, aword [esp+aword*10]
|.define SEH_NEXT, aword [esp+aword*9] //<-- esp after register saves.
|.define UNUSED2, aword [esp+aword*8]
|//----- 16 byte aligned
|.define UNUSED1, aword [esp+aword*7]
|.define SAVE_PC, aword [esp+aword*6]
|.define TMP2, aword [esp+aword*5]
|.define TMP1, aword [esp+aword*4]
|//----- 16 byte aligned
|.define ARG4, aword [esp+aword*3]
|.define ARG3, aword [esp+aword*2]
|.define ARG2, aword [esp+aword*1]
|.define ARG1, aword [esp] //<-- esp while in interpreter.
|//----- 16 byte aligned, ^^^ arguments for C callee
|.else
|.define SAVE_ERRF, aword [esp+aword*15] // vm_pcall/vm_cpcall only.
|.define SAVE_NRES, aword [esp+aword*14]
|.define SAVE_CFRAME, aword [esp+aword*13]
|.define SAVE_L, aword [esp+aword*12]
|//----- 16 byte aligned, ^^^ arguments from C caller
|.define SAVE_RET, aword [esp+aword*11] //<-- esp entering interpreter.
|.define SAVE_R4, aword [esp+aword*10]
|.define SAVE_R3, aword [esp+aword*9]
|.define SAVE_R2, aword [esp+aword*8]
|//----- 16 byte aligned
|.define SAVE_R1, aword [esp+aword*7] //<-- esp after register saves.
|.define SAVE_PC, aword [esp+aword*6]
|.define TMP2, aword [esp+aword*5]
|.define TMP1, aword [esp+aword*4]
|//----- 16 byte aligned
|.define ARG4, aword [esp+aword*3]
|.define ARG3, aword [esp+aword*2]
|.define ARG2, aword [esp+aword*1]
|.define ARG1, aword [esp] //<-- esp while in interpreter.
|//----- 16 byte aligned, ^^^ arguments for C callee
|.endif
|
|// FPARGx overlaps ARGx and ARG(x+1) on x86.
|.define FPARG3, qword [esp+qword*1]
|.define FPARG1, qword [esp]
|// TMPQ overlaps TMP1/TMP2. ARG5/MULTRES overlap TMP1/TMP2 (and TMPQ).
|.define TMPQ, qword [esp+aword*4]
|.define TMP3, ARG4
|.define ARG5, TMP1
|.define TMPa, TMP1
|.define MULTRES, TMP2
|
|// Arguments for vm_call and vm_pcall.
|.define INARG_BASE, SAVE_CFRAME // Overwritten by SAVE_CFRAME!
|
|// Arguments for vm_cpcall.
|.define INARG_CP_CALL, SAVE_ERRF
|.define INARG_CP_UD, SAVE_NRES
|.define INARG_CP_FUNC, SAVE_CFRAME
|
|//-----------------------------------------------------------------------
|.elif X64WIN // x64/Windows stack layout
|
|.define CFRAME_SPACE, aword*5 // Delta for rsp (see <--).
|.macro saveregs_
| push rdi; push rsi; push rbx
| sub rsp, CFRAME_SPACE
|.endmacro
|.macro saveregs
| push rbp; saveregs_
|.endmacro
|.macro restoreregs
| add rsp, CFRAME_SPACE
| pop rbx; pop rsi; pop rdi; pop rbp
|.endmacro
|
|.define SAVE_CFRAME, aword [rsp+aword*13]
|.define SAVE_PC, dword [rsp+dword*25]
|.define SAVE_L, dword [rsp+dword*24]
|.define SAVE_ERRF, dword [rsp+dword*23]
|.define SAVE_NRES, dword [rsp+dword*22]
|.define TMP2, dword [rsp+dword*21]
|.define TMP1, dword [rsp+dword*20]
|//----- 16 byte aligned, ^^^ 32 byte register save area, owned by interpreter
|.define SAVE_RET, aword [rsp+aword*9] //<-- rsp entering interpreter.
|.define SAVE_R4, aword [rsp+aword*8]
|.define SAVE_R3, aword [rsp+aword*7]
|.define SAVE_R2, aword [rsp+aword*6]
|.define SAVE_R1, aword [rsp+aword*5] //<-- rsp after register saves.
|.define ARG5, aword [rsp+aword*4]
|.define CSAVE_4, aword [rsp+aword*3]
|.define CSAVE_3, aword [rsp+aword*2]
|.define CSAVE_2, aword [rsp+aword*1]
|.define CSAVE_1, aword [rsp] //<-- rsp while in interpreter.
|//----- 16 byte aligned, ^^^ 32 byte register save area, owned by callee
|
|// TMPQ overlaps TMP1/TMP2. MULTRES overlaps TMP2 (and TMPQ).
|.define TMPQ, qword [rsp+aword*10]
|.define MULTRES, TMP2
|.define TMPa, ARG5
|.define ARG5d, dword [rsp+aword*4]
|.define TMP3, ARG5d
|
|//-----------------------------------------------------------------------
|.else // x64/POSIX stack layout
|
|.define CFRAME_SPACE, aword*5 // Delta for rsp (see <--).
|.macro saveregs_
| push rbx; push r15; push r14
|.if NO_UNWIND
| push r13; push r12
|.endif
| sub rsp, CFRAME_SPACE
|.endmacro
|.macro saveregs
| push rbp; saveregs_
|.endmacro
|.macro restoreregs
| add rsp, CFRAME_SPACE
|.if NO_UNWIND
| pop r12; pop r13
|.endif
| pop r14; pop r15; pop rbx; pop rbp
|.endmacro
|
|//----- 16 byte aligned,
|.if NO_UNWIND
|.define SAVE_RET, aword [rsp+aword*11] //<-- rsp entering interpreter.
|.define SAVE_R4, aword [rsp+aword*10]
|.define SAVE_R3, aword [rsp+aword*9]
|.define SAVE_R2, aword [rsp+aword*8]
|.define SAVE_R1, aword [rsp+aword*7]
|.define SAVE_RU2, aword [rsp+aword*6]
|.define SAVE_RU1, aword [rsp+aword*5] //<-- rsp after register saves.
|.else
|.define SAVE_RET, aword [rsp+aword*9] //<-- rsp entering interpreter.
|.define SAVE_R4, aword [rsp+aword*8]
|.define SAVE_R3, aword [rsp+aword*7]
|.define SAVE_R2, aword [rsp+aword*6]
|.define SAVE_R1, aword [rsp+aword*5] //<-- rsp after register saves.
|.endif
|.define SAVE_CFRAME, aword [rsp+aword*4]
|.define SAVE_PC, dword [rsp+dword*7]
|.define SAVE_L, dword [rsp+dword*6]
|.define SAVE_ERRF, dword [rsp+dword*5]
|.define SAVE_NRES, dword [rsp+dword*4]
|.define TMPa, aword [rsp+aword*1]
|.define TMP2, dword [rsp+dword*1]
|.define TMP1, dword [rsp] //<-- rsp while in interpreter.
|//----- 16 byte aligned
|
|// TMPQ overlaps TMP1/TMP2. MULTRES overlaps TMP2 (and TMPQ).
|.define TMPQ, qword [rsp]
|.define TMP3, dword [rsp+aword*1]
|.define MULTRES, TMP2
|
|.endif
|
|//-----------------------------------------------------------------------
|
|// Instruction headers.
|.macro ins_A; .endmacro
|.macro ins_AD; .endmacro
|.macro ins_AJ; .endmacro
|.macro ins_ABC; movzx RB, RCH; movzx RC, RCL; .endmacro
|.macro ins_AB_; movzx RB, RCH; .endmacro
|.macro ins_A_C; movzx RC, RCL; .endmacro
|.macro ins_AND; not RDa; .endmacro
|
|// Instruction decode+dispatch. Carefully tuned (nope, lodsd is not faster).
|.macro ins_NEXT
| mov RC, [PC]
| movzx RA, RCH
| movzx OP, RCL
| add PC, 4
| shr RC, 16
|.if X64
| jmp aword [DISPATCH+OP*8]
|.else
| jmp aword [DISPATCH+OP*4]
|.endif
|.endmacro
|
|// Instruction footer.
|.if 1
| // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
| .define ins_next, ins_NEXT
| .define ins_next_, ins_NEXT
|.else
| // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
| // Affects only certain kinds of benchmarks (and only with -j off).
| // Around 10%-30% slower on Core2, a lot more slower on P4.
| .macro ins_next
| jmp ->ins_next
| .endmacro
| .macro ins_next_
| ->ins_next:
| ins_NEXT
| .endmacro
|.endif
|
|// Call decode and dispatch.
|.macro ins_callt
| // BASE = new base, RB = LFUNC, RD = nargs+1, [BASE-4] = PC
| mov PC, LFUNC:RB->pc
| mov RA, [PC]
| movzx OP, RAL
| movzx RA, RAH
| add PC, 4
|.if X64
| jmp aword [DISPATCH+OP*8]
|.else
| jmp aword [DISPATCH+OP*4]
|.endif
|.endmacro
|
|.macro ins_call
| // BASE = new base, RB = LFUNC, RD = nargs+1
| mov [BASE-4], PC
| ins_callt
|.endmacro
|
|//-----------------------------------------------------------------------
|
|// Macros to test operand types.
|.macro checktp, reg, tp; cmp dword [BASE+reg*8+4], tp; .endmacro
|.macro checknum, reg, target; checktp reg, LJ_TISNUM; jae target; .endmacro
|.macro checkint, reg, target; checktp reg, LJ_TISNUM; jne target; .endmacro
|.macro checkstr, reg, target; checktp reg, LJ_TSTR; jne target; .endmacro
|.macro checktab, reg, target; checktp reg, LJ_TTAB; jne target; .endmacro
|
|// These operands must be used with movzx.
|.define PC_OP, byte [PC-4]
|.define PC_RA, byte [PC-3]
|.define PC_RB, byte [PC-1]
|.define PC_RC, byte [PC-2]
|.define PC_RD, word [PC-2]
|
|.macro branchPC, reg
| lea PC, [PC+reg*4-BCBIAS_J*4]
|.endmacro
|
|// Assumes DISPATCH is relative to GL.
#define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field))
#define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field))
|
#define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
|
|// Decrement hashed hotcount and trigger trace recorder if zero.
|.macro hotloop, reg
| mov reg, PC
| shr reg, 1
| and reg, HOTCOUNT_PCMASK
| sub word [DISPATCH+reg+GG_DISP2HOT], HOTCOUNT_LOOP
| jb ->vm_hotloop
|.endmacro
|
|.macro hotcall, reg
| mov reg, PC
| shr reg, 1
| and reg, HOTCOUNT_PCMASK
| sub word [DISPATCH+reg+GG_DISP2HOT], HOTCOUNT_CALL
| jb ->vm_hotcall
|.endmacro
|
|// Set current VM state.
|.macro set_vmstate, st
| mov dword [DISPATCH+DISPATCH_GL(vmstate)], ~LJ_VMST_..st
|.endmacro
|
|// x87 compares.
|.macro fcomparepp // Compare and pop st0 >< st1.
| fucomip st1
| fpop
|.endmacro
|
|.macro fpop1; fstp st1; .endmacro
|
|// Synthesize SSE FP constants.
|.macro sseconst_abs, reg, tmp // Synthesize abs mask.
|.if X64
| mov64 tmp, U64x(7fffffff,ffffffff); movd reg, tmp
|.else
| pxor reg, reg; pcmpeqd reg, reg; psrlq reg, 1
|.endif
|.endmacro
|
|.macro sseconst_hi, reg, tmp, val // Synthesize hi-32 bit const.
|.if X64
| mov64 tmp, U64x(val,00000000); movd reg, tmp
|.else
| mov tmp, 0x .. val; movd reg, tmp; pshufd reg, reg, 0x51
|.endif
|.endmacro
|
|.macro sseconst_sign, reg, tmp // Synthesize sign mask.
| sseconst_hi reg, tmp, 80000000
|.endmacro
|.macro sseconst_1, reg, tmp // Synthesize 1.0.
| sseconst_hi reg, tmp, 3ff00000
|.endmacro
|.macro sseconst_2p52, reg, tmp // Synthesize 2^52.
| sseconst_hi reg, tmp, 43300000
|.endmacro
|.macro sseconst_tobit, reg, tmp // Synthesize 2^52 + 2^51.
| sseconst_hi reg, tmp, 43380000
|.endmacro
|
|// Move table write barrier back. Overwrites reg.
|.macro barrierback, tab, reg
| and byte tab->marked, (uint8_t)~LJ_GC_BLACK // black2gray(tab)
| mov reg, [DISPATCH+DISPATCH_GL(gc.grayagain)]
| mov [DISPATCH+DISPATCH_GL(gc.grayagain)], tab
| mov tab->gclist, reg
|.endmacro
|
|//-----------------------------------------------------------------------
/* Generate subroutines used by opcodes and other parts of the VM. */
/* The .code_sub section should be last to help static branch prediction. */
static void build_subroutines(BuildCtx *ctx)
{
|.code_sub
|
|//-----------------------------------------------------------------------
|//-- Return handling ----------------------------------------------------
|//-----------------------------------------------------------------------
|
|->vm_returnp:
| test PC, FRAME_P
| jz ->cont_dispatch
|
| // Return from pcall or xpcall fast func.
| and PC, -8
| sub BASE, PC // Restore caller base.
| lea RAa, [RA+PC-8] // Rebase RA and prepend one result.
| mov PC, [BASE-4] // Fetch PC of previous frame.
| // Prepending may overwrite the pcall frame, so do it at the end.
| mov dword [BASE+RA+4], LJ_TTRUE // Prepend true to results.
|
|->vm_returnc:
| add RD, 1 // RD = nresults+1
| jz ->vm_unwind_yield
| mov MULTRES, RD
| test PC, FRAME_TYPE
| jz ->BC_RET_Z // Handle regular return to Lua.
|
|->vm_return:
| // BASE = base, RA = resultofs, RD = nresults+1 (= MULTRES), PC = return
| xor PC, FRAME_C
| test PC, FRAME_TYPE
| jnz ->vm_returnp
|
| // Return to C.
| set_vmstate C
| and PC, -8
| sub PC, BASE
| neg PC // Previous base = BASE - delta.
|
| sub RD, 1
| jz >2
|1: // Move results down.
|.if X64
| mov RBa, [BASE+RA]
| mov [BASE-8], RBa
|.else
| mov RB, [BASE+RA]
| mov [BASE-8], RB
| mov RB, [BASE+RA+4]
| mov [BASE-4], RB
|.endif
| add BASE, 8
| sub RD, 1
| jnz <1
|2:
| mov L:RB, SAVE_L
| mov L:RB->base, PC
|3:
| mov RD, MULTRES
| mov RA, SAVE_NRES // RA = wanted nresults+1
|4:
| cmp RA, RD
| jne >6 // More/less results wanted?
|5:
| sub BASE, 8
| mov L:RB->top, BASE
|
|->vm_leave_cp:
| mov RAa, SAVE_CFRAME // Restore previous C frame.
| mov L:RB->cframe, RAa
| xor eax, eax // Ok return status for vm_pcall.
|
|->vm_leave_unw:
| restoreregs
| ret
|
|6:
| jb >7 // Less results wanted?
| // More results wanted. Check stack size and fill up results with nil.
| cmp BASE, L:RB->maxstack
| ja >8
| mov dword [BASE-4], LJ_TNIL
| add BASE, 8
| add RD, 1
| jmp <4
|
|7: // Less results wanted.
| test RA, RA
| jz <5 // But check for LUA_MULTRET+1.
| sub RA, RD // Negative result!
| lea BASE, [BASE+RA*8] // Correct top.
| jmp <5
|
|8: // Corner case: need to grow stack for filling up results.
| // This can happen if:
| // - A C function grows the stack (a lot).
| // - The GC shrinks the stack in between.
| // - A return back from a lua_call() with (high) nresults adjustment.
| mov L:RB->top, BASE // Save current top held in BASE (yes).
| mov MULTRES, RD // Need to fill only remainder with nil.
| mov FCARG2, RA
| mov FCARG1, L:RB
| call extern lj_state_growstack@8 // (lua_State *L, int n)
| mov BASE, L:RB->top // Need the (realloced) L->top in BASE.
| jmp <3
|
|->vm_unwind_yield:
| mov al, LUA_YIELD
| jmp ->vm_unwind_c_eh
|
|->vm_unwind_c@8: // Unwind C stack, return from vm_pcall.
| // (void *cframe, int errcode)
|.if X64
| mov eax, CARG2d // Error return status for vm_pcall.
| mov rsp, CARG1
|.else
| mov eax, FCARG2 // Error return status for vm_pcall.
| mov esp, FCARG1
|.if WIN
| lea FCARG1, SEH_NEXT
| fs; mov [0], FCARG1
|.endif
|.endif
|->vm_unwind_c_eh: // Landing pad for external unwinder.
| mov L:RB, SAVE_L
| mov GL:RB, L:RB->glref
| mov dword GL:RB->vmstate, ~LJ_VMST_C
| jmp ->vm_leave_unw
|
|->vm_unwind_rethrow:
|.if X64 and not X64WIN
| mov FCARG1, SAVE_L
| mov FCARG2, eax
| restoreregs
| jmp extern lj_err_throw@8 // (lua_State *L, int errcode)
|.endif
|
|->vm_unwind_ff@4: // Unwind C stack, return from ff pcall.
| // (void *cframe)
|.if X64
| and CARG1, CFRAME_RAWMASK
| mov rsp, CARG1
|.else
| and FCARG1, CFRAME_RAWMASK
| mov esp, FCARG1
|.if WIN
| lea FCARG1, SEH_NEXT
| fs; mov [0], FCARG1
|.endif
|.endif
|->vm_unwind_ff_eh: // Landing pad for external unwinder.
| mov L:RB, SAVE_L
| mov RAa, -8 // Results start at BASE+RA = BASE-8.
| mov RD, 1+1 // Really 1+2 results, incr. later.
| mov BASE, L:RB->base
| mov DISPATCH, L:RB->glref // Setup pointer to dispatch table.
| add DISPATCH, GG_G2DISP
| mov PC, [BASE-4] // Fetch PC of previous frame.
| mov dword [BASE-4], LJ_TFALSE // Prepend false to error message.
| set_vmstate INTERP
| jmp ->vm_returnc // Increments RD/MULTRES and returns.
|
|.if WIN and not X64
|->vm_rtlunwind@16: // Thin layer around RtlUnwind.
| // (void *cframe, void *excptrec, void *unwinder, int errcode)
| mov [esp], FCARG1 // Return value for RtlUnwind.
| push FCARG2 // Exception record for RtlUnwind.
| push 0 // Ignored by RtlUnwind.
| push dword [FCARG1+CFRAME_OFS_SEH]
| call extern RtlUnwind@16 // Violates ABI (clobbers too much).
| mov FCARG1, eax
| mov FCARG2, [esp+4] // errcode (for vm_unwind_c).
| ret // Jump to unwinder.
|.endif
|
|//-----------------------------------------------------------------------
|//-- Grow stack for calls -----------------------------------------------
|//-----------------------------------------------------------------------
|
|->vm_growstack_c: // Grow stack for C function.
| mov FCARG2, LUA_MINSTACK
| jmp >2
|
|->vm_growstack_v: // Grow stack for vararg Lua function.
| sub RD, 8
| jmp >1
|
|->vm_growstack_f: // Grow stack for fixarg Lua function.
| // BASE = new base, RD = nargs+1, RB = L, PC = first PC
| lea RD, [BASE+NARGS:RD*8-8]
|1:
| movzx RA, byte [PC-4+PC2PROTO(framesize)]
| add PC, 4 // Must point after first instruction.
| mov L:RB->base, BASE
| mov L:RB->top, RD
| mov SAVE_PC, PC
| mov FCARG2, RA
|2:
| // RB = L, L->base = new base, L->top = top
| mov FCARG1, L:RB
| call extern lj_state_growstack@8 // (lua_State *L, int n)
| mov BASE, L:RB->base
| mov RD, L:RB->top
| mov LFUNC:RB, [BASE-8]
| sub RD, BASE
| shr RD, 3
| add NARGS:RD, 1
| // BASE = new base, RB = LFUNC, RD = nargs+1
| ins_callt // Just retry the call.
|
|//-----------------------------------------------------------------------
|//-- Entry points into the assembler VM ---------------------------------
|//-----------------------------------------------------------------------
|
|->vm_resume: // Setup C frame and resume thread.
| // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
| saveregs
|.if X64
| mov L:RB, CARG1d // Caveat: CARG1d may be RA.
| mov SAVE_L, CARG1d
| mov RA, CARG2d
|.else
| mov L:RB, SAVE_L
| mov RA, INARG_BASE // Caveat: overlaps SAVE_CFRAME!
|.endif
| mov PC, FRAME_CP
| xor RD, RD
| lea KBASEa, [esp+CFRAME_RESUME]
| mov DISPATCH, L:RB->glref // Setup pointer to dispatch table.
| add DISPATCH, GG_G2DISP
| mov SAVE_PC, RD // Any value outside of bytecode is ok.
| mov SAVE_CFRAME, RDa
|.if X64
| mov SAVE_NRES, RD
| mov SAVE_ERRF, RD
|.endif
| mov L:RB->cframe, KBASEa
| cmp byte L:RB->status, RDL
| je >2 // Initial resume (like a call).
|
| // Resume after yield (like a return).
| mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB
| set_vmstate INTERP
| mov byte L:RB->status, RDL
| mov BASE, L:RB->base
| mov RD, L:RB->top
| sub RD, RA
| shr RD, 3
| add RD, 1 // RD = nresults+1
| sub RA, BASE // RA = resultofs
| mov PC, [BASE-4]
| mov MULTRES, RD
| test PC, FRAME_TYPE
| jz ->BC_RET_Z
| jmp ->vm_return
|
|->vm_pcall: // Setup protected C frame and enter VM.
| // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
| saveregs
| mov PC, FRAME_CP
|.if X64
| mov SAVE_ERRF, CARG4d
|.endif
| jmp >1
|
|->vm_call: // Setup C frame and enter VM.
| // (lua_State *L, TValue *base, int nres1)
| saveregs
| mov PC, FRAME_C
|
|1: // Entry point for vm_pcall above (PC = ftype).
|.if X64
| mov SAVE_NRES, CARG3d
| mov L:RB, CARG1d // Caveat: CARG1d may be RA.
| mov SAVE_L, CARG1d
| mov RA, CARG2d
|.else
| mov L:RB, SAVE_L
| mov RA, INARG_BASE // Caveat: overlaps SAVE_CFRAME!
|.endif
|
| mov DISPATCH, L:RB->glref // Setup pointer to dispatch table.
| mov KBASEa, L:RB->cframe // Add our C frame to cframe chain.
| mov SAVE_CFRAME, KBASEa
| mov SAVE_PC, L:RB // Any value outside of bytecode is ok.
| add DISPATCH, GG_G2DISP
|.if X64
| mov L:RB->cframe, rsp
|.else
| mov L:RB->cframe, esp
|.endif
|
|2: // Entry point for vm_resume/vm_cpcall (RA = base, RB = L, PC = ftype).
| mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB
| set_vmstate INTERP
| mov BASE, L:RB->base // BASE = old base (used in vmeta_call).
| add PC, RA
| sub PC, BASE // PC = frame delta + frame type
|
| mov RD, L:RB->top
| sub RD, RA
| shr NARGS:RD, 3
| add NARGS:RD, 1 // RD = nargs+1
|
|->vm_call_dispatch:
| mov LFUNC:RB, [RA-8]
| cmp dword [RA-4], LJ_TFUNC
| jne ->vmeta_call // Ensure KBASE defined and != BASE.
|
|->vm_call_dispatch_f:
| mov BASE, RA
| ins_call
| // BASE = new base, RB = func, RD = nargs+1, PC = caller PC
|
|->vm_cpcall: // Setup protected C frame, call C.
| // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
| saveregs
|.if X64
| mov L:RB, CARG1d // Caveat: CARG1d may be RA.
| mov SAVE_L, CARG1d
|.else
| mov L:RB, SAVE_L
| // Caveat: INARG_CP_* and SAVE_CFRAME/SAVE_NRES/SAVE_ERRF overlap!
| mov RC, INARG_CP_UD // Get args before they are overwritten.
| mov RA, INARG_CP_FUNC
| mov BASE, INARG_CP_CALL
|.endif
| mov SAVE_PC, L:RB // Any value outside of bytecode is ok.
|
| mov KBASE, L:RB->stack // Compute -savestack(L, L->top).
| sub KBASE, L:RB->top
| mov DISPATCH, L:RB->glref // Setup pointer to dispatch table.
| mov SAVE_ERRF, 0 // No error function.
| mov SAVE_NRES, KBASE // Neg. delta means cframe w/o frame.
| add DISPATCH, GG_G2DISP
| // Handler may change cframe_nres(L->cframe) or cframe_errfunc(L->cframe).
|
|.if X64
| mov KBASEa, L:RB->cframe // Add our C frame to cframe chain.
| mov SAVE_CFRAME, KBASEa
| mov L:RB->cframe, rsp
| mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB
|
| call CARG4 // (lua_State *L, lua_CFunction func, void *ud)
|.else
| mov ARG3, RC // Have to copy args downwards.
| mov ARG2, RA
| mov ARG1, L:RB
|
| mov KBASE, L:RB->cframe // Add our C frame to cframe chain.
| mov SAVE_CFRAME, KBASE
| mov L:RB->cframe, esp
| mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB
|
| call BASE // (lua_State *L, lua_CFunction func, void *ud)
|.endif
| // TValue * (new base) or NULL returned in eax (RC).
| test RC, RC
| jz ->vm_leave_cp // No base? Just remove C frame.
| mov RA, RC
| mov PC, FRAME_CP
| jmp <2 // Else continue with the call.
|
|//-----------------------------------------------------------------------
|//-- Metamethod handling ------------------------------------------------
|//-----------------------------------------------------------------------
|
|//-- Continuation dispatch ----------------------------------------------
|
|->cont_dispatch:
| // BASE = meta base, RA = resultofs, RD = nresults+1 (also in MULTRES)
| add RA, BASE
| and PC, -8
| mov RB, BASE
| sub BASE, PC // Restore caller BASE.
| mov dword [RA+RD*8-4], LJ_TNIL // Ensure one valid arg.
| mov RC, RA // ... in [RC]
| mov PC, [RB-12] // Restore PC from [cont|PC].
|.if X64
| movsxd RAa, dword [RB-16] // May be negative on WIN64 with debug.
|.if FFI
| cmp RA, 1
| jbe >1
|.endif
| lea KBASEa, qword [=>0]
| add RAa, KBASEa
|.else
| mov RA, dword [RB-16]
|.if FFI
| cmp RA, 1
| jbe >1
|.endif
|.endif
| mov LFUNC:KBASE, [BASE-8]
| mov KBASE, LFUNC:KBASE->pc
| mov KBASE, [KBASE+PC2PROTO(k)]
| // BASE = base, RC = result, RB = meta base
| jmp RAa // Jump to continuation.
|
|.if FFI
|1:
| je ->cont_ffi_callback // cont = 1: return from FFI callback.
| // cont = 0: Tail call from C function.
| sub RB, BASE
| shr RB, 3
| lea RD, [RB-1]
| jmp ->vm_call_tail
|.endif
|
|->cont_cat: // BASE = base, RC = result, RB = mbase
| movzx RA, PC_RB
| sub RB, 16
| lea RA, [BASE+RA*8]
| sub RA, RB
| je ->cont_ra
| neg RA
| shr RA, 3
|.if X64WIN
| mov CARG3d, RA
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE
| mov RCa, [RC]
| mov [RB], RCa
| mov CARG2d, RB
|.elif X64
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE
| mov CARG3d, RA
| mov RAa, [RC]
| mov [RB], RAa
| mov CARG2d, RB
|.else
| mov ARG3, RA
| mov RA, [RC+4]
| mov RC, [RC]
| mov [RB+4], RA
| mov [RB], RC
| mov ARG2, RB
|.endif
| jmp ->BC_CAT_Z
|
|//-- Table indexing metamethods -----------------------------------------
|
|->vmeta_tgets:
| mov TMP1, RC // RC = GCstr *
| mov TMP2, LJ_TSTR
| lea RCa, TMP1 // Store temp. TValue in TMP1/TMP2.
| cmp PC_OP, BC_GGET
| jne >1
| lea RA, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv.
| mov [RA], TAB:RB // RB = GCtab *
| mov dword [RA+4], LJ_TTAB
| mov RB, RA
| jmp >2
|
|->vmeta_tgetb:
| movzx RC, PC_RC
|.if DUALNUM
| mov TMP2, LJ_TISNUM
| mov TMP1, RC
|.else
| cvtsi2sd xmm0, RC
| movsd TMPQ, xmm0
|.endif
| lea RCa, TMPQ // Store temp. TValue in TMPQ.
| jmp >1
|
|->vmeta_tgetv:
| movzx RC, PC_RC // Reload TValue *k from RC.
| lea RC, [BASE+RC*8]
|1:
| movzx RB, PC_RB // Reload TValue *t from RB.
| lea RB, [BASE+RB*8]
|2:
|.if X64
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE // Caveat: CARG2d/CARG3d may be BASE.
| mov CARG2d, RB
| mov CARG3, RCa // May be 64 bit ptr to stack.
| mov L:RB, L:CARG1d
|.else
| mov ARG2, RB
| mov L:RB, SAVE_L
| mov ARG3, RC
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k)
| // TValue * (finished) or NULL (metamethod) returned in eax (RC).
| mov BASE, L:RB->base
| test RC, RC
| jz >3
|->cont_ra: // BASE = base, RC = result
| movzx RA, PC_RA
|.if X64
| mov RBa, [RC]
| mov [BASE+RA*8], RBa
|.else
| mov RB, [RC+4]
| mov RC, [RC]
| mov [BASE+RA*8+4], RB
| mov [BASE+RA*8], RC
|.endif
| ins_next
|
|3: // Call __index metamethod.
| // BASE = base, L->top = new base, stack = cont/func/t/k
| mov RA, L:RB->top
| mov [RA-12], PC // [cont|PC]
| lea PC, [RA+FRAME_CONT]
| sub PC, BASE
| mov LFUNC:RB, [RA-8] // Guaranteed to be a function here.
| mov NARGS:RD, 2+1 // 2 args for func(t, k).
| jmp ->vm_call_dispatch_f
|
|->vmeta_tgetr:
| mov FCARG1, TAB:RB
| mov RB, BASE // Save BASE.
| mov FCARG2, RC // Caveat: FCARG2 == BASE
| call extern lj_tab_getinth@8 // (GCtab *t, int32_t key)
| // cTValue * or NULL returned in eax (RC).
| movzx RA, PC_RA
| mov BASE, RB // Restore BASE.
| test RC, RC
| jnz ->BC_TGETR_Z
| mov dword [BASE+RA*8+4], LJ_TNIL
| jmp ->BC_TGETR2_Z
|
|//-----------------------------------------------------------------------
|
|->vmeta_tsets:
| mov TMP1, RC // RC = GCstr *
| mov TMP2, LJ_TSTR
| lea RCa, TMP1 // Store temp. TValue in TMP1/TMP2.
| cmp PC_OP, BC_GSET
| jne >1
| lea RA, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv.
| mov [RA], TAB:RB // RB = GCtab *
| mov dword [RA+4], LJ_TTAB
| mov RB, RA
| jmp >2
|
|->vmeta_tsetb:
| movzx RC, PC_RC
|.if DUALNUM
| mov TMP2, LJ_TISNUM
| mov TMP1, RC
|.else
| cvtsi2sd xmm0, RC
| movsd TMPQ, xmm0
|.endif
| lea RCa, TMPQ // Store temp. TValue in TMPQ.
| jmp >1
|
|->vmeta_tsetv:
| movzx RC, PC_RC // Reload TValue *k from RC.
| lea RC, [BASE+RC*8]
|1:
| movzx RB, PC_RB // Reload TValue *t from RB.
| lea RB, [BASE+RB*8]
|2:
|.if X64
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE // Caveat: CARG2d/CARG3d may be BASE.
| mov CARG2d, RB
| mov CARG3, RCa // May be 64 bit ptr to stack.
| mov L:RB, L:CARG1d
|.else
| mov ARG2, RB
| mov L:RB, SAVE_L
| mov ARG3, RC
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k)
| // TValue * (finished) or NULL (metamethod) returned in eax (RC).
| mov BASE, L:RB->base
| test RC, RC
| jz >3
| // NOBARRIER: lj_meta_tset ensures the table is not black.
| movzx RA, PC_RA
|.if X64
| mov RBa, [BASE+RA*8]
| mov [RC], RBa
|.else
| mov RB, [BASE+RA*8+4]
| mov RA, [BASE+RA*8]
| mov [RC+4], RB
| mov [RC], RA
|.endif
|->cont_nop: // BASE = base, (RC = result)
| ins_next
|
|3: // Call __newindex metamethod.
| // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
| mov RA, L:RB->top
| mov [RA-12], PC // [cont|PC]
| movzx RC, PC_RA
| // Copy value to third argument.
|.if X64
| mov RBa, [BASE+RC*8]
| mov [RA+16], RBa
|.else
| mov RB, [BASE+RC*8+4]
| mov RC, [BASE+RC*8]
| mov [RA+20], RB
| mov [RA+16], RC
|.endif
| lea PC, [RA+FRAME_CONT]
| sub PC, BASE
| mov LFUNC:RB, [RA-8] // Guaranteed to be a function here.
| mov NARGS:RD, 3+1 // 3 args for func(t, k, v).
| jmp ->vm_call_dispatch_f
|
|->vmeta_tsetr:
|.if X64WIN
| mov L:CARG1d, SAVE_L
| mov CARG3d, RC
| mov L:CARG1d->base, BASE
| xchg CARG2d, TAB:RB // Caveat: CARG2d == BASE.
|.elif X64
| mov L:CARG1d, SAVE_L
| mov CARG2d, TAB:RB
| mov L:CARG1d->base, BASE
| mov RB, BASE // Save BASE.
| mov CARG3d, RC // Caveat: CARG3d == BASE.
|.else
| mov L:RA, SAVE_L
| mov ARG2, TAB:RB
| mov RB, BASE // Save BASE.
| mov ARG3, RC
| mov ARG1, L:RA
| mov L:RA->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key)
| // TValue * returned in eax (RC).
| movzx RA, PC_RA
| mov BASE, RB // Restore BASE.
| jmp ->BC_TSETR_Z
|
|//-- Comparison metamethods ---------------------------------------------
|
|->vmeta_comp:
|.if X64
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG2d/CARG3d == BASE.
|.if X64WIN
| lea CARG3d, [BASE+RD*8]
| lea CARG2d, [BASE+RA*8]
|.else
| lea CARG2d, [BASE+RA*8]
| lea CARG3d, [BASE+RD*8]
|.endif
| mov CARG1d, L:RB // Caveat: CARG1d/CARG4d == RA.
| movzx CARG4d, PC_OP
|.else
| movzx RB, PC_OP
| lea RD, [BASE+RD*8]
| lea RA, [BASE+RA*8]
| mov ARG4, RB
| mov L:RB, SAVE_L
| mov ARG3, RD
| mov ARG2, RA
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op)
| // 0/1 or TValue * (metamethod) returned in eax (RC).
|3:
| mov BASE, L:RB->base
| cmp RC, 1
| ja ->vmeta_binop
|4:
| lea PC, [PC+4]
| jb >6
|5:
| movzx RD, PC_RD
| branchPC RD
|6:
| ins_next
|
|->cont_condt: // BASE = base, RC = result
| add PC, 4
| cmp dword [RC+4], LJ_TISTRUECOND // Branch if result is true.
| jb <5
| jmp <6
|
|->cont_condf: // BASE = base, RC = result
| cmp dword [RC+4], LJ_TISTRUECOND // Branch if result is false.
| jmp <4
|
|->vmeta_equal:
| sub PC, 4
|.if X64WIN
| mov CARG3d, RD
| mov CARG4d, RB
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG2d == BASE.
| mov CARG2d, RA
| mov CARG1d, L:RB // Caveat: CARG1d == RA.
|.elif X64
| mov CARG2d, RA
| mov CARG4d, RB // Caveat: CARG4d == RA.
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG3d == BASE.
| mov CARG3d, RD
| mov CARG1d, L:RB
|.else
| mov ARG4, RB
| mov L:RB, SAVE_L
| mov ARG3, RD
| mov ARG2, RA
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne)
| // 0/1 or TValue * (metamethod) returned in eax (RC).
| jmp <3
|
|->vmeta_equal_cd:
|.if FFI
| sub PC, 4
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov FCARG1, L:RB
| mov FCARG2, dword [PC-4]
| mov SAVE_PC, PC
| call extern lj_meta_equal_cd@8 // (lua_State *L, BCIns ins)
| // 0/1 or TValue * (metamethod) returned in eax (RC).
| jmp <3
|.endif
|
|->vmeta_istype:
|.if X64
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG2d/CARG3d may be BASE.
| mov CARG2d, RA
| movzx CARG3d, PC_RD
| mov L:CARG1d, L:RB
|.else
| movzx RD, PC_RD
| mov ARG2, RA
| mov L:RB, SAVE_L
| mov ARG3, RD
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp)
| mov BASE, L:RB->base
| jmp <6
|
|//-- Arithmetic metamethods ---------------------------------------------
|
|->vmeta_arith_vno:
|.if DUALNUM
| movzx RB, PC_RB
|.endif
|->vmeta_arith_vn:
| lea RC, [KBASE+RC*8]
| jmp >1
|
|->vmeta_arith_nvo:
|.if DUALNUM
| movzx RC, PC_RC
|.endif
|->vmeta_arith_nv:
| lea RC, [KBASE+RC*8]
| lea RB, [BASE+RB*8]
| xchg RB, RC
| jmp >2
|
|->vmeta_unm:
| lea RC, [BASE+RD*8]
| mov RB, RC
| jmp >2
|
|->vmeta_arith_vvo:
|.if DUALNUM
| movzx RB, PC_RB
|.endif
|->vmeta_arith_vv:
| lea RC, [BASE+RC*8]
|1:
| lea RB, [BASE+RB*8]
|2:
| lea RA, [BASE+RA*8]
|.if X64WIN
| mov CARG3d, RB
| mov CARG4d, RC
| movzx RC, PC_OP
| mov ARG5d, RC
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG2d == BASE.
| mov CARG2d, RA
| mov CARG1d, L:RB // Caveat: CARG1d == RA.
|.elif X64
| movzx CARG5d, PC_OP
| mov CARG2d, RA
| mov CARG4d, RC // Caveat: CARG4d == RA.
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE // Caveat: CARG3d == BASE.
| mov CARG3d, RB
| mov L:RB, L:CARG1d
|.else
| mov ARG3, RB
| mov L:RB, SAVE_L
| mov ARG4, RC
| movzx RC, PC_OP
| mov ARG2, RA
| mov ARG5, RC
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
| // NULL (finished) or TValue * (metamethod) returned in eax (RC).
| mov BASE, L:RB->base
| test RC, RC
| jz ->cont_nop
|
| // Call metamethod for binary op.
|->vmeta_binop:
| // BASE = base, RC = new base, stack = cont/func/o1/o2
| mov RA, RC
| sub RC, BASE
| mov [RA-12], PC // [cont|PC]
| lea PC, [RC+FRAME_CONT]
| mov NARGS:RD, 2+1 // 2 args for func(o1, o2).
| jmp ->vm_call_dispatch
|
|->vmeta_len:
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| lea FCARG2, [BASE+RD*8] // Caveat: FCARG2 == BASE
| mov L:FCARG1, L:RB
| mov SAVE_PC, PC
| call extern lj_meta_len@8 // (lua_State *L, TValue *o)
| // NULL (retry) or TValue * (metamethod) returned in eax (RC).
| mov BASE, L:RB->base
#if LJ_52
| test RC, RC
| jne ->vmeta_binop // Binop call for compatibility.
| movzx RD, PC_RD
| mov TAB:FCARG1, [BASE+RD*8]
| jmp ->BC_LEN_Z
#else
| jmp ->vmeta_binop // Binop call for compatibility.
#endif
|
|//-- Call metamethod ----------------------------------------------------
|
|->vmeta_call_ra:
| lea RA, [BASE+RA*8+8]
|->vmeta_call: // Resolve and call __call metamethod.
| // BASE = old base, RA = new base, RC = nargs+1, PC = return
| mov TMP2, RA // Save RA, RC for us.
| mov TMP1, NARGS:RD
| sub RA, 8
|.if X64
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG2d/CARG3d may be BASE.
| mov CARG2d, RA
| lea CARG3d, [RA+NARGS:RD*8]
| mov CARG1d, L:RB // Caveat: CARG1d may be RA.
|.else
| lea RC, [RA+NARGS:RD*8]
| mov L:RB, SAVE_L
| mov ARG2, RA
| mov ARG3, RC
| mov ARG1, L:RB
| mov L:RB->base, BASE // This is the callers base!
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_call // (lua_State *L, TValue *func, TValue *top)
| mov BASE, L:RB->base
| mov RA, TMP2
| mov NARGS:RD, TMP1
| mov LFUNC:RB, [RA-8]
| add NARGS:RD, 1
| // This is fragile. L->base must not move, KBASE must always be defined.
|.if x64
| cmp KBASEa, rdx // Continue with CALLT if flag set.
|.else
| cmp KBASE, BASE // Continue with CALLT if flag set.
|.endif
| je ->BC_CALLT_Z
| mov BASE, RA
| ins_call // Otherwise call resolved metamethod.
|
|//-- Argument coercion for 'for' statement ------------------------------
|
|->vmeta_for:
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov FCARG2, RA // Caveat: FCARG2 == BASE
| mov L:FCARG1, L:RB // Caveat: FCARG1 == RA
| mov SAVE_PC, PC
| call extern lj_meta_for@8 // (lua_State *L, TValue *base)
| mov BASE, L:RB->base
| mov RC, [PC-4]
| movzx RA, RCH
| movzx OP, RCL
| shr RC, 16
|.if X64
| jmp aword [DISPATCH+OP*8+GG_DISP2STATIC] // Retry FORI or JFORI.
|.else
| jmp aword [DISPATCH+OP*4+GG_DISP2STATIC] // Retry FORI or JFORI.
|.endif
|
|//-----------------------------------------------------------------------
|//-- Fast functions -----------------------------------------------------
|//-----------------------------------------------------------------------
|
|.macro .ffunc, name
|->ff_ .. name:
|.endmacro
|
|.macro .ffunc_1, name
|->ff_ .. name:
| cmp NARGS:RD, 1+1; jb ->fff_fallback
|.endmacro
|
|.macro .ffunc_2, name
|->ff_ .. name:
| cmp NARGS:RD, 2+1; jb ->fff_fallback
|.endmacro
|
|.macro .ffunc_nsse, name, op
| .ffunc_1 name
| cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback
| op xmm0, qword [BASE]
|.endmacro
|
|.macro .ffunc_nsse, name
| .ffunc_nsse name, movsd
|.endmacro
|
|.macro .ffunc_nnsse, name
| .ffunc_2 name
| cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback
| cmp dword [BASE+12], LJ_TISNUM; jae ->fff_fallback
| movsd xmm0, qword [BASE]
| movsd xmm1, qword [BASE+8]
|.endmacro
|
|.macro .ffunc_nnr, name
| .ffunc_2 name
| cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback
| cmp dword [BASE+12], LJ_TISNUM; jae ->fff_fallback
| fld qword [BASE+8]
| fld qword [BASE]
|.endmacro
|
|// Inlined GC threshold check. Caveat: uses label 1.
|.macro ffgccheck
| mov RB, [DISPATCH+DISPATCH_GL(gc.total)]
| cmp RB, [DISPATCH+DISPATCH_GL(gc.threshold)]
| jb >1
| call ->fff_gcstep
|1:
|.endmacro
|
|//-- Base library: checks -----------------------------------------------
|
|.ffunc_1 assert
| mov RB, [BASE+4]
| cmp RB, LJ_TISTRUECOND; jae ->fff_fallback
| mov PC, [BASE-4]
| mov MULTRES, RD
| mov [BASE-4], RB
| mov RB, [BASE]
| mov [BASE-8], RB
| sub RD, 2
| jz >2
| mov RA, BASE
|1:
| add RA, 8
|.if X64
| mov RBa, [RA]
| mov [RA-8], RBa
|.else
| mov RB, [RA+4]
| mov [RA-4], RB
| mov RB, [RA]
| mov [RA-8], RB
|.endif
| sub RD, 1
| jnz <1
|2:
| mov RD, MULTRES
| jmp ->fff_res_
|
|.ffunc_1 type
| mov RB, [BASE+4]
|.if X64
| mov RA, RB
| sar RA, 15
| cmp RA, -2
| je >3
|.endif
| mov RC, ~LJ_TNUMX
| not RB
| cmp RC, RB
| cmova RC, RB
|2:
| mov CFUNC:RB, [BASE-8]
| mov STR:RC, [CFUNC:RB+RC*8+((char *)(&((GCfuncC *)0)->upvalue))]
| mov PC, [BASE-4]
| mov dword [BASE-4], LJ_TSTR
| mov [BASE-8], STR:RC
| jmp ->fff_res1
|.if X64
|3:
| mov RC, ~LJ_TLIGHTUD
| jmp <2
|.endif
|
|//-- Base library: getters and setters ---------------------------------
|
|.ffunc_1 getmetatable
| mov RB, [BASE+4]
| mov PC, [BASE-4]
| cmp RB, LJ_TTAB; jne >6
|1: // Field metatable must be at same offset for GCtab and GCudata!
| mov TAB:RB, [BASE]
| mov TAB:RB, TAB:RB->metatable
|2:
| test TAB:RB, TAB:RB
| mov dword [BASE-4], LJ_TNIL
| jz ->fff_res1
| mov STR:RC, [DISPATCH+DISPATCH_GL(gcroot)+4*(GCROOT_MMNAME+MM_metatable)]
| mov dword [BASE-4], LJ_TTAB // Store metatable as default result.
| mov [BASE-8], TAB:RB
| mov RA, TAB:RB->hmask
| and RA, STR:RC->sid
| imul RA, #NODE
| add NODE:RA, TAB:RB->node
|3: // Rearranged logic, because we expect _not_ to find the key.
| cmp dword NODE:RA->key.it, LJ_TSTR
| jne >4
| cmp dword NODE:RA->key.gcr, STR:RC
| je >5
|4:
| mov NODE:RA, NODE:RA->next
| test NODE:RA, NODE:RA
| jnz <3
| jmp ->fff_res1 // Not found, keep default result.
|5:
| mov RB, [RA+4]
| cmp RB, LJ_TNIL; je ->fff_res1 // Ditto for nil value.
| mov RC, [RA]
| mov [BASE-4], RB // Return value of mt.__metatable.
| mov [BASE-8], RC
| jmp ->fff_res1
|
|6:
| cmp RB, LJ_TUDATA; je <1
|.if X64
| cmp RB, LJ_TNUMX; ja >8
| cmp RB, LJ_TISNUM; jbe >7
| mov RB, LJ_TLIGHTUD
| jmp >8
|7:
|.else
| cmp RB, LJ_TISNUM; ja >8
|.endif
| mov RB, LJ_TNUMX
|8:
| not RB
| mov TAB:RB, [DISPATCH+RB*4+DISPATCH_GL(gcroot[GCROOT_BASEMT])]
| jmp <2
|
|.ffunc_2 setmetatable
| cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback
| // Fast path: no mt for table yet and not clearing the mt.
| mov TAB:RB, [BASE]
| cmp dword TAB:RB->metatable, 0; jne ->fff_fallback
| cmp dword [BASE+12], LJ_TTAB; jne ->fff_fallback
| mov TAB:RC, [BASE+8]
| mov TAB:RB->metatable, TAB:RC
| mov PC, [BASE-4]
| mov dword [BASE-4], LJ_TTAB // Return original table.
| mov [BASE-8], TAB:RB
| test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table)
| jz >1
| // Possible write barrier. Table is black, but skip iswhite(mt) check.
| barrierback TAB:RB, RC
|1:
| jmp ->fff_res1
|
|.ffunc_2 rawget
| cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback
|.if X64WIN
| mov RB, BASE // Save BASE.
| lea CARG3d, [BASE+8]
| mov CARG2d, [BASE] // Caveat: CARG2d == BASE.
| mov CARG1d, SAVE_L
|.elif X64
| mov RB, BASE // Save BASE.
| mov CARG2d, [BASE]
| lea CARG3d, [BASE+8] // Caveat: CARG3d == BASE.
| mov CARG1d, SAVE_L
|.else
| mov TAB:RD, [BASE]
| mov L:RB, SAVE_L
| mov ARG2, TAB:RD
| mov ARG1, L:RB
| mov RB, BASE // Save BASE.
| add BASE, 8
| mov ARG3, BASE
|.endif
| call extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key)
| // cTValue * returned in eax (RD).
| mov BASE, RB // Restore BASE.
| // Copy table slot.
|.if X64
| mov RBa, [RD]
| mov PC, [BASE-4]
| mov [BASE-8], RBa
|.else
| mov RB, [RD]
| mov RD, [RD+4]
| mov PC, [BASE-4]
| mov [BASE-8], RB
| mov [BASE-4], RD
|.endif
| jmp ->fff_res1
|
|//-- Base library: conversions ------------------------------------------
|
|.ffunc tonumber
| // Only handles the number case inline (without a base argument).
| cmp NARGS:RD, 1+1; jne ->fff_fallback // Exactly one argument.
| cmp dword [BASE+4], LJ_TISNUM
|.if DUALNUM
| jne >1
| mov RB, dword [BASE]; jmp ->fff_resi
|1:
| ja ->fff_fallback
|.else
| jae ->fff_fallback
|.endif
| movsd xmm0, qword [BASE]; jmp ->fff_resxmm0
|
|.ffunc_1 tostring
| // Only handles the string or number case inline.
| mov PC, [BASE-4]
| cmp dword [BASE+4], LJ_TSTR; jne >3
| // A __tostring method in the string base metatable is ignored.
| mov STR:RD, [BASE]
|2:
| mov dword [BASE-4], LJ_TSTR
| mov [BASE-8], STR:RD
| jmp ->fff_res1
|3: // Handle numbers inline, unless a number base metatable is present.
| cmp dword [BASE+4], LJ_TISNUM; ja ->fff_fallback
| cmp dword [DISPATCH+DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])], 0
| jne ->fff_fallback
| ffgccheck // Caveat: uses label 1.
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Add frame since C call can throw.
| mov SAVE_PC, PC // Redundant (but a defined value).
|.if X64 and not X64WIN
| mov FCARG2, BASE // Otherwise: FCARG2 == BASE
|.endif
| mov L:FCARG1, L:RB
|.if DUALNUM
| call extern lj_strfmt_number@8 // (lua_State *L, cTValue *o)
|.else
| call extern lj_strfmt_num@8 // (lua_State *L, lua_Number *np)
|.endif
| // GCstr returned in eax (RD).
| mov BASE, L:RB->base
| jmp <2
|
|//-- Base library: iterators -------------------------------------------
|
|.ffunc_1 next
| je >2 // Missing 2nd arg?
|1:
| cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback
| mov PC, [BASE-4]
| mov RB, BASE // Save BASE.
|.if X64WIN
| mov CARG1d, [BASE]
| lea CARG3d, [BASE-8]
| lea CARG2d, [BASE+8] // Caveat: CARG2d == BASE.
|.elif X64
| mov CARG1d, [BASE]
| lea CARG2d, [BASE+8]
| lea CARG3d, [BASE-8] // Caveat: CARG3d == BASE.
|.else
| mov TAB:RD, [BASE]
| mov ARG1, TAB:RD
| add BASE, 8
| mov ARG2, BASE
| sub BASE, 8+8
| mov ARG3, BASE
|.endif
| call extern lj_tab_next // (GCtab *t, cTValue *key, TValue *o)
| // 1=found, 0=end, -1=error returned in eax (RD).
| mov BASE, RB // Restore BASE.
| test RD, RD; jg ->fff_res2 // Found key/value.
| js ->fff_fallback_2 // Invalid key.
| // End of traversal: return nil.
| mov dword [BASE-4], LJ_TNIL
| jmp ->fff_res1
|2: // Set missing 2nd arg to nil.
| mov dword [BASE+12], LJ_TNIL
| jmp <1
|
|.ffunc_1 pairs
| mov TAB:RB, [BASE]
| cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback
#if LJ_52
| cmp dword TAB:RB->metatable, 0; jne ->fff_fallback
#endif
| mov CFUNC:RB, [BASE-8]
| mov CFUNC:RD, CFUNC:RB->upvalue[0]
| mov PC, [BASE-4]
| mov dword [BASE-4], LJ_TFUNC
| mov [BASE-8], CFUNC:RD
| mov dword [BASE+12], LJ_TNIL
| mov RD, 1+3
| jmp ->fff_res
|
|.ffunc_2 ipairs_aux
| cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback
| cmp dword [BASE+12], LJ_TISNUM
|.if DUALNUM
| jne ->fff_fallback
|.else
| jae ->fff_fallback
|.endif
| mov PC, [BASE-4]
|.if DUALNUM
| mov RD, dword [BASE+8]
| add RD, 1
| mov dword [BASE-4], LJ_TISNUM
| mov dword [BASE-8], RD
|.else
| movsd xmm0, qword [BASE+8]
| sseconst_1 xmm1, RBa
| addsd xmm0, xmm1
| cvttsd2si RD, xmm0
| movsd qword [BASE-8], xmm0
|.endif
| mov TAB:RB, [BASE]
| cmp RD, TAB:RB->asize; jae >2 // Not in array part?
| shl RD, 3
| add RD, TAB:RB->array
|1:
| cmp dword [RD+4], LJ_TNIL; je ->fff_res0
| // Copy array slot.
|.if X64
| mov RBa, [RD]
| mov [BASE], RBa
|.else
| mov RB, [RD]
| mov RD, [RD+4]
| mov [BASE], RB
| mov [BASE+4], RD
|.endif
|->fff_res2:
| mov RD, 1+2
| jmp ->fff_res
|2: // Check for empty hash part first. Otherwise call C function.
| cmp dword TAB:RB->hmask, 0; je ->fff_res0
| mov FCARG1, TAB:RB
| mov RB, BASE // Save BASE.
| mov FCARG2, RD // Caveat: FCARG2 == BASE
| call extern lj_tab_getinth@8 // (GCtab *t, int32_t key)
| // cTValue * or NULL returned in eax (RD).
| mov BASE, RB
| test RD, RD
| jnz <1
|->fff_res0:
| mov RD, 1+0
| jmp ->fff_res
|
|.ffunc_1 ipairs
| mov TAB:RB, [BASE]
| cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback
#if LJ_52
| cmp dword TAB:RB->metatable, 0; jne ->fff_fallback
#endif
| mov CFUNC:RB, [BASE-8]
| mov CFUNC:RD, CFUNC:RB->upvalue[0]
| mov PC, [BASE-4]
| mov dword [BASE-4], LJ_TFUNC
| mov [BASE-8], CFUNC:RD
|.if DUALNUM
| mov dword [BASE+12], LJ_TISNUM
| mov dword [BASE+8], 0
|.else
| xorps xmm0, xmm0
| movsd qword [BASE+8], xmm0
|.endif
| mov RD, 1+3
| jmp ->fff_res
|
|//-- Base library: catch errors ----------------------------------------
|
|.ffunc_1 pcall
| lea RA, [BASE+8]
| sub NARGS:RD, 1
| mov PC, 8+FRAME_PCALL
|1:
| movzx RB, byte [DISPATCH+DISPATCH_GL(hookmask)]
| shr RB, HOOK_ACTIVE_SHIFT
| and RB, 1
| add PC, RB // Remember active hook before pcall.
| jmp ->vm_call_dispatch
|
|.ffunc_2 xpcall
| cmp dword [BASE+12], LJ_TFUNC; jne ->fff_fallback
| mov RB, [BASE+4] // Swap function and traceback.
| mov [BASE+12], RB
| mov dword [BASE+4], LJ_TFUNC
| mov LFUNC:RB, [BASE]
| mov PC, [BASE+8]
| mov [BASE+8], LFUNC:RB
| mov [BASE], PC
| lea RA, [BASE+16]
| sub NARGS:RD, 2
| mov PC, 16+FRAME_PCALL
| jmp <1
|
|//-- Coroutine library --------------------------------------------------
|
|.macro coroutine_resume_wrap, resume
|.if resume
|.ffunc_1 coroutine_resume
| mov L:RB, [BASE]
|.else
|.ffunc coroutine_wrap_aux
| mov CFUNC:RB, [BASE-8]
| mov L:RB, CFUNC:RB->upvalue[0].gcr
|.endif
| mov PC, [BASE-4]
| mov SAVE_PC, PC
|.if X64
| mov TMP1, L:RB
|.else
| mov ARG1, L:RB
|.endif
|.if resume
| cmp dword [BASE+4], LJ_TTHREAD; jne ->fff_fallback
|.endif
| cmp aword L:RB->cframe, 0; jne ->fff_fallback
| cmp byte L:RB->status, LUA_YIELD; ja ->fff_fallback
| mov RA, L:RB->top
| je >1 // Status != LUA_YIELD (i.e. 0)?
| cmp RA, L:RB->base // Check for presence of initial func.
| je ->fff_fallback
|1:
|.if resume
| lea PC, [RA+NARGS:RD*8-16] // Check stack space (-1-thread).
|.else
| lea PC, [RA+NARGS:RD*8-8] // Check stack space (-1).
|.endif
| cmp PC, L:RB->maxstack; ja ->fff_fallback
| mov L:RB->top, PC
|
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
|.if resume
| add BASE, 8 // Keep resumed thread in stack for GC.
|.endif
| mov L:RB->top, BASE
|.if resume
| lea RB, [BASE+NARGS:RD*8-24] // RB = end of source for stack move.
|.else
| lea RB, [BASE+NARGS:RD*8-16] // RB = end of source for stack move.
|.endif
| sub RBa, PCa // Relative to PC.
|
| cmp PC, RA
| je >3
|2: // Move args to coroutine.
|.if X64
| mov RCa, [PC+RB]
| mov [PC-8], RCa
|.else
| mov RC, [PC+RB+4]
| mov [PC-4], RC
| mov RC, [PC+RB]
| mov [PC-8], RC
|.endif
| sub PC, 8
| cmp PC, RA
| jne <2
|3:
|.if X64
| mov CARG2d, RA
| mov CARG1d, TMP1
|.else
| mov ARG2, RA
| xor RA, RA
| mov ARG4, RA
| mov ARG3, RA
|.endif
| call ->vm_resume // (lua_State *L, TValue *base, 0, 0)
|
| mov L:RB, SAVE_L
|.if X64
| mov L:PC, TMP1
|.else
| mov L:PC, ARG1 // The callee doesn't modify SAVE_L.
|.endif
| mov BASE, L:RB->base
| mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB
| set_vmstate INTERP
|
| cmp eax, LUA_YIELD
| ja >8
|4:
| mov RA, L:PC->base
| mov KBASE, L:PC->top
| mov L:PC->top, RA // Clear coroutine stack.
| mov PC, KBASE
| sub PC, RA
| je >6 // No results?
| lea RD, [BASE+PC]
| shr PC, 3
| cmp RD, L:RB->maxstack
| ja >9 // Need to grow stack?
|
| mov RB, BASE
| sub RBa, RAa
|5: // Move results from coroutine.
|.if X64
| mov RDa, [RA]
| mov [RA+RB], RDa
|.else
| mov RD, [RA]
| mov [RA+RB], RD
| mov RD, [RA+4]
| mov [RA+RB+4], RD
|.endif
| add RA, 8
| cmp RA, KBASE
| jne <5
|6:
|.if resume
| lea RD, [PC+2] // nresults+1 = 1 + true + results.
| mov dword [BASE-4], LJ_TTRUE // Prepend true to results.
|.else
| lea RD, [PC+1] // nresults+1 = 1 + results.
|.endif
|7:
| mov PC, SAVE_PC
| mov MULTRES, RD
|.if resume
| mov RAa, -8
|.else
| xor RA, RA
|.endif
| test PC, FRAME_TYPE
| jz ->BC_RET_Z
| jmp ->vm_return
|
|8: // Coroutine returned with error (at co->top-1).
|.if resume
| mov dword [BASE-4], LJ_TFALSE // Prepend false to results.
| mov RA, L:PC->top
| sub RA, 8
| mov L:PC->top, RA // Clear error from coroutine stack.
| // Copy error message.
|.if X64
| mov RDa, [RA]
| mov [BASE], RDa
|.else
| mov RD, [RA]
| mov [BASE], RD
| mov RD, [RA+4]
| mov [BASE+4], RD
|.endif
| mov RD, 1+2 // nresults+1 = 1 + false + error.
| jmp <7
|.else
| mov FCARG2, L:PC
| mov FCARG1, L:RB
| call extern lj_ffh_coroutine_wrap_err@8 // (lua_State *L, lua_State *co)
| // Error function does not return.
|.endif
|
|9: // Handle stack expansion on return from yield.
|.if X64
| mov L:RA, TMP1
|.else
| mov L:RA, ARG1 // The callee doesn't modify SAVE_L.
|.endif
| mov L:RA->top, KBASE // Undo coroutine stack clearing.
| mov FCARG2, PC
| mov FCARG1, L:RB
| call extern lj_state_growstack@8 // (lua_State *L, int n)
|.if X64
| mov L:PC, TMP1
|.else
| mov L:PC, ARG1
|.endif
| mov BASE, L:RB->base
| jmp <4 // Retry the stack move.
|.endmacro
|
| coroutine_resume_wrap 1 // coroutine.resume
| coroutine_resume_wrap 0 // coroutine.wrap
|
|.ffunc coroutine_yield
| mov L:RB, SAVE_L
| test aword L:RB->cframe, CFRAME_RESUME
| jz ->fff_fallback
| mov L:RB->base, BASE
| lea RD, [BASE+NARGS:RD*8-8]
| mov L:RB->top, RD
| xor RD, RD
| mov aword L:RB->cframe, RDa
| mov al, LUA_YIELD
| mov byte L:RB->status, al
| jmp ->vm_leave_unw
|
|//-- Math library -------------------------------------------------------
|
|.if not DUALNUM
|->fff_resi: // Dummy.
|.endif
|
|->fff_resn:
| mov PC, [BASE-4]
| fstp qword [BASE-8]
| jmp ->fff_res1
|
| .ffunc_1 math_abs
|.if DUALNUM
| cmp dword [BASE+4], LJ_TISNUM; jne >2
| mov RB, dword [BASE]
| cmp RB, 0; jns ->fff_resi
| neg RB; js >1
|->fff_resbit:
|->fff_resi:
| mov PC, [BASE-4]
| mov dword [BASE-4], LJ_TISNUM
| mov dword [BASE-8], RB
| jmp ->fff_res1
|1:
| mov PC, [BASE-4]
| mov dword [BASE-4], 0x41e00000 // 2^31.
| mov dword [BASE-8], 0
| jmp ->fff_res1
|2:
| ja ->fff_fallback
|.else
| cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback
|.endif
| movsd xmm0, qword [BASE]
| sseconst_abs xmm1, RDa
| andps xmm0, xmm1
|->fff_resxmm0:
| mov PC, [BASE-4]
| movsd qword [BASE-8], xmm0
| // fallthrough
|
|->fff_res1:
| mov RD, 1+1
|->fff_res:
| mov MULTRES, RD
|->fff_res_:
| test PC, FRAME_TYPE
| jnz >7
|5:
| cmp PC_RB, RDL // More results expected?
| ja >6
| // Adjust BASE. KBASE is assumed to be set for the calling frame.
| movzx RA, PC_RA
| not RAa // Note: ~RA = -(RA+1)
| lea BASE, [BASE+RA*8] // base = base - (RA+1)*8
| ins_next
|
|6: // Fill up results with nil.
| mov dword [BASE+RD*8-12], LJ_TNIL
| add RD, 1
| jmp <5
|
|7: // Non-standard return case.
| mov RAa, -8 // Results start at BASE+RA = BASE-8.
| jmp ->vm_return
|
|.if X64
|.define fff_resfp, fff_resxmm0
|.else
|.define fff_resfp, fff_resn
|.endif
|
|.macro math_round, func
| .ffunc math_ .. func
|.if DUALNUM
| cmp dword [BASE+4], LJ_TISNUM; jne >1
| mov RB, dword [BASE]; jmp ->fff_resi
|1:
| ja ->fff_fallback
|.else
| cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback
|.endif
| movsd xmm0, qword [BASE]
| call ->vm_ .. func .. _sse
|.if DUALNUM
| cvttsd2si RB, xmm0
| cmp RB, 0x80000000
| jne ->fff_resi
| cvtsi2sd xmm1, RB
| ucomisd xmm0, xmm1
| jp ->fff_resxmm0
| je ->fff_resi
|.endif
| jmp ->fff_resxmm0
|.endmacro
|
| math_round floor
| math_round ceil
|
|.ffunc_nsse math_sqrt, sqrtsd; jmp ->fff_resxmm0
|
|.ffunc math_log
| cmp NARGS:RD, 1+1; jne ->fff_fallback // Exactly one argument.
| cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback
| movsd xmm0, qword [BASE]
|.if not X64
| movsd FPARG1, xmm0
|.endif
| mov RB, BASE
| call extern log
| mov BASE, RB
| jmp ->fff_resfp
|
|.macro math_extern, func
| .ffunc_nsse math_ .. func
|.if not X64
| movsd FPARG1, xmm0
|.endif
| mov RB, BASE
| call extern func
| mov BASE, RB
| jmp ->fff_resfp
|.endmacro
|
|.macro math_extern2, func
| .ffunc_nnsse math_ .. func
|.if not X64
| movsd FPARG1, xmm0
| movsd FPARG3, xmm1
|.endif
| mov RB, BASE
| call extern func
| mov BASE, RB
| jmp ->fff_resfp
|.endmacro
|
| math_extern log10
| math_extern exp
| math_extern sin
| math_extern cos
| math_extern tan
| math_extern asin
| math_extern acos
| math_extern atan
| math_extern sinh
| math_extern cosh
| math_extern tanh
| math_extern2 pow
| math_extern2 atan2
| math_extern2 fmod
|
|.ffunc_nnr math_ldexp; fscale; fpop1; jmp ->fff_resn
|
|.ffunc_1 math_frexp
| mov RB, [BASE+4]
| cmp RB, LJ_TISNUM; jae ->fff_fallback
| mov PC, [BASE-4]
| mov RC, [BASE]
| mov [BASE-4], RB; mov [BASE-8], RC
| shl RB, 1; cmp RB, 0xffe00000; jae >3
| or RC, RB; jz >3
| mov RC, 1022
| cmp RB, 0x00200000; jb >4
|1:
| shr RB, 21; sub RB, RC // Extract and unbias exponent.
| cvtsi2sd xmm0, RB
| mov RB, [BASE-4]
| and RB, 0x800fffff // Mask off exponent.
| or RB, 0x3fe00000 // Put mantissa in range [0.5,1) or 0.
| mov [BASE-4], RB
|2:
| movsd qword [BASE], xmm0
| mov RD, 1+2
| jmp ->fff_res
|3: // Return +-0, +-Inf, NaN unmodified and an exponent of 0.
| xorps xmm0, xmm0; jmp <2
|4: // Handle denormals by multiplying with 2^54 and adjusting the bias.
| movsd xmm0, qword [BASE]
| sseconst_hi xmm1, RBa, 43500000 // 2^54.
| mulsd xmm0, xmm1
| movsd qword [BASE-8], xmm0
| mov RB, [BASE-4]; mov RC, 1076; shl RB, 1; jmp <1
|
|.ffunc_nsse math_modf
| mov RB, [BASE+4]
| mov PC, [BASE-4]
| shl RB, 1; cmp RB, 0xffe00000; je >4 // +-Inf?
| movaps xmm4, xmm0
| call ->vm_trunc_sse
| subsd xmm4, xmm0
|1:
| movsd qword [BASE-8], xmm0
| movsd qword [BASE], xmm4
| mov RC, [BASE-4]; mov RB, [BASE+4]
| xor RC, RB; js >3 // Need to adjust sign?
|2:
| mov RD, 1+2
| jmp ->fff_res
|3:
| xor RB, 0x80000000; mov [BASE+4], RB // Flip sign of fraction.
| jmp <2
|4:
| xorps xmm4, xmm4; jmp <1 // Return +-Inf and +-0.
|
|.macro math_minmax, name, cmovop, sseop
| .ffunc_1 name
| mov RA, 2
| cmp dword [BASE+4], LJ_TISNUM
|.if DUALNUM
| jne >4
| mov RB, dword [BASE]
|1: // Handle integers.
| cmp RA, RD; jae ->fff_resi
| cmp dword [BASE+RA*8-4], LJ_TISNUM; jne >3
| cmp RB, dword [BASE+RA*8-8]
| cmovop RB, dword [BASE+RA*8-8]
| add RA, 1
| jmp <1
|3:
| ja ->fff_fallback
| // Convert intermediate result to number and continue below.
| cvtsi2sd xmm0, RB
| jmp >6
|4:
| ja ->fff_fallback
|.else
| jae ->fff_fallback
|.endif
|
| movsd xmm0, qword [BASE]
|5: // Handle numbers or integers.
| cmp RA, RD; jae ->fff_resxmm0
| cmp dword [BASE+RA*8-4], LJ_TISNUM
|.if DUALNUM
| jb >6
| ja ->fff_fallback
| cvtsi2sd xmm1, dword [BASE+RA*8-8]
| jmp >7
|.else
| jae ->fff_fallback
|.endif
|6:
| movsd xmm1, qword [BASE+RA*8-8]
|7:
| sseop xmm0, xmm1
| add RA, 1
| jmp <5
|.endmacro
|
| math_minmax math_min, cmovg, minsd
| math_minmax math_max, cmovl, maxsd
|
|//-- String library -----------------------------------------------------
|
|.ffunc string_byte // Only handle the 1-arg case here.
| cmp NARGS:RD, 1+1; jne ->fff_fallback
| cmp dword [BASE+4], LJ_TSTR; jne ->fff_fallback
| mov STR:RB, [BASE]
| mov PC, [BASE-4]
| cmp dword STR:RB->len, 1
| jb ->fff_res0 // Return no results for empty string.
| movzx RB, byte STR:RB[1]
|.if DUALNUM
| jmp ->fff_resi
|.else
| cvtsi2sd xmm0, RB; jmp ->fff_resxmm0
|.endif
|
|.ffunc string_char // Only handle the 1-arg case here.
| ffgccheck
| cmp NARGS:RD, 1+1; jne ->fff_fallback // *Exactly* 1 arg.
| cmp dword [BASE+4], LJ_TISNUM
|.if DUALNUM
| jne ->fff_fallback
| mov RB, dword [BASE]
| cmp RB, 255; ja ->fff_fallback
| mov TMP2, RB
|.else
| jae ->fff_fallback
| cvttsd2si RB, qword [BASE]
| cmp RB, 255; ja ->fff_fallback
| mov TMP2, RB
|.endif
|.if X64
| mov TMP3, 1
|.else
| mov ARG3, 1
|.endif
| lea RDa, TMP2 // Points to stack. Little-endian.
|->fff_newstr:
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
|.if X64
| mov CARG3d, TMP3 // Zero-extended to size_t.
| mov CARG2, RDa // May be 64 bit ptr to stack.
| mov CARG1d, L:RB
|.else
| mov ARG2, RD
| mov ARG1, L:RB
|.endif
| mov SAVE_PC, PC
| call extern lj_str_new // (lua_State *L, char *str, size_t l)
|->fff_resstr:
| // GCstr * returned in eax (RD).
| mov BASE, L:RB->base
| mov PC, [BASE-4]
| mov dword [BASE-4], LJ_TSTR
| mov [BASE-8], STR:RD
| jmp ->fff_res1
|
|.ffunc string_sub
| ffgccheck
| mov TMP2, -1
| cmp NARGS:RD, 1+2; jb ->fff_fallback
| jna >1
| cmp dword [BASE+20], LJ_TISNUM
|.if DUALNUM
| jne ->fff_fallback
| mov RB, dword [BASE+16]
| mov TMP2, RB
|.else
| jae ->fff_fallback
| cvttsd2si RB, qword [BASE+16]
| mov TMP2, RB
|.endif
|1:
| cmp dword [BASE+4], LJ_TSTR; jne ->fff_fallback
| cmp dword [BASE+12], LJ_TISNUM
|.if DUALNUM
| jne ->fff_fallback
|.else
| jae ->fff_fallback
|.endif
| mov STR:RB, [BASE]
| mov TMP3, STR:RB
| mov RB, STR:RB->len
|.if DUALNUM
| mov RA, dword [BASE+8]
|.else
| cvttsd2si RA, qword [BASE+8]
|.endif
| mov RC, TMP2
| cmp RB, RC // len < end? (unsigned compare)
| jb >5
|2:
| test RA, RA // start <= 0?
| jle >7
|3:
| mov STR:RB, TMP3
| sub RC, RA // start > end?
| jl ->fff_emptystr
| lea RB, [STR:RB+RA+#STR-1]
| add RC, 1
|4:
|.if X64
| mov TMP3, RC
|.else
| mov ARG3, RC
|.endif
| mov RD, RB
| jmp ->fff_newstr
|
|5: // Negative end or overflow.
| jl >6
| lea RC, [RC+RB+1] // end = end+(len+1)
| jmp <2
|6: // Overflow.
| mov RC, RB // end = len
| jmp <2
|
|7: // Negative start or underflow.
| je >8
| add RA, RB // start = start+(len+1)
| add RA, 1
| jg <3 // start > 0?
|8: // Underflow.
| mov RA, 1 // start = 1
| jmp <3
|
|->fff_emptystr: // Range underflow.
| xor RC, RC // Zero length. Any ptr in RB is ok.
| jmp <4
|
|.macro ffstring_op, name
| .ffunc_1 string_ .. name
| ffgccheck
| cmp dword [BASE+4], LJ_TSTR; jne ->fff_fallback
| mov L:RB, SAVE_L
| lea SBUF:FCARG1, [DISPATCH+DISPATCH_GL(tmpbuf)]
| mov L:RB->base, BASE
| mov STR:FCARG2, [BASE] // Caveat: FCARG2 == BASE
| mov RCa, SBUF:FCARG1->b
| mov SBUF:FCARG1->L, L:RB
| mov SBUF:FCARG1->w, RCa
| mov SAVE_PC, PC
| call extern lj_buf_putstr_ .. name .. @8
| mov FCARG1, eax
| call extern lj_buf_tostr@4
| jmp ->fff_resstr
|.endmacro
|
|ffstring_op reverse
|ffstring_op lower
|ffstring_op upper
|
|//-- Bit library --------------------------------------------------------
|
|.macro .ffunc_bit, name, kind, fdef
| fdef name
|.if kind == 2
| sseconst_tobit xmm1, RBa
|.endif
| cmp dword [BASE+4], LJ_TISNUM
|.if DUALNUM
| jne >1
| mov RB, dword [BASE]
|.if kind > 0
| jmp >2
|.else
| jmp ->fff_resbit
|.endif
|1:
| ja ->fff_fallback
|.else
| jae ->fff_fallback
|.endif
| movsd xmm0, qword [BASE]
|.if kind < 2
| sseconst_tobit xmm1, RBa
|.endif
| addsd xmm0, xmm1
| movd RB, xmm0
|2:
|.endmacro
|
|.macro .ffunc_bit, name, kind
| .ffunc_bit name, kind, .ffunc_1
|.endmacro
|
|.ffunc_bit bit_tobit, 0
| jmp ->fff_resbit
|
|.macro .ffunc_bit_op, name, ins
| .ffunc_bit name, 2
| mov TMP2, NARGS:RD // Save for fallback.
| lea RD, [BASE+NARGS:RD*8-16]
|1:
| cmp RD, BASE
| jbe ->fff_resbit
| cmp dword [RD+4], LJ_TISNUM
|.if DUALNUM
| jne >2
| ins RB, dword [RD]
| sub RD, 8
| jmp <1
|2:
| ja ->fff_fallback_bit_op
|.else
| jae ->fff_fallback_bit_op
|.endif
| movsd xmm0, qword [RD]
| addsd xmm0, xmm1
| movd RA, xmm0
| ins RB, RA
| sub RD, 8
| jmp <1
|.endmacro
|
|.ffunc_bit_op bit_band, and
|.ffunc_bit_op bit_bor, or
|.ffunc_bit_op bit_bxor, xor
|
|.ffunc_bit bit_bswap, 1
| bswap RB
| jmp ->fff_resbit
|
|.ffunc_bit bit_bnot, 1
| not RB
|.if DUALNUM
| jmp ->fff_resbit
|.else
|->fff_resbit:
| cvtsi2sd xmm0, RB
| jmp ->fff_resxmm0
|.endif
|
|->fff_fallback_bit_op:
| mov NARGS:RD, TMP2 // Restore for fallback
| jmp ->fff_fallback
|
|.macro .ffunc_bit_sh, name, ins
|.if DUALNUM
| .ffunc_bit name, 1, .ffunc_2
| // Note: no inline conversion from number for 2nd argument!
| cmp dword [BASE+12], LJ_TISNUM; jne ->fff_fallback
| mov RA, dword [BASE+8]
|.else
| .ffunc_nnsse name
| sseconst_tobit xmm2, RBa
| addsd xmm0, xmm2
| addsd xmm1, xmm2
| movd RB, xmm0
| movd RA, xmm1
|.endif
| ins RB, cl // Assumes RA is ecx.
| jmp ->fff_resbit
|.endmacro
|
|.ffunc_bit_sh bit_lshift, shl
|.ffunc_bit_sh bit_rshift, shr
|.ffunc_bit_sh bit_arshift, sar
|.ffunc_bit_sh bit_rol, rol
|.ffunc_bit_sh bit_ror, ror
|
|//-----------------------------------------------------------------------
|
|->fff_fallback_2:
| mov NARGS:RD, 1+2 // Other args are ignored, anyway.
| jmp ->fff_fallback
|->fff_fallback_1:
| mov NARGS:RD, 1+1 // Other args are ignored, anyway.
|->fff_fallback: // Call fast function fallback handler.
| // BASE = new base, RD = nargs+1
| mov L:RB, SAVE_L
| mov PC, [BASE-4] // Fallback may overwrite PC.
| mov SAVE_PC, PC // Redundant (but a defined value).
| mov L:RB->base, BASE
| lea RD, [BASE+NARGS:RD*8-8]
| lea RA, [RD+8*LUA_MINSTACK] // Ensure enough space for handler.
| mov L:RB->top, RD
| mov CFUNC:RD, [BASE-8]
| cmp RA, L:RB->maxstack
| ja >5 // Need to grow stack.
|.if X64
| mov CARG1d, L:RB
|.else
| mov ARG1, L:RB
|.endif
| call aword CFUNC:RD->f // (lua_State *L)
| mov BASE, L:RB->base
| // Either throws an error, or recovers and returns -1, 0 or nresults+1.
| test RD, RD; jg ->fff_res // Returned nresults+1?
|1:
| mov RA, L:RB->top
| sub RA, BASE
| shr RA, 3
| test RD, RD
| lea NARGS:RD, [RA+1]
| mov LFUNC:RB, [BASE-8]
| jne ->vm_call_tail // Returned -1?
| ins_callt // Returned 0: retry fast path.
|
|// Reconstruct previous base for vmeta_call during tailcall.
|->vm_call_tail:
| mov RA, BASE
| test PC, FRAME_TYPE
| jnz >3
| movzx RB, PC_RA
| not RBa // Note: ~RB = -(RB+1)
| lea BASE, [BASE+RB*8] // base = base - (RB+1)*8
| jmp ->vm_call_dispatch // Resolve again for tailcall.
|3:
| mov RB, PC
| and RB, -8
| sub BASE, RB
| jmp ->vm_call_dispatch // Resolve again for tailcall.
|
|5: // Grow stack for fallback handler.
| mov FCARG2, LUA_MINSTACK
| mov FCARG1, L:RB
| call extern lj_state_growstack@8 // (lua_State *L, int n)
| mov BASE, L:RB->base
| xor RD, RD // Simulate a return 0.
| jmp <1 // Dumb retry (goes through ff first).
|
|->fff_gcstep: // Call GC step function.
| // BASE = new base, RD = nargs+1
| pop RBa // Must keep stack at same level.
| mov TMPa, RBa // Save return address
| mov L:RB, SAVE_L
| mov SAVE_PC, PC // Redundant (but a defined value).
| mov L:RB->base, BASE
| lea RD, [BASE+NARGS:RD*8-8]
| mov FCARG1, L:RB
| mov L:RB->top, RD
| call extern lj_gc_step@4 // (lua_State *L)
| mov BASE, L:RB->base
| mov RD, L:RB->top
| sub RD, BASE
| shr RD, 3
| add NARGS:RD, 1
| mov RBa, TMPa
| push RBa // Restore return address.
| ret
|
|//-----------------------------------------------------------------------
|//-- Special dispatch targets -------------------------------------------
|//-----------------------------------------------------------------------
|
|->vm_record: // Dispatch target for recording phase.
|.if JIT
| movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)]
| test RDL, HOOK_VMEVENT // No recording while in vmevent.
| jnz >5
| // Decrement the hookcount for consistency, but always do the call.
| test RDL, HOOK_ACTIVE
| jnz >1
| test RDL, LUA_MASKLINE|LUA_MASKCOUNT
| jz >1
| dec dword [DISPATCH+DISPATCH_GL(hookcount)]
| jmp >1
|.endif
|
|->vm_rethook: // Dispatch target for return hooks.
| movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)]
| test RDL, HOOK_ACTIVE // Hook already active?
| jnz >5
| jmp >1
|
|->vm_inshook: // Dispatch target for instr/line hooks.
| movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)]
| test RDL, HOOK_ACTIVE // Hook already active?
| jnz >5
|
| test RDL, LUA_MASKLINE|LUA_MASKCOUNT
| jz >5
| dec dword [DISPATCH+DISPATCH_GL(hookcount)]
| jz >1
| test RDL, LUA_MASKLINE
| jz >5
|1:
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov FCARG2, PC // Caveat: FCARG2 == BASE
| mov FCARG1, L:RB
| // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
| call extern lj_dispatch_ins@8 // (lua_State *L, const BCIns *pc)
|3:
| mov BASE, L:RB->base
|4:
| movzx RA, PC_RA
|5:
| movzx OP, PC_OP
| movzx RD, PC_RD
|.if X64
| jmp aword [DISPATCH+OP*8+GG_DISP2STATIC] // Re-dispatch to static ins.
|.else
| jmp aword [DISPATCH+OP*4+GG_DISP2STATIC] // Re-dispatch to static ins.
|.endif
|
|->cont_hook: // Continue from hook yield.
| add PC, 4
| mov RA, [RB-24]
| mov MULTRES, RA // Restore MULTRES for *M ins.
| jmp <4
|
|->vm_hotloop: // Hot loop counter underflow.
|.if JIT
| mov LFUNC:RB, [BASE-8] // Same as curr_topL(L).
| mov RB, LFUNC:RB->pc
| movzx RD, byte [RB+PC2PROTO(framesize)]
| lea RD, [BASE+RD*8]
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov L:RB->top, RD
| mov FCARG2, PC
| lea FCARG1, [DISPATCH+GG_DISP2J]
| mov aword [DISPATCH+DISPATCH_J(L)], L:RBa
| mov SAVE_PC, PC
| call extern lj_trace_hot@8 // (jit_State *J, const BCIns *pc)
| jmp <3
|.endif
|
|->vm_callhook: // Dispatch target for call hooks.
| mov SAVE_PC, PC
|.if JIT
| jmp >1
|.endif
|
|->vm_hotcall: // Hot call counter underflow.
|.if JIT
| mov SAVE_PC, PC
| or PC, 1 // Marker for hot call.
|1:
|.endif
| lea RD, [BASE+NARGS:RD*8-8]
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov L:RB->top, RD
| mov FCARG2, PC
| mov FCARG1, L:RB
| call extern lj_dispatch_call@8 // (lua_State *L, const BCIns *pc)
| // ASMFunction returned in eax/rax (RDa).
| mov SAVE_PC, 0 // Invalidate for subsequent line hook.
|.if JIT
| and PC, -2
|.endif
| mov BASE, L:RB->base
| mov RAa, RDa
| mov RD, L:RB->top
| sub RD, BASE
| mov RBa, RAa
| movzx RA, PC_RA
| shr RD, 3
| add NARGS:RD, 1
| jmp RBa
|
|->cont_stitch: // Trace stitching.
|.if JIT
| // BASE = base, RC = result, RB = mbase
| mov TRACE:RA, [RB-24] // Save previous trace.
| mov TMP1, TRACE:RA
| mov TMP3, DISPATCH // Need one more register.
| mov DISPATCH, MULTRES
| movzx RA, PC_RA
| lea RA, [BASE+RA*8] // Call base.
| sub DISPATCH, 1
| jz >2
|1: // Move results down.
|.if X64
| mov RBa, [RC]
| mov [RA], RBa
|.else
| mov RB, [RC]
| mov [RA], RB
| mov RB, [RC+4]
| mov [RA+4], RB
|.endif
| add RC, 8
| add RA, 8
| sub DISPATCH, 1
| jnz <1
|2:
| movzx RC, PC_RA
| movzx RB, PC_RB
| add RC, RB
| lea RC, [BASE+RC*8-8]
|3:
| cmp RC, RA
| ja >9 // More results wanted?
|
| mov DISPATCH, TMP3
| mov TRACE:RD, TMP1 // Get previous trace.
| movzx RB, word TRACE:RD->traceno
| movzx RD, word TRACE:RD->link
| cmp RD, RB
| je ->cont_nop // Blacklisted.
| test RD, RD
| jne =>BC_JLOOP // Jump to stitched trace.
|
| // Stitch a new trace to the previous trace.
| mov [DISPATCH+DISPATCH_J(exitno)], RB
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov FCARG2, PC
| lea FCARG1, [DISPATCH+GG_DISP2J]
| mov aword [DISPATCH+DISPATCH_J(L)], L:RBa
| call extern lj_dispatch_stitch@8 // (jit_State *J, const BCIns *pc)
| mov BASE, L:RB->base
| jmp ->cont_nop
|
|9: // Fill up results with nil.
| mov dword [RA+4], LJ_TNIL
| add RA, 8
| jmp <3
|.endif
|
|->vm_profhook: // Dispatch target for profiler hook.
#if LJ_HASPROFILE
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov FCARG2, PC // Caveat: FCARG2 == BASE
| mov FCARG1, L:RB
| call extern lj_dispatch_profile@8 // (lua_State *L, const BCIns *pc)
| mov BASE, L:RB->base
| // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction.
| sub PC, 4
| jmp ->cont_nop
#endif
|
|//-----------------------------------------------------------------------
|//-- Trace exit handler -------------------------------------------------
|//-----------------------------------------------------------------------
|
|// Called from an exit stub with the exit number on the stack.
|// The 16 bit exit number is stored with two (sign-extended) push imm8.
|->vm_exit_handler:
|.if JIT
|.if X64
| push r13; push r12
| push r11; push r10; push r9; push r8
| push rdi; push rsi; push rbp; lea rbp, [rsp+88]; push rbp
| push rbx; push rdx; push rcx; push rax
| movzx RC, byte [rbp-8] // Reconstruct exit number.
| mov RCH, byte [rbp-16]
| mov [rbp-8], r15; mov [rbp-16], r14
|.else
| push ebp; lea ebp, [esp+12]; push ebp
| push ebx; push edx; push ecx; push eax
| movzx RC, byte [ebp-4] // Reconstruct exit number.
| mov RCH, byte [ebp-8]
| mov [ebp-4], edi; mov [ebp-8], esi
|.endif
| // Caveat: DISPATCH is ebx.
| mov DISPATCH, [ebp]
| mov RA, [DISPATCH+DISPATCH_GL(vmstate)] // Get trace number.
| set_vmstate EXIT
| mov [DISPATCH+DISPATCH_J(exitno)], RC
| mov [DISPATCH+DISPATCH_J(parent)], RA
|.if X64
|.if X64WIN
| sub rsp, 16*8+4*8 // Room for SSE regs + save area.
|.else
| sub rsp, 16*8 // Room for SSE regs.
|.endif
| add rbp, -128
| movsd qword [rbp-8], xmm15; movsd qword [rbp-16], xmm14
| movsd qword [rbp-24], xmm13; movsd qword [rbp-32], xmm12
| movsd qword [rbp-40], xmm11; movsd qword [rbp-48], xmm10
| movsd qword [rbp-56], xmm9; movsd qword [rbp-64], xmm8
| movsd qword [rbp-72], xmm7; movsd qword [rbp-80], xmm6
| movsd qword [rbp-88], xmm5; movsd qword [rbp-96], xmm4
| movsd qword [rbp-104], xmm3; movsd qword [rbp-112], xmm2
| movsd qword [rbp-120], xmm1; movsd qword [rbp-128], xmm0
|.else
| sub esp, 8*8+16 // Room for SSE regs + args.
| movsd qword [ebp-40], xmm7; movsd qword [ebp-48], xmm6
| movsd qword [ebp-56], xmm5; movsd qword [ebp-64], xmm4
| movsd qword [ebp-72], xmm3; movsd qword [ebp-80], xmm2
| movsd qword [ebp-88], xmm1; movsd qword [ebp-96], xmm0
|.endif
| // Caveat: RB is ebp.
| mov L:RB, [DISPATCH+DISPATCH_GL(cur_L)]
| mov BASE, [DISPATCH+DISPATCH_GL(jit_base)]
| mov aword [DISPATCH+DISPATCH_J(L)], L:RBa
| mov L:RB->base, BASE
|.if X64WIN
| lea CARG2, [rsp+4*8]
|.elif X64
| mov CARG2, rsp
|.else
| lea FCARG2, [esp+16]
|.endif
| lea FCARG1, [DISPATCH+GG_DISP2J]
| mov dword [DISPATCH+DISPATCH_GL(jit_base)], 0
| call extern lj_trace_exit@8 // (jit_State *J, ExitState *ex)
| // MULTRES or negated error code returned in eax (RD).
| mov RAa, L:RB->cframe
| and RAa, CFRAME_RAWMASK
|.if X64WIN
| // Reposition stack later.
|.elif X64
| mov rsp, RAa // Reposition stack to C frame.
|.else
| mov esp, RAa // Reposition stack to C frame.
|.endif
| mov [RAa+CFRAME_OFS_L], L:RB // Set SAVE_L (on-trace resume/yield).
| mov BASE, L:RB->base
| mov PC, [RAa+CFRAME_OFS_PC] // Get SAVE_PC.
|.if X64
| jmp >1
|.endif
|.endif
|->vm_exit_interp:
| // RD = MULTRES or negated error code, BASE, PC and DISPATCH set.
|.if JIT
|.if X64
| // Restore additional callee-save registers only used in compiled code.
|.if X64WIN
| lea RAa, [rsp+9*16+4*8]
|1:
| movdqa xmm15, [RAa-9*16]
| movdqa xmm14, [RAa-8*16]
| movdqa xmm13, [RAa-7*16]
| movdqa xmm12, [RAa-6*16]
| movdqa xmm11, [RAa-5*16]
| movdqa xmm10, [RAa-4*16]
| movdqa xmm9, [RAa-3*16]
| movdqa xmm8, [RAa-2*16]
| movdqa xmm7, [RAa-1*16]
| mov rsp, RAa // Reposition stack to C frame.
| movdqa xmm6, [RAa]
| mov r15, CSAVE_3
| mov r14, CSAVE_4
|.else
| add rsp, 16 // Reposition stack to C frame.
|1:
|.endif
| mov r13, TMPa
| mov r12, TMPQ
|.endif
| test RD, RD; js >9 // Check for error from exit.
| mov L:RB, SAVE_L
| mov MULTRES, RD
| mov LFUNC:KBASE, [BASE-8]
| mov KBASE, LFUNC:KBASE->pc
| mov KBASE, [KBASE+PC2PROTO(k)]
| mov L:RB->base, BASE
| mov dword [DISPATCH+DISPATCH_GL(jit_base)], 0
| set_vmstate INTERP
| // Modified copy of ins_next which handles function header dispatch, too.
| mov RC, [PC]
| movzx RA, RCH
| movzx OP, RCL
| add PC, 4
| shr RC, 16
| cmp OP, BC_FUNCF // Function header?
| jb >3
| cmp OP, BC_FUNCC+2 // Fast function?
| jae >4
|2:
| mov RC, MULTRES // RC/RD holds nres+1.
|3:
|.if X64
| jmp aword [DISPATCH+OP*8]
|.else
| jmp aword [DISPATCH+OP*4]
|.endif
|
|4: // Check frame below fast function.
| mov RC, [BASE-4]
| test RC, FRAME_TYPE
| jnz <2 // Trace stitching continuation?
| // Otherwise set KBASE for Lua function below fast function.
| movzx RC, byte [RC-3]
| not RCa
| mov LFUNC:KBASE, [BASE+RC*8-8]
| mov KBASE, LFUNC:KBASE->pc
| mov KBASE, [KBASE+PC2PROTO(k)]
| jmp <2
|
|9: // Rethrow error from the right C frame.
| mov FCARG2, RD
| mov FCARG1, L:RB
| neg FCARG2
| call extern lj_err_trace@8 // (lua_State *L, int errcode)
|.endif
|
|//-----------------------------------------------------------------------
|//-- Math helper functions ----------------------------------------------
|//-----------------------------------------------------------------------
|
|// FP value rounding. Called by math.floor/math.ceil fast functions
|// and from JIT code. arg/ret is xmm0. xmm0-xmm3 and RD (eax) modified.
|.macro vm_round, name, mode, cond
|->name:
|.if not X64 and cond
| movsd xmm0, qword [esp+4]
| call ->name .. _sse
| movsd qword [esp+4], xmm0 // Overwrite callee-owned arg.
| fld qword [esp+4]
| ret
|.endif
|
|->name .. _sse:
| sseconst_abs xmm2, RDa
| sseconst_2p52 xmm3, RDa
| movaps xmm1, xmm0
| andpd xmm1, xmm2 // |x|
| ucomisd xmm3, xmm1 // No truncation if 2^52 <= |x|.
| jbe >1
| andnpd xmm2, xmm0 // Isolate sign bit.
|.if mode == 2 // trunc(x)?
| movaps xmm0, xmm1
| addsd xmm1, xmm3 // (|x| + 2^52) - 2^52
| subsd xmm1, xmm3
| sseconst_1 xmm3, RDa
| cmpsd xmm0, xmm1, 1 // |x| < result?
| andpd xmm0, xmm3
| subsd xmm1, xmm0 // If yes, subtract -1.
| orpd xmm1, xmm2 // Merge sign bit back in.
|.else
| addsd xmm1, xmm3 // (|x| + 2^52) - 2^52
| subsd xmm1, xmm3
| orpd xmm1, xmm2 // Merge sign bit back in.
| sseconst_1 xmm3, RDa
| .if mode == 1 // ceil(x)?
| cmpsd xmm0, xmm1, 6 // x > result?
| andpd xmm0, xmm3
| addsd xmm1, xmm0 // If yes, add 1.
| orpd xmm1, xmm2 // Merge sign bit back in (again).
| .else // floor(x)?
| cmpsd xmm0, xmm1, 1 // x < result?
| andpd xmm0, xmm3
| subsd xmm1, xmm0 // If yes, subtract 1.
| .endif
|.endif
| movaps xmm0, xmm1
|1:
| ret
|.endmacro
|
| vm_round vm_floor, 0, 1
| vm_round vm_ceil, 1, JIT
| vm_round vm_trunc, 2, JIT
|
|// FP modulo x%y. Called by BC_MOD* and vm_arith.
|->vm_mod:
|// Args in xmm0/xmm1, return value in xmm0.
|// Caveat: xmm0-xmm5 and RC (eax) modified!
| movaps xmm5, xmm0
| divsd xmm0, xmm1
| sseconst_abs xmm2, RDa
| sseconst_2p52 xmm3, RDa
| movaps xmm4, xmm0
| andpd xmm4, xmm2 // |x/y|
| ucomisd xmm3, xmm4 // No truncation if 2^52 <= |x/y|.
| jbe >1
| andnpd xmm2, xmm0 // Isolate sign bit.
| addsd xmm4, xmm3 // (|x/y| + 2^52) - 2^52
| subsd xmm4, xmm3
| orpd xmm4, xmm2 // Merge sign bit back in.
| sseconst_1 xmm2, RDa
| cmpsd xmm0, xmm4, 1 // x/y < result?
| andpd xmm0, xmm2
| subsd xmm4, xmm0 // If yes, subtract 1.0.
| movaps xmm0, xmm5
| mulsd xmm1, xmm4
| subsd xmm0, xmm1
| ret
|1:
| mulsd xmm1, xmm0
| movaps xmm0, xmm5
| subsd xmm0, xmm1
| ret
|
|//-----------------------------------------------------------------------
|//-- Miscellaneous functions --------------------------------------------
|//-----------------------------------------------------------------------
|
|// int lj_vm_cpuid(uint32_t f, uint32_t res[4])
|->vm_cpuid:
|.if X64
| mov eax, CARG1d
| .if X64WIN; push rsi; mov rsi, CARG2; .endif
| push rbx
| xor ecx, ecx
| cpuid
| mov [rsi], eax
| mov [rsi+4], ebx
| mov [rsi+8], ecx
| mov [rsi+12], edx
| pop rbx
| .if X64WIN; pop rsi; .endif
| ret
|.else
| pushfd
| pop edx
| mov ecx, edx
| xor edx, 0x00200000 // Toggle ID bit in flags.
| push edx
| popfd
| pushfd
| pop edx
| xor eax, eax // Zero means no features supported.
| cmp ecx, edx
| jz >1 // No ID toggle means no CPUID support.
| mov eax, [esp+4] // Argument 1 is function number.
| push edi
| push ebx
| xor ecx, ecx
| cpuid
| mov edi, [esp+16] // Argument 2 is result area.
| mov [edi], eax
| mov [edi+4], ebx
| mov [edi+8], ecx
| mov [edi+12], edx
| pop ebx
| pop edi
|1:
| ret
|.endif
|
|.define NEXT_TAB, TAB:FCARG1
|.define NEXT_IDX, FCARG2
|.define NEXT_PTR, RCa
|.define NEXT_PTRd, RC
|.macro NEXT_RES_IDXL, op2; lea edx, [NEXT_IDX+op2]; .endmacro
|.if X64
|.define NEXT_TMP, CARG3d
|.define NEXT_TMPq, CARG3
|.define NEXT_ASIZE, CARG4d
|.macro NEXT_ENTER; .endmacro
|.macro NEXT_LEAVE; ret; .endmacro
|.if X64WIN
|.define NEXT_RES_PTR, [rsp+aword*5]
|.macro NEXT_RES_IDX, op2; add NEXT_IDX, op2; .endmacro
|.else
|.define NEXT_RES_PTR, [rsp+aword*1]
|.macro NEXT_RES_IDX, op2; lea edx, [NEXT_IDX+op2]; .endmacro
|.endif
|.else
|.define NEXT_ASIZE, esi
|.define NEXT_TMP, edi
|.macro NEXT_ENTER; push esi; push edi; .endmacro
|.macro NEXT_LEAVE; pop edi; pop esi; ret; .endmacro
|.define NEXT_RES_PTR, [esp+dword*3]
|.macro NEXT_RES_IDX, op2; add NEXT_IDX, op2; .endmacro
|.endif
|
|// TValue *lj_vm_next(GCtab *t, uint32_t idx)
|// Next idx returned in edx.
|->vm_next:
|.if JIT
| NEXT_ENTER
| mov NEXT_ASIZE, NEXT_TAB->asize
|1: // Traverse array part.
| cmp NEXT_IDX, NEXT_ASIZE; jae >5
| mov NEXT_TMP, NEXT_TAB->array
| cmp dword [NEXT_TMP+NEXT_IDX*8+4], LJ_TNIL; je >2
| lea NEXT_PTR, NEXT_RES_PTR
|.if X64
| mov NEXT_TMPq, qword [NEXT_TMP+NEXT_IDX*8]
| mov qword [NEXT_PTR], NEXT_TMPq
|.else
| mov NEXT_ASIZE, dword [NEXT_TMP+NEXT_IDX*8+4]
| mov NEXT_TMP, dword [NEXT_TMP+NEXT_IDX*8]
| mov dword [NEXT_PTR+4], NEXT_ASIZE
| mov dword [NEXT_PTR], NEXT_TMP
|.endif
|.if DUALNUM
| mov dword [NEXT_PTR+dword*3], LJ_TISNUM
| mov dword [NEXT_PTR+dword*2], NEXT_IDX
|.else
| cvtsi2sd xmm0, NEXT_IDX
| movsd qword [NEXT_PTR+dword*2], xmm0
|.endif
| NEXT_RES_IDX 1
| NEXT_LEAVE
|2: // Skip holes in array part.
| add NEXT_IDX, 1
| jmp <1
|
|5: // Traverse hash part.
| sub NEXT_IDX, NEXT_ASIZE
|6:
| cmp NEXT_IDX, NEXT_TAB->hmask; ja >9
| imul NEXT_PTRd, NEXT_IDX, #NODE
| add NODE:NEXT_PTRd, dword NEXT_TAB->node
| cmp dword NODE:NEXT_PTR->val.it, LJ_TNIL; je >7
| NEXT_RES_IDXL NEXT_ASIZE+1
| NEXT_LEAVE
|7: // Skip holes in hash part.
| add NEXT_IDX, 1
| jmp <6
|
|9: // End of iteration. Set the key to nil (not the value).
| NEXT_RES_IDX NEXT_ASIZE
| lea NEXT_PTR, NEXT_RES_PTR
| mov dword [NEXT_PTR+dword*3], LJ_TNIL
| NEXT_LEAVE
|.endif
|
|//-----------------------------------------------------------------------
|//-- Assertions ---------------------------------------------------------
|//-----------------------------------------------------------------------
|
|->assert_bad_for_arg_type:
#ifdef LUA_USE_ASSERT
| int3
#endif
| int3
|
|//-----------------------------------------------------------------------
|//-- FFI helper functions -----------------------------------------------
|//-----------------------------------------------------------------------
|
|// Handler for callback functions. Callback slot number in ah/al.
|->vm_ffi_callback:
|.if FFI
|.type CTSTATE, CTState, PC
|.if not X64
| sub esp, 16 // Leave room for SAVE_ERRF etc.
|.endif
| saveregs_ // ebp/rbp already saved. ebp now holds global_State *.
| lea DISPATCH, [ebp+GG_G2DISP]
| mov CTSTATE, GL:ebp->ctype_state
| movzx eax, ax
| mov CTSTATE->cb.slot, eax
|.if X64
| mov CTSTATE->cb.gpr[0], CARG1
| mov CTSTATE->cb.gpr[1], CARG2
| mov CTSTATE->cb.gpr[2], CARG3
| mov CTSTATE->cb.gpr[3], CARG4
| movsd qword CTSTATE->cb.fpr[0], xmm0
| movsd qword CTSTATE->cb.fpr[1], xmm1
| movsd qword CTSTATE->cb.fpr[2], xmm2
| movsd qword CTSTATE->cb.fpr[3], xmm3
|.if X64WIN
| lea rax, [rsp+CFRAME_SIZE+4*8]
|.else
| lea rax, [rsp+CFRAME_SIZE]
| mov CTSTATE->cb.gpr[4], CARG5
| mov CTSTATE->cb.gpr[5], CARG6
| movsd qword CTSTATE->cb.fpr[4], xmm4
| movsd qword CTSTATE->cb.fpr[5], xmm5
| movsd qword CTSTATE->cb.fpr[6], xmm6
| movsd qword CTSTATE->cb.fpr[7], xmm7
|.endif
| mov CTSTATE->cb.stack, rax
| mov CARG2, rsp
|.else
| lea eax, [esp+CFRAME_SIZE+16]
| mov CTSTATE->cb.gpr[0], FCARG1
| mov CTSTATE->cb.gpr[1], FCARG2
| mov CTSTATE->cb.stack, eax
| mov FCARG1, [esp+CFRAME_SIZE+12] // Move around misplaced retaddr/ebp.
| mov FCARG2, [esp+CFRAME_SIZE+8]
| mov SAVE_RET, FCARG1
| mov SAVE_R4, FCARG2
| mov FCARG2, esp
|.endif
| mov SAVE_PC, CTSTATE // Any value outside of bytecode is ok.
| mov FCARG1, CTSTATE
| call extern lj_ccallback_enter@8 // (CTState *cts, void *cf)
| // lua_State * returned in eax (RD).
| set_vmstate INTERP
| mov BASE, L:RD->base
| mov RD, L:RD->top
| sub RD, BASE
| mov LFUNC:RB, [BASE-8]
| shr RD, 3
| add RD, 1
| ins_callt
|.endif
|
|->cont_ffi_callback: // Return from FFI callback.
|.if FFI
| mov L:RA, SAVE_L
| mov CTSTATE, [DISPATCH+DISPATCH_GL(ctype_state)]
| mov aword CTSTATE->L, L:RAa
| mov L:RA->base, BASE
| mov L:RA->top, RB
| mov FCARG1, CTSTATE
| mov FCARG2, RC
| call extern lj_ccallback_leave@8 // (CTState *cts, TValue *o)
|.if X64
| mov rax, CTSTATE->cb.gpr[0]
| movsd xmm0, qword CTSTATE->cb.fpr[0]
| jmp ->vm_leave_unw
|.else
| mov L:RB, SAVE_L
| mov eax, CTSTATE->cb.gpr[0]
| mov edx, CTSTATE->cb.gpr[1]
| cmp dword CTSTATE->cb.gpr[2], 1
| jb >7
| je >6
| fld qword CTSTATE->cb.fpr[0].d
| jmp >7
|6:
| fld dword CTSTATE->cb.fpr[0].f
|7:
| mov ecx, L:RB->top
| movzx ecx, word [ecx+6] // Get stack adjustment and copy up.
| mov SAVE_L, ecx // Must be one slot above SAVE_RET
| restoreregs
| pop ecx // Move return addr from SAVE_RET.
| add esp, [esp] // Adjust stack.
| add esp, 16
| push ecx
| ret
|.endif
|.endif
|
|->vm_ffi_call@4: // Call C function via FFI.
| // Caveat: needs special frame unwinding, see below.
|.if FFI
|.if X64
| .type CCSTATE, CCallState, rbx
| push rbp; mov rbp, rsp; push rbx; mov CCSTATE, CARG1
|.else
| .type CCSTATE, CCallState, ebx
| push ebp; mov ebp, esp; push ebx; mov CCSTATE, FCARG1
|.endif
|
| // Readjust stack.
|.if X64
| mov eax, CCSTATE->spadj
| sub rsp, rax
|.else
| sub esp, CCSTATE->spadj
|.if WIN
| mov CCSTATE->spadj, esp
|.endif
|.endif
|
| // Copy stack slots.
| movzx ecx, byte CCSTATE->nsp
| sub ecx, 1
| js >2
|1:
|.if X64
| mov rax, [CCSTATE+rcx*8+offsetof(CCallState, stack)]
| mov [rsp+rcx*8+CCALL_SPS_EXTRA*8], rax
|.else
| mov eax, [CCSTATE+ecx*4+offsetof(CCallState, stack)]
| mov [esp+ecx*4], eax
|.endif
| sub ecx, 1
| jns <1
|2:
|
|.if X64
| movzx eax, byte CCSTATE->nfpr
| mov CARG1, CCSTATE->gpr[0]
| mov CARG2, CCSTATE->gpr[1]
| mov CARG3, CCSTATE->gpr[2]
| mov CARG4, CCSTATE->gpr[3]
|.if not X64WIN
| mov CARG5, CCSTATE->gpr[4]
| mov CARG6, CCSTATE->gpr[5]
|.endif
| test eax, eax; jz >5
| movaps xmm0, CCSTATE->fpr[0]
| movaps xmm1, CCSTATE->fpr[1]
| movaps xmm2, CCSTATE->fpr[2]
| movaps xmm3, CCSTATE->fpr[3]
|.if not X64WIN
| cmp eax, 4; jbe >5
| movaps xmm4, CCSTATE->fpr[4]
| movaps xmm5, CCSTATE->fpr[5]
| movaps xmm6, CCSTATE->fpr[6]
| movaps xmm7, CCSTATE->fpr[7]
|.endif
|5:
|.else
| mov FCARG1, CCSTATE->gpr[0]
| mov FCARG2, CCSTATE->gpr[1]
|.endif
|
| call aword CCSTATE->func
|
|.if X64
| mov CCSTATE->gpr[0], rax
| movaps CCSTATE->fpr[0], xmm0
|.if not X64WIN
| mov CCSTATE->gpr[1], rdx
| movaps CCSTATE->fpr[1], xmm1
|.endif
|.else
| mov CCSTATE->gpr[0], eax
| mov CCSTATE->gpr[1], edx
| cmp byte CCSTATE->resx87, 1
| jb >7
| je >6
| fstp qword CCSTATE->fpr[0].d[0]
| jmp >7
|6:
| fstp dword CCSTATE->fpr[0].f[0]
|7:
|.if WIN
| sub CCSTATE->spadj, esp
|.endif
|.endif
|
|.if X64
| mov rbx, [rbp-8]; leave; ret
|.else
| mov ebx, [ebp-4]; leave; ret
|.endif
|.endif
|// Note: vm_ffi_call must be the last function in this object file!
|
|//-----------------------------------------------------------------------
}
/* Generate the code for a single instruction. */
static void build_ins(BuildCtx *ctx, BCOp op, int defop)
{
int vk = 0;
|// Note: aligning all instructions does not pay off.
|=>defop:
switch (op) {
/* -- Comparison ops ---------------------------------------------------- */
/* Remember: all ops branch for a true comparison, fall through otherwise. */
|.macro jmp_comp, lt, ge, le, gt, target
||switch (op) {
||case BC_ISLT:
| lt target
||break;
||case BC_ISGE:
| ge target
||break;
||case BC_ISLE:
| le target
||break;
||case BC_ISGT:
| gt target
||break;
||default: break; /* Shut up GCC. */
||}
|.endmacro
case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
| // RA = src1, RD = src2, JMP with RD = target
| ins_AD
|.if DUALNUM
| checkint RA, >7
| checkint RD, >8
| mov RB, dword [BASE+RA*8]
| add PC, 4
| cmp RB, dword [BASE+RD*8]
| jmp_comp jge, jl, jg, jle, >9
|6:
| movzx RD, PC_RD
| branchPC RD
|9:
| ins_next
|
|7: // RA is not an integer.
| ja ->vmeta_comp
| // RA is a number.
| cmp dword [BASE+RD*8+4], LJ_TISNUM; jb >1; jne ->vmeta_comp
| // RA is a number, RD is an integer.
| cvtsi2sd xmm0, dword [BASE+RD*8]
| jmp >2
|
|8: // RA is an integer, RD is not an integer.
| ja ->vmeta_comp
| // RA is an integer, RD is a number.
| cvtsi2sd xmm1, dword [BASE+RA*8]
| movsd xmm0, qword [BASE+RD*8]
| add PC, 4
| ucomisd xmm0, xmm1
| jmp_comp jbe, ja, jb, jae, <9
| jmp <6
|.else
| checknum RA, ->vmeta_comp
| checknum RD, ->vmeta_comp
|.endif
|1:
| movsd xmm0, qword [BASE+RD*8]
|2:
| add PC, 4
| ucomisd xmm0, qword [BASE+RA*8]
|3:
| // Unordered: all of ZF CF PF set, ordered: PF clear.
| // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't.
|.if DUALNUM
| jmp_comp jbe, ja, jb, jae, <9
| jmp <6
|.else
| jmp_comp jbe, ja, jb, jae, >1
| movzx RD, PC_RD
| branchPC RD
|1:
| ins_next
|.endif
break;
case BC_ISEQV: case BC_ISNEV:
vk = op == BC_ISEQV;
| ins_AD // RA = src1, RD = src2, JMP with RD = target
| mov RB, [BASE+RD*8+4]
| add PC, 4
|.if DUALNUM
| cmp RB, LJ_TISNUM; jne >7
| checkint RA, >8
| mov RB, dword [BASE+RD*8]
| cmp RB, dword [BASE+RA*8]
if (vk) {
| jne >9
} else {
| je >9
}
| movzx RD, PC_RD
| branchPC RD
|9:
| ins_next
|
|7: // RD is not an integer.
| ja >5
| // RD is a number.
| cmp dword [BASE+RA*8+4], LJ_TISNUM; jb >1; jne >5
| // RD is a number, RA is an integer.
| cvtsi2sd xmm0, dword [BASE+RA*8]
| jmp >2
|
|8: // RD is an integer, RA is not an integer.
| ja >5
| // RD is an integer, RA is a number.
| cvtsi2sd xmm0, dword [BASE+RD*8]
| ucomisd xmm0, qword [BASE+RA*8]
| jmp >4
|
|.else
| cmp RB, LJ_TISNUM; jae >5
| checknum RA, >5
|.endif
|1:
| movsd xmm0, qword [BASE+RA*8]
|2:
| ucomisd xmm0, qword [BASE+RD*8]
|4:
iseqne_fp:
if (vk) {
| jp >2 // Unordered means not equal.
| jne >2
} else {
| jp >2 // Unordered means not equal.
| je >1
}
iseqne_end:
if (vk) {
|1: // EQ: Branch to the target.
| movzx RD, PC_RD
| branchPC RD
|2: // NE: Fallthrough to next instruction.
|.if not FFI
|3:
|.endif
} else {
|.if not FFI
|3:
|.endif
|2: // NE: Branch to the target.
| movzx RD, PC_RD
| branchPC RD
|1: // EQ: Fallthrough to next instruction.
}
if (LJ_DUALNUM && (op == BC_ISEQV || op == BC_ISNEV ||
op == BC_ISEQN || op == BC_ISNEN)) {
| jmp <9
} else {
| ins_next
}
|
if (op == BC_ISEQV || op == BC_ISNEV) {
|5: // Either or both types are not numbers.
|.if FFI
| cmp RB, LJ_TCDATA; je ->vmeta_equal_cd
| checktp RA, LJ_TCDATA; je ->vmeta_equal_cd
|.endif
| checktp RA, RB // Compare types.
| jne <2 // Not the same type?
| cmp RB, LJ_TISPRI
| jae <1 // Same type and primitive type?
|
| // Same types and not a primitive type. Compare GCobj or pvalue.
| mov RA, [BASE+RA*8]
| mov RD, [BASE+RD*8]
| cmp RA, RD
| je <1 // Same GCobjs or pvalues?
| cmp RB, LJ_TISTABUD
| ja <2 // Different objects and not table/ud?
|.if X64
| cmp RB, LJ_TUDATA // And not 64 bit lightuserdata.
| jb <2
|.endif
|
| // Different tables or userdatas. Need to check __eq metamethod.
| // Field metatable must be at same offset for GCtab and GCudata!
| mov TAB:RB, TAB:RA->metatable
| test TAB:RB, TAB:RB
| jz <2 // No metatable?
| test byte TAB:RB->nomm, 1<<MM_eq
| jnz <2 // Or 'no __eq' flag set?
if (vk) {
| xor RB, RB // ne = 0
} else {
| mov RB, 1 // ne = 1
}
| jmp ->vmeta_equal // Handle __eq metamethod.
} else {
|.if FFI
|3:
| cmp RB, LJ_TCDATA
if (LJ_DUALNUM && vk) {
| jne <9
} else {
| jne <2
}
| jmp ->vmeta_equal_cd
|.endif
}
break;
case BC_ISEQS: case BC_ISNES:
vk = op == BC_ISEQS;
| ins_AND // RA = src, RD = str const, JMP with RD = target
| mov RB, [BASE+RA*8+4]
| add PC, 4
| cmp RB, LJ_TSTR; jne >3
| mov RA, [BASE+RA*8]
| cmp RA, [KBASE+RD*4]
iseqne_test:
if (vk) {
| jne >2
} else {
| je >1
}
goto iseqne_end;
case BC_ISEQN: case BC_ISNEN:
vk = op == BC_ISEQN;
| ins_AD // RA = src, RD = num const, JMP with RD = target
| mov RB, [BASE+RA*8+4]
| add PC, 4
|.if DUALNUM
| cmp RB, LJ_TISNUM; jne >7
| cmp dword [KBASE+RD*8+4], LJ_TISNUM; jne >8
| mov RB, dword [KBASE+RD*8]
| cmp RB, dword [BASE+RA*8]
if (vk) {
| jne >9
} else {
| je >9
}
| movzx RD, PC_RD
| branchPC RD
|9:
| ins_next
|
|7: // RA is not an integer.
| ja >3
| // RA is a number.
| cmp dword [KBASE+RD*8+4], LJ_TISNUM; jb >1
| // RA is a number, RD is an integer.
| cvtsi2sd xmm0, dword [KBASE+RD*8]
| jmp >2
|
|8: // RA is an integer, RD is a number.
| cvtsi2sd xmm0, dword [BASE+RA*8]
| ucomisd xmm0, qword [KBASE+RD*8]
| jmp >4
|.else
| cmp RB, LJ_TISNUM; jae >3
|.endif
|1:
| movsd xmm0, qword [KBASE+RD*8]
|2:
| ucomisd xmm0, qword [BASE+RA*8]
|4:
goto iseqne_fp;
case BC_ISEQP: case BC_ISNEP:
vk = op == BC_ISEQP;
| ins_AND // RA = src, RD = primitive type (~), JMP with RD = target
| mov RB, [BASE+RA*8+4]
| add PC, 4
| cmp RB, RD
if (!LJ_HASFFI) goto iseqne_test;
if (vk) {
| jne >3
| movzx RD, PC_RD
| branchPC RD
|2:
| ins_next
|3:
| cmp RB, LJ_TCDATA; jne <2
| jmp ->vmeta_equal_cd
} else {
| je >2
| cmp RB, LJ_TCDATA; je ->vmeta_equal_cd
| movzx RD, PC_RD
| branchPC RD
|2:
| ins_next
}
break;
/* -- Unary test and copy ops ------------------------------------------- */
case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
| ins_AD // RA = dst or unused, RD = src, JMP with RD = target
| mov RB, [BASE+RD*8+4]
| add PC, 4
| cmp RB, LJ_TISTRUECOND
if (op == BC_IST || op == BC_ISTC) {
| jae >1
} else {
| jb >1
}
if (op == BC_ISTC || op == BC_ISFC) {
| mov [BASE+RA*8+4], RB
| mov RB, [BASE+RD*8]
| mov [BASE+RA*8], RB
}
| movzx RD, PC_RD
| branchPC RD
|1: // Fallthrough to the next instruction.
| ins_next
break;
case BC_ISTYPE:
| ins_AD // RA = src, RD = -type
| add RD, [BASE+RA*8+4]
| jne ->vmeta_istype
| ins_next
break;
case BC_ISNUM:
| ins_AD // RA = src, RD = -(TISNUM-1)
| checknum RA, ->vmeta_istype
| ins_next
break;
/* -- Unary ops --------------------------------------------------------- */
case BC_MOV:
| ins_AD // RA = dst, RD = src
|.if X64
| mov RBa, [BASE+RD*8]
| mov [BASE+RA*8], RBa
|.else
| mov RB, [BASE+RD*8+4]
| mov RD, [BASE+RD*8]
| mov [BASE+RA*8+4], RB
| mov [BASE+RA*8], RD
|.endif
| ins_next_
break;
case BC_NOT:
| ins_AD // RA = dst, RD = src
| xor RB, RB
| checktp RD, LJ_TISTRUECOND
| adc RB, LJ_TTRUE
| mov [BASE+RA*8+4], RB
| ins_next
break;
case BC_UNM:
| ins_AD // RA = dst, RD = src
|.if DUALNUM
| checkint RD, >5
| mov RB, [BASE+RD*8]
| neg RB
| jo >4
| mov dword [BASE+RA*8+4], LJ_TISNUM
| mov dword [BASE+RA*8], RB
|9:
| ins_next
|4:
| mov dword [BASE+RA*8+4], 0x41e00000 // 2^31.
| mov dword [BASE+RA*8], 0
| jmp <9
|5:
| ja ->vmeta_unm
|.else
| checknum RD, ->vmeta_unm
|.endif
| movsd xmm0, qword [BASE+RD*8]
| sseconst_sign xmm1, RDa
| xorps xmm0, xmm1
| movsd qword [BASE+RA*8], xmm0
|.if DUALNUM
| jmp <9
|.else
| ins_next
|.endif
break;
case BC_LEN:
| ins_AD // RA = dst, RD = src
| checkstr RD, >2
| mov STR:RD, [BASE+RD*8]
|.if DUALNUM
| mov RD, dword STR:RD->len
|1:
| mov dword [BASE+RA*8+4], LJ_TISNUM
| mov dword [BASE+RA*8], RD
|.else
| xorps xmm0, xmm0
| cvtsi2sd xmm0, dword STR:RD->len
|1:
| movsd qword [BASE+RA*8], xmm0
|.endif
| ins_next
|2:
| checktab RD, ->vmeta_len
| mov TAB:FCARG1, [BASE+RD*8]
#if LJ_52
| mov TAB:RB, TAB:FCARG1->metatable
| cmp TAB:RB, 0
| jnz >9
|3:
#endif
|->BC_LEN_Z:
| mov RB, BASE // Save BASE.
| call extern lj_tab_len@4 // (GCtab *t)
| // Length of table returned in eax (RD).
|.if DUALNUM
| // Nothing to do.
|.else
| cvtsi2sd xmm0, RD
|.endif
| mov BASE, RB // Restore BASE.
| movzx RA, PC_RA
| jmp <1
#if LJ_52
|9: // Check for __len.
| test byte TAB:RB->nomm, 1<<MM_len
| jnz <3
| jmp ->vmeta_len // 'no __len' flag NOT set: check.
#endif
break;
/* -- Binary ops -------------------------------------------------------- */
|.macro ins_arithpre, sseins, ssereg
| ins_ABC
||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
||switch (vk) {
||case 0:
| checknum RB, ->vmeta_arith_vn
| .if DUALNUM
| cmp dword [KBASE+RC*8+4], LJ_TISNUM; jae ->vmeta_arith_vn
| .endif
| movsd xmm0, qword [BASE+RB*8]
| sseins ssereg, qword [KBASE+RC*8]
|| break;
||case 1:
| checknum RB, ->vmeta_arith_nv
| .if DUALNUM
| cmp dword [KBASE+RC*8+4], LJ_TISNUM; jae ->vmeta_arith_nv
| .endif
| movsd xmm0, qword [KBASE+RC*8]
| sseins ssereg, qword [BASE+RB*8]
|| break;
||default:
| checknum RB, ->vmeta_arith_vv
| checknum RC, ->vmeta_arith_vv
| movsd xmm0, qword [BASE+RB*8]
| sseins ssereg, qword [BASE+RC*8]
|| break;
||}
|.endmacro
|
|.macro ins_arithdn, intins
| ins_ABC
||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
||switch (vk) {
||case 0:
| checkint RB, ->vmeta_arith_vn
| cmp dword [KBASE+RC*8+4], LJ_TISNUM; jne ->vmeta_arith_vn
| mov RB, [BASE+RB*8]
| intins RB, [KBASE+RC*8]; jo ->vmeta_arith_vno
|| break;
||case 1:
| checkint RB, ->vmeta_arith_nv
| cmp dword [KBASE+RC*8+4], LJ_TISNUM; jne ->vmeta_arith_nv
| mov RC, [KBASE+RC*8]
| intins RC, [BASE+RB*8]; jo ->vmeta_arith_nvo
|| break;
||default:
| checkint RB, ->vmeta_arith_vv
| checkint RC, ->vmeta_arith_vv
| mov RB, [BASE+RB*8]
| intins RB, [BASE+RC*8]; jo ->vmeta_arith_vvo
|| break;
||}
| mov dword [BASE+RA*8+4], LJ_TISNUM
||if (vk == 1) {
| mov dword [BASE+RA*8], RC
||} else {
| mov dword [BASE+RA*8], RB
||}
| ins_next
|.endmacro
|
|.macro ins_arithpost
| movsd qword [BASE+RA*8], xmm0
|.endmacro
|
|.macro ins_arith, sseins
| ins_arithpre sseins, xmm0
| ins_arithpost
| ins_next
|.endmacro
|
|.macro ins_arith, intins, sseins
|.if DUALNUM
| ins_arithdn intins
|.else
| ins_arith, sseins
|.endif
|.endmacro
| // RA = dst, RB = src1 or num const, RC = src2 or num const
case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
| ins_arith add, addsd
break;
case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
| ins_arith sub, subsd
break;
case BC_MULVN: case BC_MULNV: case BC_MULVV:
| ins_arith imul, mulsd
break;
case BC_DIVVN: case BC_DIVNV: case BC_DIVVV:
| ins_arith divsd
break;
case BC_MODVN:
| ins_arithpre movsd, xmm1
|->BC_MODVN_Z:
| call ->vm_mod
| ins_arithpost
| ins_next
break;
case BC_MODNV: case BC_MODVV:
| ins_arithpre movsd, xmm1
| jmp ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway.
break;
case BC_POW:
| ins_arithpre movsd, xmm1
| mov RB, BASE
|.if not X64
| movsd FPARG1, xmm0
| movsd FPARG3, xmm1
|.endif
| call extern pow
| movzx RA, PC_RA
| mov BASE, RB
|.if X64
| ins_arithpost
|.else
| fstp qword [BASE+RA*8]
|.endif
| ins_next
break;
case BC_CAT:
| ins_ABC // RA = dst, RB = src_start, RC = src_end
|.if X64
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE
| lea CARG2d, [BASE+RC*8]
| mov CARG3d, RC
| sub CARG3d, RB
|->BC_CAT_Z:
| mov L:RB, L:CARG1d
|.else
| lea RA, [BASE+RC*8]
| sub RC, RB
| mov ARG2, RA
| mov ARG3, RC
|->BC_CAT_Z:
| mov L:RB, SAVE_L
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_meta_cat // (lua_State *L, TValue *top, int left)
| // NULL (finished) or TValue * (metamethod) returned in eax (RC).
| mov BASE, L:RB->base
| test RC, RC
| jnz ->vmeta_binop
| movzx RB, PC_RB // Copy result to Stk[RA] from Stk[RB].
| movzx RA, PC_RA
|.if X64
| mov RCa, [BASE+RB*8]
| mov [BASE+RA*8], RCa
|.else
| mov RC, [BASE+RB*8+4]
| mov RB, [BASE+RB*8]
| mov [BASE+RA*8+4], RC
| mov [BASE+RA*8], RB
|.endif
| ins_next
break;
/* -- Constant ops ------------------------------------------------------ */
case BC_KSTR:
| ins_AND // RA = dst, RD = str const (~)
| mov RD, [KBASE+RD*4]
| mov dword [BASE+RA*8+4], LJ_TSTR
| mov [BASE+RA*8], RD
| ins_next
break;
case BC_KCDATA:
|.if FFI
| ins_AND // RA = dst, RD = cdata const (~)
| mov RD, [KBASE+RD*4]
| mov dword [BASE+RA*8+4], LJ_TCDATA
| mov [BASE+RA*8], RD
| ins_next
|.endif
break;
case BC_KSHORT:
| ins_AD // RA = dst, RD = signed int16 literal
|.if DUALNUM
| movsx RD, RDW
| mov dword [BASE+RA*8+4], LJ_TISNUM
| mov dword [BASE+RA*8], RD
|.else
| movsx RD, RDW // Sign-extend literal.
| cvtsi2sd xmm0, RD
| movsd qword [BASE+RA*8], xmm0
|.endif
| ins_next
break;
case BC_KNUM:
| ins_AD // RA = dst, RD = num const
| movsd xmm0, qword [KBASE+RD*8]
| movsd qword [BASE+RA*8], xmm0
| ins_next
break;
case BC_KPRI:
| ins_AND // RA = dst, RD = primitive type (~)
| mov [BASE+RA*8+4], RD
| ins_next
break;
case BC_KNIL:
| ins_AD // RA = dst_start, RD = dst_end
| lea RA, [BASE+RA*8+12]
| lea RD, [BASE+RD*8+4]
| mov RB, LJ_TNIL
| mov [RA-8], RB // Sets minimum 2 slots.
|1:
| mov [RA], RB
| add RA, 8
| cmp RA, RD
| jbe <1
| ins_next
break;
/* -- Upvalue and function ops ------------------------------------------ */
case BC_UGET:
| ins_AD // RA = dst, RD = upvalue #
| mov LFUNC:RB, [BASE-8]
| mov UPVAL:RB, [LFUNC:RB+RD*4+offsetof(GCfuncL, uvptr)]
| mov RB, UPVAL:RB->v
|.if X64
| mov RDa, [RB]
| mov [BASE+RA*8], RDa
|.else
| mov RD, [RB+4]
| mov RB, [RB]
| mov [BASE+RA*8+4], RD
| mov [BASE+RA*8], RB
|.endif
| ins_next
break;
case BC_USETV:
#define TV2MARKOFS \
((int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv))
| ins_AD // RA = upvalue #, RD = src
| mov LFUNC:RB, [BASE-8]
| mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)]
| cmp byte UPVAL:RB->closed, 0
| mov RB, UPVAL:RB->v
| mov RA, [BASE+RD*8]
| mov RD, [BASE+RD*8+4]
| mov [RB], RA
| mov [RB+4], RD
| jz >1
| // Check barrier for closed upvalue.
| test byte [RB+TV2MARKOFS], LJ_GC_BLACK // isblack(uv)
| jnz >2
|1:
| ins_next
|
|2: // Upvalue is black. Check if new value is collectable and white.
| sub RD, LJ_TISGCV
| cmp RD, LJ_TNUMX - LJ_TISGCV // tvisgcv(v)
| jbe <1
| test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(v)
| jz <1
| // Crossed a write barrier. Move the barrier forward.
|.if X64 and not X64WIN
| mov FCARG2, RB
| mov RB, BASE // Save BASE.
|.else
| xchg FCARG2, RB // Save BASE (FCARG2 == BASE).
|.endif
| lea GL:FCARG1, [DISPATCH+GG_DISP2G]
| call extern lj_gc_barrieruv@8 // (global_State *g, TValue *tv)
| mov BASE, RB // Restore BASE.
| jmp <1
break;
#undef TV2MARKOFS
case BC_USETS:
| ins_AND // RA = upvalue #, RD = str const (~)
| mov LFUNC:RB, [BASE-8]
| mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)]
| mov GCOBJ:RA, [KBASE+RD*4]
| mov RD, UPVAL:RB->v
| mov [RD], GCOBJ:RA
| mov dword [RD+4], LJ_TSTR
| test byte UPVAL:RB->marked, LJ_GC_BLACK // isblack(uv)
| jnz >2
|1:
| ins_next
|
|2: // Check if string is white and ensure upvalue is closed.
| test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(str)
| jz <1
| cmp byte UPVAL:RB->closed, 0
| jz <1
| // Crossed a write barrier. Move the barrier forward.
| mov RB, BASE // Save BASE (FCARG2 == BASE).
| mov FCARG2, RD
| lea GL:FCARG1, [DISPATCH+GG_DISP2G]
| call extern lj_gc_barrieruv@8 // (global_State *g, TValue *tv)
| mov BASE, RB // Restore BASE.
| jmp <1
break;
case BC_USETN:
| ins_AD // RA = upvalue #, RD = num const
| mov LFUNC:RB, [BASE-8]
| movsd xmm0, qword [KBASE+RD*8]
| mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)]
| mov RA, UPVAL:RB->v
| movsd qword [RA], xmm0
| ins_next
break;
case BC_USETP:
| ins_AND // RA = upvalue #, RD = primitive type (~)
| mov LFUNC:RB, [BASE-8]
| mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)]
| mov RA, UPVAL:RB->v
| mov [RA+4], RD
| ins_next
break;
case BC_UCLO:
| ins_AD // RA = level, RD = target
| branchPC RD // Do this first to free RD.
| mov L:RB, SAVE_L
| cmp dword L:RB->openupval, 0
| je >1
| mov L:RB->base, BASE
| lea FCARG2, [BASE+RA*8] // Caveat: FCARG2 == BASE
| mov L:FCARG1, L:RB // Caveat: FCARG1 == RA
| call extern lj_func_closeuv@8 // (lua_State *L, TValue *level)
| mov BASE, L:RB->base
|1:
| ins_next
break;
case BC_FNEW:
| ins_AND // RA = dst, RD = proto const (~) (holding function prototype)
|.if X64
| mov L:RB, SAVE_L
| mov L:RB->base, BASE // Caveat: CARG2d/CARG3d may be BASE.
| mov CARG3d, [BASE-8]
| mov CARG2d, [KBASE+RD*4] // Fetch GCproto *.
| mov CARG1d, L:RB
|.else
| mov LFUNC:RA, [BASE-8]
| mov PROTO:RD, [KBASE+RD*4] // Fetch GCproto *.
| mov L:RB, SAVE_L
| mov ARG3, LFUNC:RA
| mov ARG2, PROTO:RD
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| // (lua_State *L, GCproto *pt, GCfuncL *parent)
| call extern lj_func_newL_gc
| // GCfuncL * returned in eax (RC).
| mov BASE, L:RB->base
| movzx RA, PC_RA
| mov [BASE+RA*8], LFUNC:RC
| mov dword [BASE+RA*8+4], LJ_TFUNC
| ins_next
break;
/* -- Table ops --------------------------------------------------------- */
case BC_TNEW:
| ins_AD // RA = dst, RD = hbits|asize
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov RA, [DISPATCH+DISPATCH_GL(gc.total)]
| cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)]
| mov SAVE_PC, PC
| jae >5
|1:
|.if X64
| mov CARG3d, RD
| and RD, 0x7ff
| shr CARG3d, 11
|.else
| mov RA, RD
| and RD, 0x7ff
| shr RA, 11
| mov ARG3, RA
|.endif
| cmp RD, 0x7ff
| je >3
|2:
|.if X64
| mov L:CARG1d, L:RB
| mov CARG2d, RD
|.else
| mov ARG1, L:RB
| mov ARG2, RD
|.endif
| call extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits)
| // Table * returned in eax (RC).
| mov BASE, L:RB->base
| movzx RA, PC_RA
| mov [BASE+RA*8], TAB:RC
| mov dword [BASE+RA*8+4], LJ_TTAB
| ins_next
|3: // Turn 0x7ff into 0x801.
| mov RD, 0x801
| jmp <2
|5:
| mov L:FCARG1, L:RB
| call extern lj_gc_step_fixtop@4 // (lua_State *L)
| movzx RD, PC_RD
| jmp <1
break;
case BC_TDUP:
| ins_AND // RA = dst, RD = table const (~) (holding template table)
| mov L:RB, SAVE_L
| mov RA, [DISPATCH+DISPATCH_GL(gc.total)]
| mov SAVE_PC, PC
| cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)]
| mov L:RB->base, BASE
| jae >3
|2:
| mov TAB:FCARG2, [KBASE+RD*4] // Caveat: FCARG2 == BASE
| mov L:FCARG1, L:RB // Caveat: FCARG1 == RA
| call extern lj_tab_dup@8 // (lua_State *L, Table *kt)
| // Table * returned in eax (RC).
| mov BASE, L:RB->base
| movzx RA, PC_RA
| mov [BASE+RA*8], TAB:RC
| mov dword [BASE+RA*8+4], LJ_TTAB
| ins_next
|3:
| mov L:FCARG1, L:RB
| call extern lj_gc_step_fixtop@4 // (lua_State *L)
| movzx RD, PC_RD // Need to reload RD.
| not RDa
| jmp <2
break;
case BC_GGET:
| ins_AND // RA = dst, RD = str const (~)
| mov LFUNC:RB, [BASE-8]
| mov TAB:RB, LFUNC:RB->env
| mov STR:RC, [KBASE+RD*4]
| jmp ->BC_TGETS_Z
break;
case BC_GSET:
| ins_AND // RA = src, RD = str const (~)
| mov LFUNC:RB, [BASE-8]
| mov TAB:RB, LFUNC:RB->env
| mov STR:RC, [KBASE+RD*4]
| jmp ->BC_TSETS_Z
break;
case BC_TGETV:
| ins_ABC // RA = dst, RB = table, RC = key
| checktab RB, ->vmeta_tgetv
| mov TAB:RB, [BASE+RB*8]
|
| // Integer key?
|.if DUALNUM
| checkint RC, >5
| mov RC, dword [BASE+RC*8]
|.else
| // Convert number to int and back and compare.
| checknum RC, >5
| movsd xmm0, qword [BASE+RC*8]
| cvttsd2si RC, xmm0
| cvtsi2sd xmm1, RC
| ucomisd xmm0, xmm1
| jne ->vmeta_tgetv // Generic numeric key? Use fallback.
|.endif
| cmp RC, TAB:RB->asize // Takes care of unordered, too.
| jae ->vmeta_tgetv // Not in array part? Use fallback.
| shl RC, 3
| add RC, TAB:RB->array
| cmp dword [RC+4], LJ_TNIL // Avoid overwriting RB in fastpath.
| je >2
| // Get array slot.
|.if X64
| mov RBa, [RC]
| mov [BASE+RA*8], RBa
|.else
| mov RB, [RC]
| mov RC, [RC+4]
| mov [BASE+RA*8], RB
| mov [BASE+RA*8+4], RC
|.endif
|1:
| ins_next
|
|2: // Check for __index if table value is nil.
| cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath.
| jz >3
| mov TAB:RA, TAB:RB->metatable
| test byte TAB:RA->nomm, 1<<MM_index
| jz ->vmeta_tgetv // 'no __index' flag NOT set: check.
| movzx RA, PC_RA // Restore RA.
|3:
| mov dword [BASE+RA*8+4], LJ_TNIL
| jmp <1
|
|5: // String key?
| checkstr RC, ->vmeta_tgetv
| mov STR:RC, [BASE+RC*8]
| jmp ->BC_TGETS_Z
break;
case BC_TGETS:
| ins_ABC // RA = dst, RB = table, RC = str const (~)
| not RCa
| mov STR:RC, [KBASE+RC*4]
| checktab RB, ->vmeta_tgets
| mov TAB:RB, [BASE+RB*8]
|->BC_TGETS_Z: // RB = GCtab *, RC = GCstr *, refetches PC_RA.
| mov RA, TAB:RB->hmask
| and RA, STR:RC->sid
| imul RA, #NODE
| add NODE:RA, TAB:RB->node
|1:
| cmp dword NODE:RA->key.it, LJ_TSTR
| jne >4
| cmp dword NODE:RA->key.gcr, STR:RC
| jne >4
| // Ok, key found. Assumes: offsetof(Node, val) == 0
| cmp dword [RA+4], LJ_TNIL // Avoid overwriting RB in fastpath.
| je >5 // Key found, but nil value?
| movzx RC, PC_RA
| // Get node value.
|.if X64
| mov RBa, [RA]
| mov [BASE+RC*8], RBa
|.else
| mov RB, [RA]
| mov RA, [RA+4]
| mov [BASE+RC*8], RB
| mov [BASE+RC*8+4], RA
|.endif
|2:
| ins_next
|
|3:
| movzx RC, PC_RA
| mov dword [BASE+RC*8+4], LJ_TNIL
| jmp <2
|
|4: // Follow hash chain.
| mov NODE:RA, NODE:RA->next
| test NODE:RA, NODE:RA
| jnz <1
| // End of hash chain: key not found, nil result.
|
|5: // Check for __index if table value is nil.
| mov TAB:RA, TAB:RB->metatable
| test TAB:RA, TAB:RA
| jz <3 // No metatable: done.
| test byte TAB:RA->nomm, 1<<MM_index
| jnz <3 // 'no __index' flag set: done.
| jmp ->vmeta_tgets // Caveat: preserve STR:RC.
break;
case BC_TGETB:
| ins_ABC // RA = dst, RB = table, RC = byte literal
| checktab RB, ->vmeta_tgetb
| mov TAB:RB, [BASE+RB*8]
| cmp RC, TAB:RB->asize
| jae ->vmeta_tgetb
| shl RC, 3
| add RC, TAB:RB->array
| cmp dword [RC+4], LJ_TNIL // Avoid overwriting RB in fastpath.
| je >2
| // Get array slot.
|.if X64
| mov RBa, [RC]
| mov [BASE+RA*8], RBa
|.else
| mov RB, [RC]
| mov RC, [RC+4]
| mov [BASE+RA*8], RB
| mov [BASE+RA*8+4], RC
|.endif
|1:
| ins_next
|
|2: // Check for __index if table value is nil.
| cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath.
| jz >3
| mov TAB:RA, TAB:RB->metatable
| test byte TAB:RA->nomm, 1<<MM_index
| jz ->vmeta_tgetb // 'no __index' flag NOT set: check.
| movzx RA, PC_RA // Restore RA.
|3:
| mov dword [BASE+RA*8+4], LJ_TNIL
| jmp <1
break;
case BC_TGETR:
| ins_ABC // RA = dst, RB = table, RC = key
| mov TAB:RB, [BASE+RB*8]
|.if DUALNUM
| mov RC, dword [BASE+RC*8]
|.else
| cvttsd2si RC, qword [BASE+RC*8]
|.endif
| cmp RC, TAB:RB->asize
| jae ->vmeta_tgetr // Not in array part? Use fallback.
| shl RC, 3
| add RC, TAB:RB->array
| // Get array slot.
|->BC_TGETR_Z:
|.if X64
| mov RBa, [RC]
| mov [BASE+RA*8], RBa
|.else
| mov RB, [RC]
| mov RC, [RC+4]
| mov [BASE+RA*8], RB
| mov [BASE+RA*8+4], RC
|.endif
|->BC_TGETR2_Z:
| ins_next
break;
case BC_TSETV:
| ins_ABC // RA = src, RB = table, RC = key
| checktab RB, ->vmeta_tsetv
| mov TAB:RB, [BASE+RB*8]
|
| // Integer key?
|.if DUALNUM
| checkint RC, >5
| mov RC, dword [BASE+RC*8]
|.else
| // Convert number to int and back and compare.
| checknum RC, >5
| movsd xmm0, qword [BASE+RC*8]
| cvttsd2si RC, xmm0
| cvtsi2sd xmm1, RC
| ucomisd xmm0, xmm1
| jne ->vmeta_tsetv // Generic numeric key? Use fallback.
|.endif
| cmp RC, TAB:RB->asize // Takes care of unordered, too.
| jae ->vmeta_tsetv
| shl RC, 3
| add RC, TAB:RB->array
| cmp dword [RC+4], LJ_TNIL
| je >3 // Previous value is nil?
|1:
| test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table)
| jnz >7
|2: // Set array slot.
|.if X64
| mov RBa, [BASE+RA*8]
| mov [RC], RBa
|.else
| mov RB, [BASE+RA*8+4]
| mov RA, [BASE+RA*8]
| mov [RC+4], RB
| mov [RC], RA
|.endif
| ins_next
|
|3: // Check for __newindex if previous value is nil.
| cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath.
| jz <1
| mov TAB:RA, TAB:RB->metatable
| test byte TAB:RA->nomm, 1<<MM_newindex
| jz ->vmeta_tsetv // 'no __newindex' flag NOT set: check.
| movzx RA, PC_RA // Restore RA.
| jmp <1
|
|5: // String key?
| checkstr RC, ->vmeta_tsetv
| mov STR:RC, [BASE+RC*8]
| jmp ->BC_TSETS_Z
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, RA
| movzx RA, PC_RA // Restore RA.
| jmp <2
break;
case BC_TSETS:
| ins_ABC // RA = src, RB = table, RC = str const (~)
| not RCa
| mov STR:RC, [KBASE+RC*4]
| checktab RB, ->vmeta_tsets
| mov TAB:RB, [BASE+RB*8]
|->BC_TSETS_Z: // RB = GCtab *, RC = GCstr *, refetches PC_RA.
| mov RA, TAB:RB->hmask
| and RA, STR:RC->sid
| imul RA, #NODE
| mov byte TAB:RB->nomm, 0 // Clear metamethod cache.
| add NODE:RA, TAB:RB->node
|1:
| cmp dword NODE:RA->key.it, LJ_TSTR
| jne >5
| cmp dword NODE:RA->key.gcr, STR:RC
| jne >5
| // Ok, key found. Assumes: offsetof(Node, val) == 0
| cmp dword [RA+4], LJ_TNIL
| je >4 // Previous value is nil?
|2:
| test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table)
| jnz >7
|3: // Set node value.
| movzx RC, PC_RA
|.if X64
| mov RBa, [BASE+RC*8]
| mov [RA], RBa
|.else
| mov RB, [BASE+RC*8+4]
| mov RC, [BASE+RC*8]
| mov [RA+4], RB
| mov [RA], RC
|.endif
| ins_next
|
|4: // Check for __newindex if previous value is nil.
| cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath.
| jz <2
| mov TMP1, RA // Save RA.
| mov TAB:RA, TAB:RB->metatable
| test byte TAB:RA->nomm, 1<<MM_newindex
| jz ->vmeta_tsets // 'no __newindex' flag NOT set: check.
| mov RA, TMP1 // Restore RA.
| jmp <2
|
|5: // Follow hash chain.
| mov NODE:RA, NODE:RA->next
| test NODE:RA, NODE:RA
| jnz <1
| // End of hash chain: key not found, add a new one.
|
| // But check for __newindex first.
| mov TAB:RA, TAB:RB->metatable
| test TAB:RA, TAB:RA
| jz >6 // No metatable: continue.
| test byte TAB:RA->nomm, 1<<MM_newindex
| jz ->vmeta_tsets // 'no __newindex' flag NOT set: check.
|6:
| mov TMP1, STR:RC
| mov TMP2, LJ_TSTR
| mov TMP3, TAB:RB // Save TAB:RB for us.
|.if X64
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE
| lea CARG3, TMP1
| mov CARG2d, TAB:RB
| mov L:RB, L:CARG1d
|.else
| lea RC, TMP1 // Store temp. TValue in TMP1/TMP2.
| mov ARG2, TAB:RB
| mov L:RB, SAVE_L
| mov ARG3, RC
| mov ARG1, L:RB
| mov L:RB->base, BASE
|.endif
| mov SAVE_PC, PC
| call extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k)
| // Handles write barrier for the new key. TValue * returned in eax (RC).
| mov BASE, L:RB->base
| mov TAB:RB, TMP3 // Need TAB:RB for barrier.
| mov RA, eax
| jmp <2 // Must check write barrier for value.
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, RC // Destroys STR:RC.
| jmp <3
break;
case BC_TSETB:
| ins_ABC // RA = src, RB = table, RC = byte literal
| checktab RB, ->vmeta_tsetb
| mov TAB:RB, [BASE+RB*8]
| cmp RC, TAB:RB->asize
| jae ->vmeta_tsetb
| shl RC, 3
| add RC, TAB:RB->array
| cmp dword [RC+4], LJ_TNIL
| je >3 // Previous value is nil?
|1:
| test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table)
| jnz >7
|2: // Set array slot.
|.if X64
| mov RAa, [BASE+RA*8]
| mov [RC], RAa
|.else
| mov RB, [BASE+RA*8+4]
| mov RA, [BASE+RA*8]
| mov [RC+4], RB
| mov [RC], RA
|.endif
| ins_next
|
|3: // Check for __newindex if previous value is nil.
| cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath.
| jz <1
| mov TAB:RA, TAB:RB->metatable
| test byte TAB:RA->nomm, 1<<MM_newindex
| jz ->vmeta_tsetb // 'no __newindex' flag NOT set: check.
| movzx RA, PC_RA // Restore RA.
| jmp <1
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, RA
| movzx RA, PC_RA // Restore RA.
| jmp <2
break;
case BC_TSETR:
| ins_ABC // RA = src, RB = table, RC = key
| mov TAB:RB, [BASE+RB*8]
|.if DUALNUM
| mov RC, dword [BASE+RC*8]
|.else
| cvttsd2si RC, qword [BASE+RC*8]
|.endif
| test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table)
| jnz >7
|2:
| cmp RC, TAB:RB->asize
| jae ->vmeta_tsetr
| shl RC, 3
| add RC, TAB:RB->array
| // Set array slot.
|->BC_TSETR_Z:
|.if X64
| mov RBa, [BASE+RA*8]
| mov [RC], RBa
|.else
| mov RB, [BASE+RA*8+4]
| mov RA, [BASE+RA*8]
| mov [RC+4], RB
| mov [RC], RA
|.endif
| ins_next
|
|7: // Possible table write barrier for the value. Skip valiswhite check.
| barrierback TAB:RB, RA
| movzx RA, PC_RA // Restore RA.
| jmp <2
break;
case BC_TSETM:
| ins_AD // RA = base (table at base-1), RD = num const (start index)
| mov TMP1, KBASE // Need one more free register.
| mov KBASE, dword [KBASE+RD*8] // Integer constant is in lo-word.
|1:
| lea RA, [BASE+RA*8]
| mov TAB:RB, [RA-8] // Guaranteed to be a table.
| test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table)
| jnz >7
|2:
| mov RD, MULTRES
| sub RD, 1
| jz >4 // Nothing to copy?
| add RD, KBASE // Compute needed size.
| cmp RD, TAB:RB->asize
| ja >5 // Doesn't fit into array part?
| sub RD, KBASE
| shl KBASE, 3
| add KBASE, TAB:RB->array
|3: // Copy result slots to table.
|.if X64
| mov RBa, [RA]
| add RA, 8
| mov [KBASE], RBa
|.else
| mov RB, [RA]
| mov [KBASE], RB
| mov RB, [RA+4]
| add RA, 8
| mov [KBASE+4], RB
|.endif
| add KBASE, 8
| sub RD, 1
| jnz <3
|4:
| mov KBASE, TMP1
| ins_next
|
|5: // Need to resize array part.
|.if X64
| mov L:CARG1d, SAVE_L
| mov L:CARG1d->base, BASE // Caveat: CARG2d/CARG3d may be BASE.
| mov CARG2d, TAB:RB
| mov CARG3d, RD
| mov L:RB, L:CARG1d
|.else
| mov ARG2, TAB:RB
| mov L:RB, SAVE_L
| mov L:RB->base, BASE
| mov ARG3, RD
| mov ARG1, L:RB
|.endif
| mov SAVE_PC, PC
| call extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize)
| mov BASE, L:RB->base
| movzx RA, PC_RA // Restore RA.
| jmp <1 // Retry.
|
|7: // Possible table write barrier for any value. Skip valiswhite check.
| barrierback TAB:RB, RD
| jmp <2
break;
/* -- Calls and vararg handling ----------------------------------------- */
case BC_CALL: case BC_CALLM:
| ins_A_C // RA = base, (RB = nresults+1,) RC = nargs+1 | extra_nargs
if (op == BC_CALLM) {
| add NARGS:RD, MULTRES
}
| cmp dword [BASE+RA*8+4], LJ_TFUNC
| mov LFUNC:RB, [BASE+RA*8]
| jne ->vmeta_call_ra
| lea BASE, [BASE+RA*8+8]
| ins_call
break;
case BC_CALLMT:
| ins_AD // RA = base, RD = extra_nargs
| add NARGS:RD, MULTRES
| // Fall through. Assumes BC_CALLT follows and ins_AD is a no-op.
break;
case BC_CALLT:
| ins_AD // RA = base, RD = nargs+1
| lea RA, [BASE+RA*8+8]
| mov KBASE, BASE // Use KBASE for move + vmeta_call hint.
| mov LFUNC:RB, [RA-8]
| cmp dword [RA-4], LJ_TFUNC
| jne ->vmeta_call
|->BC_CALLT_Z:
| mov PC, [BASE-4]
| test PC, FRAME_TYPE
| jnz >7
|1:
| mov [BASE-8], LFUNC:RB // Copy function down, reloaded below.
| mov MULTRES, NARGS:RD
| sub NARGS:RD, 1
| jz >3
|2: // Move args down.
|.if X64
| mov RBa, [RA]
| add RA, 8
| mov [KBASE], RBa
|.else
| mov RB, [RA]
| mov [KBASE], RB
| mov RB, [RA+4]
| add RA, 8
| mov [KBASE+4], RB
|.endif
| add KBASE, 8
| sub NARGS:RD, 1
| jnz <2
|
| mov LFUNC:RB, [BASE-8]
|3:
| mov NARGS:RD, MULTRES
| cmp byte LFUNC:RB->ffid, 1 // (> FF_C) Calling a fast function?
| ja >5
|4:
| ins_callt
|
|5: // Tailcall to a fast function.
| test PC, FRAME_TYPE // Lua frame below?
| jnz <4
| movzx RA, PC_RA
| not RAa
| mov LFUNC:KBASE, [BASE+RA*8-8] // Need to prepare KBASE.
| mov KBASE, LFUNC:KBASE->pc
| mov KBASE, [KBASE+PC2PROTO(k)]
| jmp <4
|
|7: // Tailcall from a vararg function.
| sub PC, FRAME_VARG
| test PC, FRAME_TYPEP
| jnz >8 // Vararg frame below?
| sub BASE, PC // Need to relocate BASE/KBASE down.
| mov KBASE, BASE
| mov PC, [BASE-4]
| jmp <1
|8:
| add PC, FRAME_VARG
| jmp <1
break;
case BC_ITERC:
| ins_A // RA = base, (RB = nresults+1,) RC = nargs+1 (2+1)
| lea RA, [BASE+RA*8+8] // fb = base+1
|.if X64
| mov RBa, [RA-24] // Copy state. fb[0] = fb[-3].
| mov RCa, [RA-16] // Copy control var. fb[1] = fb[-2].
| mov [RA], RBa
| mov [RA+8], RCa
|.else
| mov RB, [RA-24] // Copy state. fb[0] = fb[-3].
| mov RC, [RA-20]
| mov [RA], RB
| mov [RA+4], RC
| mov RB, [RA-16] // Copy control var. fb[1] = fb[-2].
| mov RC, [RA-12]
| mov [RA+8], RB
| mov [RA+12], RC
|.endif
| mov LFUNC:RB, [RA-32] // Copy callable. fb[-1] = fb[-4]
| mov RC, [RA-28]
| mov [RA-8], LFUNC:RB
| mov [RA-4], RC
| cmp RC, LJ_TFUNC // Handle like a regular 2-arg call.
| mov NARGS:RD, 2+1
| jne ->vmeta_call
| mov BASE, RA
| ins_call
break;
case BC_ITERN:
|.if JIT
| hotloop RB
|.endif
|->vm_IITERN:
| ins_A // RA = base, (RB = nresults+1, RC = nargs+1 (2+1))
| mov TMP1, KBASE // Need two more free registers.
| mov TMP2, DISPATCH
| mov TAB:RB, [BASE+RA*8-16]
| mov RC, [BASE+RA*8-8] // Get index from control var.
| mov DISPATCH, TAB:RB->asize
| add PC, 4
| mov KBASE, TAB:RB->array
|1: // Traverse array part.
| cmp RC, DISPATCH; jae >5 // Index points after array part?
| cmp dword [KBASE+RC*8+4], LJ_TNIL; je >4
|.if DUALNUM
| mov dword [BASE+RA*8+4], LJ_TISNUM
| mov dword [BASE+RA*8], RC
|.else
| cvtsi2sd xmm0, RC
|.endif
| // Copy array slot to returned value.
|.if X64
| mov RBa, [KBASE+RC*8]
| mov [BASE+RA*8+8], RBa
|.else
| mov RB, [KBASE+RC*8+4]
| mov [BASE+RA*8+12], RB
| mov RB, [KBASE+RC*8]
| mov [BASE+RA*8+8], RB
|.endif
| add RC, 1
| // Return array index as a numeric key.
|.if DUALNUM
| // See above.
|.else
| movsd qword [BASE+RA*8], xmm0
|.endif
| mov [BASE+RA*8-8], RC // Update control var.
|2:
| movzx RD, PC_RD // Get target from ITERL.
| branchPC RD
|3:
| mov DISPATCH, TMP2
| mov KBASE, TMP1
| ins_next
|
|4: // Skip holes in array part.
| add RC, 1
| jmp <1
|
|5: // Traverse hash part.
| sub RC, DISPATCH
|6:
| cmp RC, TAB:RB->hmask; ja <3 // End of iteration? Branch to ITERL+1.
| imul KBASE, RC, #NODE
| add NODE:KBASE, TAB:RB->node
| cmp dword NODE:KBASE->val.it, LJ_TNIL; je >7
| lea DISPATCH, [RC+DISPATCH+1]
| // Copy key and value from hash slot.
|.if X64
| mov RBa, NODE:KBASE->key
| mov RCa, NODE:KBASE->val
| mov [BASE+RA*8], RBa
| mov [BASE+RA*8+8], RCa
|.else
| mov RB, NODE:KBASE->key.gcr
| mov RC, NODE:KBASE->key.it
| mov [BASE+RA*8], RB
| mov [BASE+RA*8+4], RC
| mov RB, NODE:KBASE->val.gcr
| mov RC, NODE:KBASE->val.it
| mov [BASE+RA*8+8], RB
| mov [BASE+RA*8+12], RC
|.endif
| mov [BASE+RA*8-8], DISPATCH
| jmp <2
|
|7: // Skip holes in hash part.
| add RC, 1
| jmp <6
break;
case BC_ISNEXT:
| ins_AD // RA = base, RD = target (points to ITERN)
| cmp dword [BASE+RA*8-20], LJ_TFUNC; jne >5
| mov CFUNC:RB, [BASE+RA*8-24]
| cmp dword [BASE+RA*8-12], LJ_TTAB; jne >5
| cmp dword [BASE+RA*8-4], LJ_TNIL; jne >5
| cmp byte CFUNC:RB->ffid, FF_next_N; jne >5
| branchPC RD
| mov dword [BASE+RA*8-8], 0 // Initialize control var.
| mov dword [BASE+RA*8-4], LJ_KEYINDEX
|1:
| ins_next
|5: // Despecialize bytecode if any of the checks fail.
| mov PC_OP, BC_JMP
| branchPC RD
|.if JIT
| cmp byte [PC], BC_ITERN
| jne >6
|.endif
| mov byte [PC], BC_ITERC
| jmp <1
|.if JIT
|6: // Unpatch JLOOP.
| mov RA, [DISPATCH+DISPATCH_J(trace)]
| movzx RC, word [PC+2]
| mov TRACE:RA, [RA+RC*4]
| mov eax, TRACE:RA->startins
| mov al, BC_ITERC
| mov dword [PC], eax
| jmp <1
|.endif
break;
case BC_VARG:
| ins_ABC // RA = base, RB = nresults+1, RC = numparams
| mov TMP1, KBASE // Need one more free register.
| lea KBASE, [BASE+RC*8+(8+FRAME_VARG)]
| lea RA, [BASE+RA*8]
| sub KBASE, [BASE-4]
| // Note: KBASE may now be even _above_ BASE if nargs was < numparams.
| test RB, RB
| jz >5 // Copy all varargs?
| lea RB, [RA+RB*8-8]
| cmp KBASE, BASE // No vararg slots?
| jnb >2
|1: // Copy vararg slots to destination slots.
|.if X64
| mov RCa, [KBASE-8]
| add KBASE, 8
| mov [RA], RCa
|.else
| mov RC, [KBASE-8]
| mov [RA], RC
| mov RC, [KBASE-4]
| add KBASE, 8
| mov [RA+4], RC
|.endif
| add RA, 8
| cmp RA, RB // All destination slots filled?
| jnb >3
| cmp KBASE, BASE // No more vararg slots?
| jb <1
|2: // Fill up remainder with nil.
| mov dword [RA+4], LJ_TNIL
| add RA, 8
| cmp RA, RB
| jb <2
|3:
| mov KBASE, TMP1
| ins_next
|
|5: // Copy all varargs.
| mov MULTRES, 1 // MULTRES = 0+1
| mov RC, BASE
| sub RC, KBASE
| jbe <3 // No vararg slots?
| mov RB, RC
| shr RB, 3
| add RB, 1
| mov MULTRES, RB // MULTRES = #varargs+1
| mov L:RB, SAVE_L
| add RC, RA
| cmp RC, L:RB->maxstack
| ja >7 // Need to grow stack?
|6: // Copy all vararg slots.
|.if X64
| mov RCa, [KBASE-8]
| add KBASE, 8
| mov [RA], RCa
|.else
| mov RC, [KBASE-8]
| mov [RA], RC
| mov RC, [KBASE-4]
| add KBASE, 8
| mov [RA+4], RC
|.endif
| add RA, 8
| cmp KBASE, BASE // No more vararg slots?
| jb <6
| jmp <3
|
|7: // Grow stack for varargs.
| mov L:RB->base, BASE
| mov L:RB->top, RA
| mov SAVE_PC, PC
| sub KBASE, BASE // Need delta, because BASE may change.
| mov FCARG2, MULTRES
| sub FCARG2, 1
| mov FCARG1, L:RB
| call extern lj_state_growstack@8 // (lua_State *L, int n)
| mov BASE, L:RB->base
| mov RA, L:RB->top
| add KBASE, BASE
| jmp <6
break;
/* -- Returns ----------------------------------------------------------- */
case BC_RETM:
| ins_AD // RA = results, RD = extra_nresults
| add RD, MULTRES // MULTRES >=1, so RD >=1.
| // Fall through. Assumes BC_RET follows and ins_AD is a no-op.
break;
case BC_RET: case BC_RET0: case BC_RET1:
| ins_AD // RA = results, RD = nresults+1
if (op != BC_RET0) {
| shl RA, 3
}
|1:
| mov PC, [BASE-4]
| mov MULTRES, RD // Save nresults+1.
| test PC, FRAME_TYPE // Check frame type marker.
| jnz >7 // Not returning to a fixarg Lua func?
switch (op) {
case BC_RET:
|->BC_RET_Z:
| mov KBASE, BASE // Use KBASE for result move.
| sub RD, 1
| jz >3
|2: // Move results down.
|.if X64
| mov RBa, [KBASE+RA]
| mov [KBASE-8], RBa
|.else
| mov RB, [KBASE+RA]
| mov [KBASE-8], RB
| mov RB, [KBASE+RA+4]
| mov [KBASE-4], RB
|.endif
| add KBASE, 8
| sub RD, 1
| jnz <2
|3:
| mov RD, MULTRES // Note: MULTRES may be >255.
| movzx RB, PC_RB // So cannot compare with RDL!
|5:
| cmp RB, RD // More results expected?
| ja >6
break;
case BC_RET1:
|.if X64
| mov RBa, [BASE+RA]
| mov [BASE-8], RBa
|.else
| mov RB, [BASE+RA+4]
| mov [BASE-4], RB
| mov RB, [BASE+RA]
| mov [BASE-8], RB
|.endif
/* fallthrough */
case BC_RET0:
|5:
| cmp PC_RB, RDL // More results expected?
| ja >6
default:
break;
}
| movzx RA, PC_RA
| not RAa // Note: ~RA = -(RA+1)
| lea BASE, [BASE+RA*8] // base = base - (RA+1)*8
| mov LFUNC:KBASE, [BASE-8]
| mov KBASE, LFUNC:KBASE->pc
| mov KBASE, [KBASE+PC2PROTO(k)]
| ins_next
|
|6: // Fill up results with nil.
if (op == BC_RET) {
| mov dword [KBASE-4], LJ_TNIL // Note: relies on shifted base.
| add KBASE, 8
} else {
| mov dword [BASE+RD*8-12], LJ_TNIL
}
| add RD, 1
| jmp <5
|
|7: // Non-standard return case.
| lea RB, [PC-FRAME_VARG]
| test RB, FRAME_TYPEP
| jnz ->vm_return
| // Return from vararg function: relocate BASE down and RA up.
| sub BASE, RB
if (op != BC_RET0) {
| add RA, RB
}
| jmp <1
break;
/* -- Loops and branches ------------------------------------------------ */
|.define FOR_IDX, [RA]; .define FOR_TIDX, dword [RA+4]
|.define FOR_STOP, [RA+8]; .define FOR_TSTOP, dword [RA+12]
|.define FOR_STEP, [RA+16]; .define FOR_TSTEP, dword [RA+20]
|.define FOR_EXT, [RA+24]; .define FOR_TEXT, dword [RA+28]
case BC_FORL:
|.if JIT
| hotloop RB
|.endif
| // Fall through. Assumes BC_IFORL follows and ins_AJ is a no-op.
break;
case BC_JFORI:
case BC_JFORL:
#if !LJ_HASJIT
break;
#endif
case BC_FORI:
case BC_IFORL:
vk = (op == BC_IFORL || op == BC_JFORL);
| ins_AJ // RA = base, RD = target (after end of loop or start of loop)
| lea RA, [BASE+RA*8]
if (LJ_DUALNUM) {
| cmp FOR_TIDX, LJ_TISNUM; jne >9
if (!vk) {
| cmp FOR_TSTOP, LJ_TISNUM; jne ->vmeta_for
| cmp FOR_TSTEP, LJ_TISNUM; jne ->vmeta_for
| mov RB, dword FOR_IDX
| cmp dword FOR_STEP, 0; jl >5
} else {
#ifdef LUA_USE_ASSERT
| cmp FOR_TSTOP, LJ_TISNUM; jne ->assert_bad_for_arg_type
| cmp FOR_TSTEP, LJ_TISNUM; jne ->assert_bad_for_arg_type
#endif
| mov RB, dword FOR_STEP
| test RB, RB; js >5
| add RB, dword FOR_IDX; jo >1
| mov dword FOR_IDX, RB
}
| cmp RB, dword FOR_STOP
| mov FOR_TEXT, LJ_TISNUM
| mov dword FOR_EXT, RB
if (op == BC_FORI) {
| jle >7
|1:
|6:
| branchPC RD
} else if (op == BC_JFORI) {
| branchPC RD
| movzx RD, PC_RD
| jle =>BC_JLOOP
|1:
|6:
} else if (op == BC_IFORL) {
| jg >7
|6:
| branchPC RD
|1:
} else {
| jle =>BC_JLOOP
|1:
|6:
}
|7:
| ins_next
|
|5: // Invert check for negative step.
if (vk) {
| add RB, dword FOR_IDX; jo <1
| mov dword FOR_IDX, RB
}
| cmp RB, dword FOR_STOP
| mov FOR_TEXT, LJ_TISNUM
| mov dword FOR_EXT, RB
if (op == BC_FORI) {
| jge <7
} else if (op == BC_JFORI) {
| branchPC RD
| movzx RD, PC_RD
| jge =>BC_JLOOP
} else if (op == BC_IFORL) {
| jl <7
} else {
| jge =>BC_JLOOP
}
| jmp <6
|9: // Fallback to FP variant.
} else if (!vk) {
| cmp FOR_TIDX, LJ_TISNUM
}
if (!vk) {
| jae ->vmeta_for
| cmp FOR_TSTOP, LJ_TISNUM; jae ->vmeta_for
} else {
#ifdef LUA_USE_ASSERT
| cmp FOR_TSTOP, LJ_TISNUM; jae ->assert_bad_for_arg_type
| cmp FOR_TSTEP, LJ_TISNUM; jae ->assert_bad_for_arg_type
#endif
}
| mov RB, FOR_TSTEP // Load type/hiword of for step.
if (!vk) {
| cmp RB, LJ_TISNUM; jae ->vmeta_for
}
| movsd xmm0, qword FOR_IDX
| movsd xmm1, qword FOR_STOP
if (vk) {
| addsd xmm0, qword FOR_STEP
| movsd qword FOR_IDX, xmm0
| test RB, RB; js >3
} else {
| jl >3
}
| ucomisd xmm1, xmm0
|1:
| movsd qword FOR_EXT, xmm0
if (op == BC_FORI) {
|.if DUALNUM
| jnb <7
|.else
| jnb >2
| branchPC RD
|.endif
} else if (op == BC_JFORI) {
| branchPC RD
| movzx RD, PC_RD
| jnb =>BC_JLOOP
} else if (op == BC_IFORL) {
|.if DUALNUM
| jb <7
|.else
| jb >2
| branchPC RD
|.endif
} else {
| jnb =>BC_JLOOP
}
|.if DUALNUM
| jmp <6
|.else
|2:
| ins_next
|.endif
|
|3: // Invert comparison if step is negative.
| ucomisd xmm0, xmm1
| jmp <1
break;
case BC_ITERL:
|.if JIT
| hotloop RB
|.endif
| // Fall through. Assumes BC_IITERL follows and ins_AJ is a no-op.
break;
case BC_JITERL:
#if !LJ_HASJIT
break;
#endif
case BC_IITERL:
| ins_AJ // RA = base, RD = target
| lea RA, [BASE+RA*8]
| mov RB, [RA+4]
| cmp RB, LJ_TNIL; je >1 // Stop if iterator returned nil.
if (op == BC_JITERL) {
| mov [RA-4], RB
| mov RB, [RA]
| mov [RA-8], RB
| jmp =>BC_JLOOP
} else {
| branchPC RD // Otherwise save control var + branch.
| mov RD, [RA]
| mov [RA-4], RB
| mov [RA-8], RD
}
|1:
| ins_next
break;
case BC_LOOP:
| ins_A // RA = base, RD = target (loop extent)
| // Note: RA/RD is only used by trace recorder to determine scope/extent
| // This opcode does NOT jump, it's only purpose is to detect a hot loop.
|.if JIT
| hotloop RB
|.endif
| // Fall through. Assumes BC_ILOOP follows and ins_A is a no-op.
break;
case BC_ILOOP:
| ins_A // RA = base, RD = target (loop extent)
| ins_next
break;
case BC_JLOOP:
|.if JIT
| ins_AD // RA = base (ignored), RD = traceno
| mov RA, [DISPATCH+DISPATCH_J(trace)]
| mov TRACE:RD, [RA+RD*4]
| mov RDa, TRACE:RD->mcode
| mov L:RB, SAVE_L
| mov [DISPATCH+DISPATCH_GL(jit_base)], BASE
| mov [DISPATCH+DISPATCH_GL(tmpbuf.L)], L:RB
| // Save additional callee-save registers only used in compiled code.
|.if X64WIN
| mov TMPQ, r12
| mov TMPa, r13
| mov CSAVE_4, r14
| mov CSAVE_3, r15
| mov RAa, rsp
| sub rsp, 9*16+4*8
| movdqa [RAa], xmm6
| movdqa [RAa-1*16], xmm7
| movdqa [RAa-2*16], xmm8
| movdqa [RAa-3*16], xmm9
| movdqa [RAa-4*16], xmm10
| movdqa [RAa-5*16], xmm11
| movdqa [RAa-6*16], xmm12
| movdqa [RAa-7*16], xmm13
| movdqa [RAa-8*16], xmm14
| movdqa [RAa-9*16], xmm15
|.elif X64
| mov TMPQ, r12
| mov TMPa, r13
| sub rsp, 16
|.endif
| jmp RDa
|.endif
break;
case BC_JMP:
| ins_AJ // RA = unused, RD = target
| branchPC RD
| ins_next
break;
/* -- Function headers -------------------------------------------------- */
/*
** Reminder: A function may be called with func/args above L->maxstack,
** i.e. occupying EXTRA_STACK slots. And vmeta_call may add one extra slot,
** too. This means all FUNC* ops (including fast functions) must check
** for stack overflow _before_ adding more slots!
*/
case BC_FUNCF:
|.if JIT
| hotcall RB
|.endif
case BC_FUNCV: /* NYI: compiled vararg functions. */
| // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow and ins_AD is a no-op.
break;
case BC_JFUNCF:
#if !LJ_HASJIT
break;
#endif
case BC_IFUNCF:
| ins_AD // BASE = new base, RA = framesize, RD = nargs+1
| mov KBASE, [PC-4+PC2PROTO(k)]
| mov L:RB, SAVE_L
| lea RA, [BASE+RA*8] // Top of frame.
| cmp RA, L:RB->maxstack
| ja ->vm_growstack_f
| movzx RA, byte [PC-4+PC2PROTO(numparams)]
| cmp NARGS:RD, RA // Check for missing parameters.
| jbe >3
|2:
if (op == BC_JFUNCF) {
| movzx RD, PC_RD
| jmp =>BC_JLOOP
} else {
| ins_next
}
|
|3: // Clear missing parameters.
| mov dword [BASE+NARGS:RD*8-4], LJ_TNIL
| add NARGS:RD, 1
| cmp NARGS:RD, RA
| jbe <3
| jmp <2
break;
case BC_JFUNCV:
#if !LJ_HASJIT
break;
#endif
| int3 // NYI: compiled vararg functions
break; /* NYI: compiled vararg functions. */
case BC_IFUNCV:
| ins_AD // BASE = new base, RA = framesize, RD = nargs+1
| lea RB, [NARGS:RD*8+FRAME_VARG]
| lea RD, [BASE+NARGS:RD*8]
| mov LFUNC:KBASE, [BASE-8]
| mov [RD-4], RB // Store delta + FRAME_VARG.
| mov [RD-8], LFUNC:KBASE // Store copy of LFUNC.
| mov L:RB, SAVE_L
| lea RA, [RD+RA*8]
| cmp RA, L:RB->maxstack
| ja ->vm_growstack_v // Need to grow stack.
| mov RA, BASE
| mov BASE, RD
| movzx RB, byte [PC-4+PC2PROTO(numparams)]
| test RB, RB
| jz >2
|1: // Copy fixarg slots up to new frame.
| add RA, 8
| cmp RA, BASE
| jnb >3 // Less args than parameters?
| mov KBASE, [RA-8]
| mov [RD], KBASE
| mov KBASE, [RA-4]
| mov [RD+4], KBASE
| add RD, 8
| mov dword [RA-4], LJ_TNIL // Clear old fixarg slot (help the GC).
| sub RB, 1
| jnz <1
|2:
if (op == BC_JFUNCV) {
| movzx RD, PC_RD
| jmp =>BC_JLOOP
} else {
| mov KBASE, [PC-4+PC2PROTO(k)]
| ins_next
}
|
|3: // Clear missing parameters.
| mov dword [RD+4], LJ_TNIL
| add RD, 8
| sub RB, 1
| jnz <3
| jmp <2
break;
case BC_FUNCC:
case BC_FUNCCW:
| ins_AD // BASE = new base, RA = ins RA|RD (unused), RD = nargs+1
| mov CFUNC:RB, [BASE-8]
| mov KBASEa, CFUNC:RB->f
| mov L:RB, SAVE_L
| lea RD, [BASE+NARGS:RD*8-8]
| mov L:RB->base, BASE
| lea RA, [RD+8*LUA_MINSTACK]
| cmp RA, L:RB->maxstack
| mov L:RB->top, RD
if (op == BC_FUNCC) {
|.if X64
| mov CARG1d, L:RB // Caveat: CARG1d may be RA.
|.else
| mov ARG1, L:RB
|.endif
} else {
|.if X64
| mov CARG2, KBASEa
| mov CARG1d, L:RB // Caveat: CARG1d may be RA.
|.else
| mov ARG2, KBASEa
| mov ARG1, L:RB
|.endif
}
| ja ->vm_growstack_c // Need to grow stack.
| set_vmstate C
if (op == BC_FUNCC) {
| call KBASEa // (lua_State *L)
} else {
| // (lua_State *L, lua_CFunction f)
| call aword [DISPATCH+DISPATCH_GL(wrapf)]
}
| // nresults returned in eax (RD).
| mov BASE, L:RB->base
| mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB
| set_vmstate INTERP
| lea RA, [BASE+RD*8]
| neg RA
| add RA, L:RB->top // RA = (L->top-(L->base+nresults))*8
| mov PC, [BASE-4] // Fetch PC of caller.
| jmp ->vm_returnc
break;
/* ---------------------------------------------------------------------- */
default:
fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
exit(2);
break;
}
}
static int build_backend(BuildCtx *ctx)
{
int op;
dasm_growpc(Dst, BC__MAX);
build_subroutines(ctx);
|.code_op
for (op = 0; op < BC__MAX; op++)
build_ins(ctx, (BCOp)op, op);
return BC__MAX;
}
/* Emit pseudo frame-info for all assembler functions. */
static void emit_asm_debug(BuildCtx *ctx)
{
int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code);
#if LJ_64
#define SZPTR "8"
#define BSZPTR "3"
#define REG_SP "0x7"
#define REG_RA "0x10"
#else
#define SZPTR "4"
#define BSZPTR "2"
#define REG_SP "0x4"
#define REG_RA "0x8"
#endif
switch (ctx->mode) {
case BUILD_elfasm:
fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
fprintf(ctx->fp,
".Lframe0:\n"
"\t.long .LECIE0-.LSCIE0\n"
".LSCIE0:\n"
"\t.long 0xffffffff\n"
"\t.byte 0x1\n"
"\t.string \"\"\n"
"\t.uleb128 0x1\n"
"\t.sleb128 -" SZPTR "\n"
"\t.byte " REG_RA "\n"
"\t.byte 0xc\n\t.uleb128 " REG_SP "\n\t.uleb128 " SZPTR "\n"
"\t.byte 0x80+" REG_RA "\n\t.uleb128 0x1\n"
"\t.align " SZPTR "\n"
".LECIE0:\n\n");
fprintf(ctx->fp,
".LSFDE0:\n"
"\t.long .LEFDE0-.LASFDE0\n"
".LASFDE0:\n"
"\t.long .Lframe0\n"
#if LJ_64
"\t.quad .Lbegin\n"
"\t.quad %d\n"
"\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */
"\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */
"\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */
"\t.byte 0x8f\n\t.uleb128 0x4\n" /* offset r15 */
"\t.byte 0x8e\n\t.uleb128 0x5\n" /* offset r14 */
#if LJ_NO_UNWIND
"\t.byte 0x8d\n\t.uleb128 0x6\n" /* offset r13 */
"\t.byte 0x8c\n\t.uleb128 0x7\n" /* offset r12 */
#endif
#else
"\t.long .Lbegin\n"
"\t.long %d\n"
"\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */
"\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */
"\t.byte 0x87\n\t.uleb128 0x3\n" /* offset edi */
"\t.byte 0x86\n\t.uleb128 0x4\n" /* offset esi */
"\t.byte 0x83\n\t.uleb128 0x5\n" /* offset ebx */
#endif
"\t.align " SZPTR "\n"
".LEFDE0:\n\n", fcofs, CFRAME_SIZE);
#if LJ_HASFFI
fprintf(ctx->fp,
".LSFDE1:\n"
"\t.long .LEFDE1-.LASFDE1\n"
".LASFDE1:\n"
"\t.long .Lframe0\n"
#if LJ_64
"\t.quad lj_vm_ffi_call\n"
"\t.quad %d\n"
"\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */
"\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */
"\t.byte 0xd\n\t.uleb128 0x6\n" /* def_cfa_register rbp */
"\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */
#else
"\t.long lj_vm_ffi_call\n"
"\t.long %d\n"
"\t.byte 0xe\n\t.uleb128 8\n" /* def_cfa_offset */
"\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */
"\t.byte 0xd\n\t.uleb128 0x5\n" /* def_cfa_register ebp */
"\t.byte 0x83\n\t.uleb128 0x3\n" /* offset ebx */
#endif
"\t.align " SZPTR "\n"
".LEFDE1:\n\n", (int)ctx->codesz - fcofs);
#endif
#if !LJ_NO_UNWIND
#if LJ_TARGET_SOLARIS
#if LJ_64
fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@unwind\n");
#else
fprintf(ctx->fp, "\t.section .eh_frame,\"aw\",@progbits\n");
#endif
#else
fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n");
#endif
fprintf(ctx->fp,
".Lframe1:\n"
"\t.long .LECIE1-.LSCIE1\n"
".LSCIE1:\n"
"\t.long 0\n"
"\t.byte 0x1\n"
"\t.string \"zPR\"\n"
"\t.uleb128 0x1\n"
"\t.sleb128 -" SZPTR "\n"
"\t.byte " REG_RA "\n"
"\t.uleb128 6\n" /* augmentation length */
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.long lj_err_unwind_dwarf-.\n"
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.uleb128 " REG_SP "\n\t.uleb128 " SZPTR "\n"
"\t.byte 0x80+" REG_RA "\n\t.uleb128 0x1\n"
"\t.align " SZPTR "\n"
".LECIE1:\n\n");
fprintf(ctx->fp,
".LSFDE2:\n"
"\t.long .LEFDE2-.LASFDE2\n"
".LASFDE2:\n"
"\t.long .LASFDE2-.Lframe1\n"
"\t.long .Lbegin-.\n"
"\t.long %d\n"
"\t.uleb128 0\n" /* augmentation length */
"\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */
#if LJ_64
"\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */
"\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */
"\t.byte 0x8f\n\t.uleb128 0x4\n" /* offset r15 */
"\t.byte 0x8e\n\t.uleb128 0x5\n" /* offset r14 */
#else
"\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */
"\t.byte 0x87\n\t.uleb128 0x3\n" /* offset edi */
"\t.byte 0x86\n\t.uleb128 0x4\n" /* offset esi */
"\t.byte 0x83\n\t.uleb128 0x5\n" /* offset ebx */
#endif
"\t.align " SZPTR "\n"
".LEFDE2:\n\n", fcofs, CFRAME_SIZE);
#if LJ_HASFFI
fprintf(ctx->fp,
".Lframe2:\n"
"\t.long .LECIE2-.LSCIE2\n"
".LSCIE2:\n"
"\t.long 0\n"
"\t.byte 0x1\n"
"\t.string \"zR\"\n"
"\t.uleb128 0x1\n"
"\t.sleb128 -" SZPTR "\n"
"\t.byte " REG_RA "\n"
"\t.uleb128 1\n" /* augmentation length */
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.uleb128 " REG_SP "\n\t.uleb128 " SZPTR "\n"
"\t.byte 0x80+" REG_RA "\n\t.uleb128 0x1\n"
"\t.align " SZPTR "\n"
".LECIE2:\n\n");
fprintf(ctx->fp,
".LSFDE3:\n"
"\t.long .LEFDE3-.LASFDE3\n"
".LASFDE3:\n"
"\t.long .LASFDE3-.Lframe2\n"
"\t.long lj_vm_ffi_call-.\n"
"\t.long %d\n"
"\t.uleb128 0\n" /* augmentation length */
#if LJ_64
"\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */
"\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */
"\t.byte 0xd\n\t.uleb128 0x6\n" /* def_cfa_register rbp */
"\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */
#else
"\t.byte 0xe\n\t.uleb128 8\n" /* def_cfa_offset */
"\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */
"\t.byte 0xd\n\t.uleb128 0x5\n" /* def_cfa_register ebp */
"\t.byte 0x83\n\t.uleb128 0x3\n" /* offset ebx */
#endif
"\t.align " SZPTR "\n"
".LEFDE3:\n\n", (int)ctx->codesz - fcofs);
#endif
#endif
break;
#if !LJ_NO_UNWIND
/* Mental note: never let Apple design an assembler.
** Or a linker. Or a plastic case. But I digress.
*/
case BUILD_machasm: {
#if LJ_HASFFI
int fcsize = 0;
#endif
int i;
fprintf(ctx->fp, "\t.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support\n");
fprintf(ctx->fp,
"EH_frame1:\n"
"\t.set L$set$x,LECIEX-LSCIEX\n"
"\t.long L$set$x\n"
"LSCIEX:\n"
"\t.long 0\n"
"\t.byte 0x1\n"
"\t.ascii \"zPR\\0\"\n"
"\t.byte 0x1\n"
"\t.byte 128-" SZPTR "\n"
"\t.byte " REG_RA "\n"
"\t.byte 6\n" /* augmentation length */
"\t.byte 0x9b\n" /* indirect|pcrel|sdata4 */
#if LJ_64
"\t.long _lj_err_unwind_dwarf+4@GOTPCREL\n"
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.byte " REG_SP "\n\t.byte " SZPTR "\n"
#else
"\t.long L_lj_err_unwind_dwarf$non_lazy_ptr-.\n"
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.byte 0x5\n\t.byte 0x4\n" /* esp=5 on 32 bit MACH-O. */
#endif
"\t.byte 0x80+" REG_RA "\n\t.byte 0x1\n"
"\t.align " BSZPTR "\n"
"LECIEX:\n\n");
for (i = 0; i < ctx->nsym; i++) {
const char *name = ctx->sym[i].name;
int32_t size = ctx->sym[i+1].ofs - ctx->sym[i].ofs;
if (size == 0) continue;
#if LJ_HASFFI
if (!strcmp(name, "_lj_vm_ffi_call")) { fcsize = size; continue; }
#endif
fprintf(ctx->fp,
"%s.eh:\n"
"LSFDE%d:\n"
"\t.set L$set$%d,LEFDE%d-LASFDE%d\n"
"\t.long L$set$%d\n"
"LASFDE%d:\n"
"\t.long LASFDE%d-EH_frame1\n"
"\t.long %s-.\n"
"\t.long %d\n"
"\t.byte 0\n" /* augmentation length */
"\t.byte 0xe\n\t.byte %d\n" /* def_cfa_offset */
#if LJ_64
"\t.byte 0x86\n\t.byte 0x2\n" /* offset rbp */
"\t.byte 0x83\n\t.byte 0x3\n" /* offset rbx */
"\t.byte 0x8f\n\t.byte 0x4\n" /* offset r15 */
"\t.byte 0x8e\n\t.byte 0x5\n" /* offset r14 */
#else
"\t.byte 0x84\n\t.byte 0x2\n" /* offset ebp (4 for MACH-O)*/
"\t.byte 0x87\n\t.byte 0x3\n" /* offset edi */
"\t.byte 0x86\n\t.byte 0x4\n" /* offset esi */
"\t.byte 0x83\n\t.byte 0x5\n" /* offset ebx */
#endif
"\t.align " BSZPTR "\n"
"LEFDE%d:\n\n",
name, i, i, i, i, i, i, i, name, size, CFRAME_SIZE, i);
}
#if LJ_HASFFI
if (fcsize) {
fprintf(ctx->fp,
"EH_frame2:\n"
"\t.set L$set$y,LECIEY-LSCIEY\n"
"\t.long L$set$y\n"
"LSCIEY:\n"
"\t.long 0\n"
"\t.byte 0x1\n"
"\t.ascii \"zR\\0\"\n"
"\t.byte 0x1\n"
"\t.byte 128-" SZPTR "\n"
"\t.byte " REG_RA "\n"
"\t.byte 1\n" /* augmentation length */
#if LJ_64
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.byte " REG_SP "\n\t.byte " SZPTR "\n"
#else
"\t.byte 0x1b\n" /* pcrel|sdata4 */
"\t.byte 0xc\n\t.byte 0x5\n\t.byte 0x4\n" /* esp=5 on 32 bit MACH. */
#endif
"\t.byte 0x80+" REG_RA "\n\t.byte 0x1\n"
"\t.align " BSZPTR "\n"
"LECIEY:\n\n");
fprintf(ctx->fp,
"_lj_vm_ffi_call.eh:\n"
"LSFDEY:\n"
"\t.set L$set$yy,LEFDEY-LASFDEY\n"
"\t.long L$set$yy\n"
"LASFDEY:\n"
"\t.long LASFDEY-EH_frame2\n"
"\t.long _lj_vm_ffi_call-.\n"
"\t.long %d\n"
"\t.byte 0\n" /* augmentation length */
#if LJ_64
"\t.byte 0xe\n\t.byte 16\n" /* def_cfa_offset */
"\t.byte 0x86\n\t.byte 0x2\n" /* offset rbp */
"\t.byte 0xd\n\t.byte 0x6\n" /* def_cfa_register rbp */
"\t.byte 0x83\n\t.byte 0x3\n" /* offset rbx */
#else
"\t.byte 0xe\n\t.byte 8\n" /* def_cfa_offset */
"\t.byte 0x84\n\t.byte 0x2\n" /* offset ebp (4 for MACH-O)*/
"\t.byte 0xd\n\t.byte 0x4\n" /* def_cfa_register ebp */
"\t.byte 0x83\n\t.byte 0x3\n" /* offset ebx */
#endif
"\t.align " BSZPTR "\n"
"LEFDEY:\n\n", fcsize);
}
#endif
#if !LJ_64
fprintf(ctx->fp,
"\t.non_lazy_symbol_pointer\n"
"L_lj_err_unwind_dwarf$non_lazy_ptr:\n"
".indirect_symbol _lj_err_unwind_dwarf\n"
".long 0\n\n");
fprintf(ctx->fp, "\t.section __IMPORT,__jump_table,symbol_stubs,pure_instructions+self_modifying_code,5\n");
{
const char *const *xn;
for (xn = ctx->extnames; *xn; xn++)
if (strncmp(*xn, LABEL_PREFIX, sizeof(LABEL_PREFIX)-1))
fprintf(ctx->fp, "L_%s$stub:\n\t.indirect_symbol _%s\n\t.ascii \"\\364\\364\\364\\364\\364\"\n", *xn, *xn);
}
#endif
fprintf(ctx->fp, ".subsections_via_symbols\n");
}
break;
#endif
default: /* Difficult for other modes. */
break;
}
}