LuaJIT/src/lj_emit_x86.h

573 lines
15 KiB
C

/*
** x86/x64 instruction emitter.
** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h
*/
/* -- Emit basic instructions --------------------------------------------- */
#define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7)))
#if LJ_64
#define REXRB(p, rr, rb) \
{ MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \
if (rex != 0x40) *--(p) = rex; }
#define FORCE_REX 0x200
#define REX_64 (FORCE_REX|0x080000)
#define VEX_64 0x800000
#else
#define REXRB(p, rr, rb) ((void)0)
#define FORCE_REX 0
#define REX_64 0
#define VEX_64 0
#endif
#if LJ_GC64
#define REX_GC64 REX_64
#else
#define REX_GC64 0
#endif
#define emit_i8(as, i) (*--as->mcp = (MCode)(i))
#define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4)
#define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4)
#define emit_x87op(as, xo) \
(*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2)
/* op */
static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx,
MCode *p, int delta)
{
int n = (int8_t)xo;
if (n == -60) { /* VEX-encoded instruction */
#if LJ_64
xo ^= (((rr>>1)&4)+((rx>>2)&2)+((rb>>3)&1))<<13;
#endif
*(uint32_t *)(p+delta-5) = (uint32_t)xo;
return p+delta-5;
}
#if defined(__GNUC__) || defined(__clang__)
if (__builtin_constant_p(xo) && n == -2)
p[delta-2] = (MCode)(xo >> 24);
else if (__builtin_constant_p(xo) && n == -3)
*(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16);
else
#endif
*(uint32_t *)(p+delta-5) = (uint32_t)xo;
p += n + delta;
#if LJ_64
{
uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1);
if (rex != 0x40) {
rex |= (rr >> 16);
if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); }
else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; }
*--p = (MCode)rex;
}
}
#else
UNUSED(rr); UNUSED(rb); UNUSED(rx);
#endif
return p;
}
/* op + modrm */
#define emit_opm(xo, mode, rr, rb, p, delta) \
(p[(delta)-1] = MODRM((mode), (rr), (rb)), \
emit_op((xo), (rr), (rb), 0, (p), (delta)))
/* op + modrm + sib */
#define emit_opmx(xo, mode, scale, rr, rb, rx, p) \
(p[-1] = MODRM((scale), (rx), (rb)), \
p[-2] = MODRM((mode), (rr), RID_ESP), \
emit_op((xo), (rr), (rb), (rx), (p), -1))
/* op r1, r2 */
static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2)
{
MCode *p = as->mcp;
as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0);
}
#if LJ_64 && defined(LUA_USE_ASSERT)
/* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */
static int32_t ptr2addr(const void *p)
{
lj_assertX((uintptr_t)p < (uintptr_t)0x80000000, "pointer outside 2G range");
return i32ptr(p);
}
#else
#define ptr2addr(p) (i32ptr((p)))
#endif
/* op r, [base+ofs] */
static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs)
{
MCode *p = as->mcp;
x86Mode mode;
if (ra_hasreg(rb)) {
if (LJ_GC64 && rb == RID_RIP) {
mode = XM_OFS0;
p -= 4;
*(int32_t *)p = ofs;
} else if (ofs == 0 && (rb&7) != RID_EBP) {
mode = XM_OFS0;
} else if (checki8(ofs)) {
*--p = (MCode)ofs;
mode = XM_OFS8;
} else {
p -= 4;
*(int32_t *)p = ofs;
mode = XM_OFS32;
}
if ((rb&7) == RID_ESP)
*--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
} else {
*(int32_t *)(p-4) = ofs;
#if LJ_64
p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
p -= 5;
rb = RID_ESP;
#else
p -= 4;
rb = RID_EBP;
#endif
mode = XM_OFS0;
}
as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
}
/* op r, [base+idx*scale+ofs] */
static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx,
x86Mode scale, int32_t ofs)
{
MCode *p = as->mcp;
x86Mode mode;
if (ofs == 0 && (rb&7) != RID_EBP) {
mode = XM_OFS0;
} else if (checki8(ofs)) {
mode = XM_OFS8;
*--p = (MCode)ofs;
} else {
mode = XM_OFS32;
p -= 4;
*(int32_t *)p = ofs;
}
as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p);
}
/* op r, i */
static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i)
{
MCode *p = as->mcp;
x86Op xo;
if (checki8(i)) {
*--p = (MCode)i;
xo = XG_TOXOi8(xg);
} else {
p -= 4;
*(int32_t *)p = i;
xo = XG_TOXOi(xg);
}
as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0);
}
/* op [base+ofs], i */
static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs,
int32_t i)
{
x86Op xo;
if (checki8(i)) {
emit_i8(as, i);
xo = XG_TOXOi8(xg);
} else {
emit_i32(as, i);
xo = XG_TOXOi(xg);
}
emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs);
}
#define emit_shifti(as, xg, r, i) \
(emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r)))
/* op r, rm/mrm */
static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb)
{
MCode *p = as->mcp;
x86Mode mode = XM_REG;
if (rb == RID_MRM) {
rb = as->mrm.base;
if (rb == RID_NONE) {
rb = RID_EBP;
mode = XM_OFS0;
p -= 4;
*(int32_t *)p = as->mrm.ofs;
if (as->mrm.idx != RID_NONE)
goto mrmidx;
#if LJ_64
*--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
rb = RID_ESP;
#endif
} else if (LJ_GC64 && rb == RID_RIP) {
lj_assertA(as->mrm.idx == RID_NONE, "RIP-rel mrm cannot have index");
mode = XM_OFS0;
p -= 4;
*(int32_t *)p = as->mrm.ofs;
} else {
if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) {
mode = XM_OFS0;
} else if (checki8(as->mrm.ofs)) {
*--p = (MCode)as->mrm.ofs;
mode = XM_OFS8;
} else {
p -= 4;
*(int32_t *)p = as->mrm.ofs;
mode = XM_OFS32;
}
if (as->mrm.idx != RID_NONE) {
mrmidx:
as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p);
return;
}
if ((rb&7) == RID_ESP)
*--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
}
}
as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
}
/* op rm/mrm, i */
static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i)
{
x86Op xo;
if (checki8(i)) {
emit_i8(as, i);
xo = XG_TOXOi8(xg);
} else {
emit_i32(as, i);
xo = XG_TOXOi(xg);
}
emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64));
}
/* -- Emit loads/stores --------------------------------------------------- */
/* mov [base+ofs], i */
static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i)
{
emit_i32(as, i);
emit_rmro(as, XO_MOVmi, 0, base, ofs);
}
/* mov [base+ofs], r */
#define emit_movtomro(as, r, base, ofs) \
emit_rmro(as, XO_MOVto, (r), (base), (ofs))
/* Get/set global_State fields. */
#define emit_opgl(as, xo, r, field) \
emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field)
#define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r)|REX_GC64, field)
#define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r)|REX_GC64, field)
#define emit_setvmstate(as, i) \
(emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, vmstate))
/* mov r, i / xor r, r */
static void emit_loadi(ASMState *as, Reg r, int32_t i)
{
/* XOR r,r is shorter, but modifies the flags. This is bad for HIOP/jcc. */
if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP ||
(as->curins+1 < as->T->nins &&
IR(as->curins+1)->o == IR_HIOP))) &&
!((*as->mcp == 0x0f && (as->mcp[1] & 0xf0) == XI_JCCn) ||
(*as->mcp & 0xf0) == XI_JCCs)) {
emit_rr(as, XO_ARITH(XOg_XOR), r, r);
} else {
MCode *p = as->mcp;
*(int32_t *)(p-4) = i;
p[-5] = (MCode)(XI_MOVri+(r&7));
p -= 5;
REXRB(p, 0, r);
as->mcp = p;
}
}
#if LJ_GC64
#define dispofs(as, k) \
((intptr_t)((uintptr_t)(k) - (uintptr_t)J2GG(as->J)->dispatch))
#define mcpofs(as, k) \
((intptr_t)((uintptr_t)(k) - (uintptr_t)as->mcp))
#define mctopofs(as, k) \
((intptr_t)((uintptr_t)(k) - (uintptr_t)as->mctop))
/* mov r, addr */
#define emit_loada(as, r, addr) \
emit_loadu64(as, (r), (uintptr_t)(addr))
#else
/* mov r, addr */
#define emit_loada(as, r, addr) \
emit_loadi(as, (r), ptr2addr((addr)))
#endif
#if LJ_64
/* mov r, imm64 or shorter 32 bit extended load. */
static void emit_loadu64(ASMState *as, Reg r, uint64_t u64)
{
if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */
emit_loadi(as, r, (int32_t)u64);
} else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */
MCode *p = as->mcp;
*(int32_t *)(p-4) = (int32_t)u64;
as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4);
#if LJ_GC64
} else if (checki32(dispofs(as, u64))) {
emit_rmro(as, XO_LEA, r|REX_64, RID_DISPATCH, (int32_t)dispofs(as, u64));
} else if (checki32(mcpofs(as, u64)) && checki32(mctopofs(as, u64))) {
/* Since as->realign assumes the code size doesn't change, check
** RIP-relative addressing reachability for both as->mcp and as->mctop.
*/
emit_rmro(as, XO_LEA, r|REX_64, RID_RIP, (int32_t)mcpofs(as, u64));
#endif
} else { /* Full-size 64 bit load. */
MCode *p = as->mcp;
*(uint64_t *)(p-8) = u64;
p[-9] = (MCode)(XI_MOVri+(r&7));
p[-10] = 0x48 + ((r>>3)&1);
p -= 10;
as->mcp = p;
}
}
#endif
/* op r, [addr] */
static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr)
{
#if LJ_GC64
if (checki32(dispofs(as, addr))) {
emit_rmro(as, xo, rr, RID_DISPATCH, (int32_t)dispofs(as, addr));
} else if (checki32(mcpofs(as, addr)) && checki32(mctopofs(as, addr))) {
emit_rmro(as, xo, rr, RID_RIP, (int32_t)mcpofs(as, addr));
} else if (!checki32((intptr_t)addr)) {
Reg ra = (rr & 15);
if (xo != XO_MOV) {
/* We can't allocate a register here. Use and restore DISPATCH. Ugly. */
uint64_t dispaddr = (uintptr_t)J2GG(as->J)->dispatch;
uint8_t i8 = xo == XO_GROUP3b ? *as->mcp++ : 0;
ra = RID_DISPATCH;
if (checku32(dispaddr)) {
emit_loadi(as, ra, (int32_t)dispaddr);
} else { /* Full-size 64 bit load. */
MCode *p = as->mcp;
*(uint64_t *)(p-8) = dispaddr;
p[-9] = (MCode)(XI_MOVri+(ra&7));
p[-10] = 0x48 + ((ra>>3)&1);
p -= 10;
as->mcp = p;
}
if (xo == XO_GROUP3b) emit_i8(as, i8);
}
emit_rmro(as, xo, rr, ra, 0);
emit_loadu64(as, ra, (uintptr_t)addr);
} else
#endif
{
MCode *p = as->mcp;
*(int32_t *)(p-4) = ptr2addr(addr);
#if LJ_64
p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5);
#else
as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4);
#endif
}
}
/* Load 64 bit IR constant into register. */
static void emit_loadk64(ASMState *as, Reg r, IRIns *ir)
{
Reg r64;
x86Op xo;
const uint64_t *k = &ir_k64(ir)->u64;
if (rset_test(RSET_FPR, r)) {
r64 = r;
xo = XO_MOVSD;
} else {
r64 = r | REX_64;
xo = XO_MOV;
}
if (*k == 0) {
emit_rr(as, rset_test(RSET_FPR, r) ? XO_XORPS : XO_ARITH(XOg_XOR), r, r);
#if LJ_GC64
} else if (checki32((intptr_t)k) || checki32(dispofs(as, k)) ||
(checki32(mcpofs(as, k)) && checki32(mctopofs(as, k)))) {
emit_rma(as, xo, r64, k);
} else {
if (ir->i) {
lj_assertA(*k == *(uint64_t*)(as->mctop - ir->i),
"bad interned 64 bit constant");
} else if (as->curins <= as->stopins && rset_test(RSET_GPR, r)) {
emit_loadu64(as, r, *k);
return;
} else {
/* If all else fails, add the FP constant at the MCode area bottom. */
while ((uintptr_t)as->mcbot & 7) *as->mcbot++ = XI_INT3;
*(uint64_t *)as->mcbot = *k;
ir->i = (int32_t)(as->mctop - as->mcbot);
as->mcbot += 8;
as->mclim = as->mcbot + MCLIM_REDZONE;
lj_mcode_commitbot(as->J, as->mcbot);
}
emit_rmro(as, xo, r64, RID_RIP, (int32_t)mcpofs(as, as->mctop - ir->i));
#else
} else {
emit_rma(as, xo, r64, k);
#endif
}
}
/* -- Emit control-flow instructions -------------------------------------- */
/* Label for short jumps. */
typedef MCode *MCLabel;
#if LJ_32 && LJ_HASFFI
/* jmp short target */
static void emit_sjmp(ASMState *as, MCLabel target)
{
MCode *p = as->mcp;
ptrdiff_t delta = target - p;
lj_assertA(delta == (int8_t)delta, "short jump target out of range");
p[-1] = (MCode)(int8_t)delta;
p[-2] = XI_JMPs;
as->mcp = p - 2;
}
#endif
/* jcc short target */
static void emit_sjcc(ASMState *as, int cc, MCLabel target)
{
MCode *p = as->mcp;
ptrdiff_t delta = target - p;
lj_assertA(delta == (int8_t)delta, "short jump target out of range");
p[-1] = (MCode)(int8_t)delta;
p[-2] = (MCode)(XI_JCCs+(cc&15));
as->mcp = p - 2;
}
/* jcc short (pending target) */
static MCLabel emit_sjcc_label(ASMState *as, int cc)
{
MCode *p = as->mcp;
p[-1] = 0;
p[-2] = (MCode)(XI_JCCs+(cc&15));
as->mcp = p - 2;
return p;
}
/* Fixup jcc short target. */
static void emit_sfixup(ASMState *as, MCLabel source)
{
source[-1] = (MCode)(as->mcp-source);
}
/* Return label pointing to current PC. */
#define emit_label(as) ((as)->mcp)
/* Compute relative 32 bit offset for jump and call instructions. */
static LJ_AINLINE int32_t jmprel(jit_State *J, MCode *p, MCode *target)
{
ptrdiff_t delta = target - p;
UNUSED(J);
lj_assertJ(delta == (int32_t)delta, "jump target out of range");
return (int32_t)delta;
}
/* jcc target */
static void emit_jcc(ASMState *as, int cc, MCode *target)
{
MCode *p = as->mcp;
*(int32_t *)(p-4) = jmprel(as->J, p, target);
p[-5] = (MCode)(XI_JCCn+(cc&15));
p[-6] = 0x0f;
as->mcp = p - 6;
}
/* jmp target */
static void emit_jmp(ASMState *as, MCode *target)
{
MCode *p = as->mcp;
*(int32_t *)(p-4) = jmprel(as->J, p, target);
p[-5] = XI_JMP;
as->mcp = p - 5;
}
/* call target */
static void emit_call_(ASMState *as, MCode *target)
{
MCode *p = as->mcp;
#if LJ_64
if (target-p != (int32_t)(target-p)) {
/* Assumes RID_RET is never an argument to calls and always clobbered. */
emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET);
emit_loadu64(as, RID_RET, (uint64_t)target);
return;
}
#endif
*(int32_t *)(p-4) = jmprel(as->J, p, target);
p[-5] = XI_CALL;
as->mcp = p - 5;
}
#define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f))
/* -- Emit generic operations --------------------------------------------- */
/* Use 64 bit operations to handle 64 bit IR types. */
#if LJ_64
#define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0))
#define VEX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? VEX_64 : 0))
#else
#define REX_64IR(ir, r) (r)
#define VEX_64IR(ir, r) (r)
#endif
/* Generic move between two regs. */
static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src)
{
UNUSED(ir);
if (dst < RID_MAX_GPR)
emit_rr(as, XO_MOV, REX_64IR(ir, dst), src);
else
emit_rr(as, XO_MOVAPS, dst, src);
}
/* Generic load of register with base and (small) offset address. */
static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs)
{
if (r < RID_MAX_GPR)
emit_rmro(as, XO_MOV, REX_64IR(ir, r), base, ofs);
else
emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSD : XO_MOVSS, r, base, ofs);
}
/* Generic store of register with base and (small) offset address. */
static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs)
{
if (r < RID_MAX_GPR)
emit_rmro(as, XO_MOVto, REX_64IR(ir, r), base, ofs);
else
emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, base, ofs);
}
/* Add offset to pointer. */
static void emit_addptr(ASMState *as, Reg r, int32_t ofs)
{
if (ofs) {
emit_gri(as, XG_ARITHi(XOg_ADD), r|REX_GC64, ofs);
}
}
#define emit_spsub(as, ofs) emit_addptr(as, RID_ESP|REX_64, -(ofs))
/* Prefer rematerialization of BASE/L from global_State over spills. */
#define emit_canremat(ref) ((ref) <= REF_BASE)