String buffers, part 2d: basic string buffer methods.

Sponsored by fmad.io.
master
Mike Pall 2021-06-01 05:16:32 +02:00
parent edd5cbadc5
commit a119497bec
18 changed files with 816 additions and 85 deletions

View File

@ -1,19 +1,30 @@
<!DOCTYPE html>
<html>
<head>
<title>String Buffers</title>
<title>String Buffer Library</title>
<meta charset="utf-8">
<meta name="Copyright" content="Copyright (C) 2005-2021">
<meta name="Language" content="en">
<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
<style type="text/css">
.lib {
vertical-align: middle;
margin-left: 5px;
padding: 0 5px;
font-size: 60%;
border-radius: 5px;
background: #c5d5ff;
color: #000;
}
</style>
</head>
<body>
<div id="site">
<a href="https://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
</div>
<div id="head">
<h1>String Buffers</h1>
<h1>String Buffer Library</h1>
</div>
<div id="nav">
<ul><li>
@ -57,31 +68,35 @@
</div>
<div id="main">
<p>
The string buffer library allows <b>high-performance manipulation of
string-like data</b>.
</p>
<p>
Unlike Lua strings, which are constants, string buffers are
<b>mutable</b> sequences of 8-bit (binary-transparent) characters. Data
can be stored, formatted and encoded into a string buffer and later
converted, decoded or extracted.
converted, extracted or decoded.
</p>
<p>
The convenient string buffer API simplifies common string manipulation
tasks, that would otherwise require creating many intermediate strings.
String buffers improve performance by eliminating redundant memory
copies, object creation, string interning and garbage collection
overhead. In conjunction with the FFI library, they allow zero-copy
operations.
</p>
<p>
The string buffer libary also includes a high-performance
<a href="serialize">serializer</a> for Lua objects.
</p>
<h2 id="load">Using the String Buffer Library</h2>
<h2 id="wip" style="color:#ff0000">Work in Progress</h2>
<p>
<b style="color:#ff0000">This library is a work in progress. More
functionality will be added soon.</b>
</p>
<h2 id="use">Using the String Buffer Library</h2>
<p>
The string buffer library is built into LuaJIT by default, but it's not
loaded by default. Add this to the start of every Lua file that needs
@ -90,137 +105,406 @@ one of its functions:
<pre class="code">
local buffer = require("string.buffer")
</pre>
<h2 id="wip" style="color:#ff0000">Work in Progress</h2>
<p>
The convention for the syntax shown on this page is that <tt>buffer</tt>
refers to the buffer library and <tt>buf</tt> refers to an individual
buffer object.
</p>
<p>
Please note the difference between a Lua function call, e.g.
<tt>buffer.new()</tt> (with a dot) and a Lua method call, e.g.
<tt>buf:reset()</tt> (with a colon).
</p>
<b style="color:#ff0000">This library is a work in progress. More
functions will be added soon.</b>
<h3 id="buffer_object">Buffer Objects</h3>
<p>
A buffer object is a garbage-collected Lua object. After creation with
<tt>buffer.new()</tt>, it can (and should) be reused for many operations.
When the last reference to a buffer object is gone, it will eventually
be freed by the garbage collector, along with the allocated buffer
space.
</p>
<p>
Buffers operate like a FIFO (first-in first-out) data structure. Data
can be appended (written) to the end of the buffer and consumed (read)
from the front of the buffer. These operations can be freely mixed.
</p>
<p>
The buffer space that holds the characters is managed automatically
&mdash; it grows as needed and already consumed space is recycled. Use
<tt>buffer.new(size)</tt> and <tt>buf:free()</tt>, if you need more
control.
</p>
<p>
The maximum size of a single buffer is the same as the maximum size of a
Lua string, which is slightly below two gigabytes. For huge data sizes,
neither strings nor buffers are the right data structure &mdash; use the
FFI library to directly map memory or files up to the virtual memory
limit of your OS.
</p>
<h3 id="buffer_overview">Buffer Method Overview</h3>
<ul>
<li>
The <tt>buf:put*()</tt>-like methods append (write) characters to the
end of the buffer.
</li>
<li>
The <tt>buf:get*()</tt>-like methods consume (read) characters from the
front of the buffer.
</li>
<li>
Other methods, like <tt>buf:tostring()</tt> only read the buffer
contents, but don't change the buffer.
</li>
<li>
The <tt>buf:set()</tt> method allows zero-copy consumption of a string
or an FFI cdata object as a buffer.
</li>
<li>
The FFI-specific methods allow zero-copy read/write-style operations or
modifying the buffer contents in-place. Please check the
<a href="#ffi_caveats">FFI caveats</a> below, too.
</li>
<li>
Methods that don't need to return anything specific, return the buffer
object itself as a convenience. This allows method chaining, e.g.:
<tt>buf:reset():encode(obj)</tt> or <tt>buf:skip(len):get()</tt>
</li>
</ul>
<h2 id="create">Buffer Creation and Management</h2>
<h3 id="buffer_new"><tt>local buf = buffer.new([size])</tt></h3>
<p>
Creates a new buffer object.
</p>
<p>
The optional <tt>size</tt> argument ensures a minimum initial buffer
size. This is strictly an optimization for cases where the required
buffer size is known beforehand.
</p>
<h3 id="buffer_reset"><tt>buf = buf:reset()</tt></h3>
<p>
Reset (empty) the buffer. The allocated buffer space is not freed and
may be reused.
</p>
<h3 id="buffer_free"><tt>buf = buf:free()</tt></h3>
<p>
The buffer space of the buffer object is freed. The object itself
remains intact, empty and it may be reused.
</p>
<p>
Note: you normally don't need to use this method. The garbage collector
automatically frees the buffer space, when the buffer object is
collected. Use this method, if you need to free the associated memory
immediately.
</p>
<h2 id="write">Buffer Writers</h2>
<h3 id="buffer_put"><tt>buf = buf:put([str|num|obj] [, ...])</tt></h3>
<p>
Appends a string <tt>str</tt>, a number <tt>num</tt> or any object
<tt>obj</tt> with a <tt>__tostring</tt> metamethod to the buffer.
Multiple arguments are appended in the given order.
</p>
<p>
Appending a buffer to a buffer is possible and short-circuited
internally. But it still involves a copy. Better combine the buffer
writes to use a single buffer.
</p>
<h3 id="buffer_putf"><tt>buf = buf:putf(format, ...)</tt></h3>
<p>
Appends the formatted arguments to the buffer. The <tt>format</tt>
string supports the same options as <tt>string.format()</tt>.
</p>
<h3 id="buffer_putcdata"><tt>buf = buf:putcdata(cdata, len)</tt><span class="lib">FFI</span></h3>
<p>
Appends the given <tt>len</tt> number of bytes from the memory pointed
to by the FFI <tt>cdata</tt> object to the buffer. The object needs to
be convertible to a (constant) pointer.
</p>
<h3 id="buffer_set"><tt>buf = buf:set(str)<br>
buf = buf:set(cdata, len)</tt><span class="lib">FFI</span></h3>
<p>
This method allows zero-copy consumption of a string or an FFI cdata
object as a buffer. It stores a reference to the passed string
<tt>str</tt> or the FFI <tt>cdata</tt> object in the buffer. Any buffer
space originally allocated is freed. This is <i>not</i> an append
operation, unlike the <tt>buf:put*()</tt> methods.
</p>
<p>
After calling this method, the buffer behaves as if
<tt>buf:free():put(str)</tt> or <tt>buf:free():put(cdata,&nbsp;len)</tt>
had been called. However, the data is only referenced and not copied, as
long as the buffer is only consumed.
</p>
<p>
In case the buffer is written to later on, the referenced data is copied
and the object reference is removed (copy-on-write semantics).
</p>
<p>
The stored reference is an anchor for the garbage collector and keeps the
originally passed string or FFI cdata object alive.
</p>
<h3 id="buffer_reserve"><tt>ptr, len = buf:reserve(size)</tt><span class="lib">FFI</span><br>
<tt>buf = buf:commit(used)</tt><span class="lib">FFI</span></h3>
<p>
The <tt>reserve</tt> method reserves at least <tt>size</tt> bytes of
write space in the buffer. It returns an <tt>uint8_t&nbsp;*</tt> FFI
cdata pointer <tt>ptr</tt> that points to this space.
</p>
<p>
The available length in bytes is returned in <tt>len</tt>. This is at
least <tt>size</tt> bytes, but may be more to facilitate efficient
buffer growth. You can either make use of the additional space or ignore
<tt>len</tt> and only use <tt>size</tt> bytes.
</p>
<p>
The <tt>commit</tt> method appends the <tt>used</tt> bytes of the
previously returned write space to the buffer data.
</p>
<p>
This pair of methods allows zero-copy use of C read-style APIs:
</p>
<pre class="code">
local MIN_SIZE = 65536
repeat
local ptr, len = buf:reserve(MIN_SIZE)
local n = C.read(fd, ptr, len)
if n == 0 then break end -- EOF.
if n &lt; 0 then error("read error") end
buf:commit(n)
until false
</pre>
<p>
The reserved write space is <i>not</i> initialized. At least the
<tt>used</tt> bytes <b>must</b> be written to before calling the
<tt>commit</tt> method. There's no need to call the <tt>commit</tt>
method, if nothing is added to the buffer (e.g. on error).
</p>
<h2 id="read">Buffer Readers</h2>
<h3 id="buffer_length"><tt>len = #buf</tt></h3>
<p>
Returns the current length of the buffer data in bytes.
</p>
<h3 id="buffer_concat"><tt>res = str|num|buf .. str|num|buf [...]</tt></h3>
<p>
The Lua concatenation operator <tt>..</tt> also accepts buffers, just
like strings or numbers. It always returns a string and not a buffer.
</p>
<p>
Note that although this is supported for convenience, this thwarts one
of the main reasons to use buffers, which is to avoid string
allocations. Rewrite it with <tt>buf:put()</tt> and <tt>buf:get()</tt>.
</p>
<p>
Mixing this with unrelated objects that have a <tt>__concat</tt>
metamethod may not work, since these probably only expect strings.
</p>
<h3 id="buffer_skip"><tt>buf = buf:skip(len)</tt></h3>
<p>
Skips (consumes) <tt>len</tt> bytes from the buffer up to the current
length of the buffer data.
</p>
<h3 id="buffer_get"><tt>str, ... = buf:get([len|nil] [,...])</tt></h3>
<p>
Consumes the buffer data and returns one or more strings. If called
without arguments, the whole buffer data is consumed. If called with a
number, up to <tt>len</tt> bytes are consumed. A <tt>nil</tt> argument
consumes the remaining buffer space (this only makes sense as the last
argument). Multiple arguments consume the buffer data in the given
order.
</p>
<p>
Note: a zero length or no remaining buffer data returns an empty string
and not <tt>nil</tt>.
</p>
<h3 id="buffer_tostring"><tt>str = buf:tostring()<br>
str = tostring(buf)</tt></h3>
<p>
Creates a string from the buffer data, but doesn't consume it. The
buffer remains unchanged.
</p>
<p>
Buffer objects also define a <tt>__tostring</tt> metamethod. This means
buffers can be passed to the global <tt>tostring()</tt> function and
many other functions that accept this in place of strings. The important
internal uses in functions like <tt>io.write()</tt> are short-circuited
to avoid the creation of an intermediate string object.
</p>
<h3 id="buffer_ref"><tt>ptr, len = buf:ref()</tt><span class="lib">FFI</span></h3>
<p>
Returns an <tt>uint8_t&nbsp;*</tt> FFI cdata pointer <tt>ptr</tt> that
points to the buffer data. The length of the buffer data in bytes is
returned in <tt>len</tt>.
</p>
<p>
The returned pointer can be directly passed to C functions that expect a
buffer and a length. You can also do bytewise reads
(<tt>local&nbsp;x&nbsp;=&nbsp;ptr[i]</tt>) or writes
(<tt>ptr[i]&nbsp;=&nbsp;0x40</tt>) of the buffer data.
</p>
<p>
In conjunction with the <tt>skip</tt> method, this allows zero-copy use
of C write-style APIs:
</p>
<pre class="code">
repeat
local ptr, len = buf:ref()
if len == 0 then break end
local n = C.write(fd, ptr, len)
if n &lt; 0 then error("write error") end
buf:skip(n)
until n >= len
</pre>
<p>
Unlike Lua strings, buffer data is <i>not</i> implicitly
zero-terminated. It's not safe to pass <tt>ptr</tt> to C functions that
expect zero-terminated strings. If you're not using <tt>len</tt>, then
you're doing something wrong.
</p>
<h2 id="serialize">Serialization of Lua Objects</h2>
<p>
The following functions and methods allow <b>high-speed serialization</b>
(encoding) of a Lua object into a string and decoding it back to a Lua
object. This allows convenient storage and transport of <b>structured
data</b>.
</p>
<p>
The encoded data is in an <a href="#serialize_format">internal binary
format</a>. The data can be stored in files, binary-transparent
databases or transmitted to other LuaJIT instances across threads,
processes or networks.
</p>
<p>
Encoding speed can reach up to 1 Gigabyte/second on a modern desktop- or
server-class system, even when serializing many small objects. Decoding
speed is mostly constrained by object creation cost.
</p>
<p>
The serializer handles most Lua types, common FFI number types and
nested structures. Functions, thread objects, other FFI cdata, full
userdata and associated metatables cannot be serialized (yet).
</p>
<p>
The encoder serializes nested structures as trees. Multiple references
to a single object will be stored separately and create distinct objects
after decoding. Circular references cause an error.
</p>
<h3 id="buffer_encode"><tt>str = buffer.encode(obj)</tt></h3>
<h3 id="serialize_methods">Serialization Functions and Methods</h3>
<h3 id="buffer_encode"><tt>str = buffer.encode(obj)<br>
buf = buf:encode(obj)</tt></h3>
<p>
Serializes (encodes) the Lua object <tt>obj</tt> into the string
<tt>str</tt>.
Serializes (encodes) the Lua object <tt>obj</tt>. The stand-alone
function returns a string <tt>str</tt>. The buffer method appends the
encoding to the buffer.
</p>
<p>
<tt>obj</tt> can be any of the supported Lua types &mdash; it doesn't
need to be a Lua table.
</p>
<p>
This function may throw an error when attempting to serialize
unsupported object types, circular references or deeply nested tables.
</p>
<h3 id="buffer_decode"><tt>obj = buffer.decode(str)</tt></h3>
<h3 id="buffer_decode"><tt>obj = buffer.decode(str)<br>
obj = buf:decode()</tt></h3>
<p>
De-serializes (decodes) the string <tt>str</tt> into the Lua object
<tt>obj</tt>.
The stand-alone function de-serializes (decodes) the string
<tt>str</tt>, the buffer method de-serializes one object from the
buffer. Both return a Lua object <tt>obj</tt>.
</p>
<p>
The returned object may be any of the supported Lua types &mdash;
even <tt>nil</tt>.
</p>
<p>
This function may throw an error when fed with malformed or incomplete
encoded data. The standalone function throws when there's left-over data
after decoding a single top-level object.
encoded data. The stand-alone function throws when there's left-over
data after decoding a single top-level object. The buffer method leaves
any left-over data in the buffer.
</p>
<h2 id="serialize_format">Serialization Format Specification</h2>
<h3 id="serialize_stream">Streaming Serialization</h3>
<p>
In some contexts, it's desirable to do piecewise serialization of large
datasets, also known as <i>streaming</i>.
</p>
<p>
This serialization format can be safely concatenated and supports streaming.
Multiple encodings can simply be appended to a buffer and later decoded
individually:
</p>
<pre class="code">
local buf = buffer.new()
buf:encode(obj1)
buf:encode(obj2)
local copy1 = buf:decode()
local copy2 = buf:decode()
</pre>
<p>
Here's how to iterate over a stream:
</p>
<pre class="code">
while #buf ~= 0 do
local obj = buf:decode()
-- Do something with obj.
end
</pre>
<p>
Since the serialization format doesn't prepend a length to its encoding,
network applications may need to transmit the length, too.
</p>
<h3 id="serialize_format">Serialization Format Specification</h3>
<p>
This serialization format is designed for <b>internal use</b> by LuaJIT
applications. Serialized data is upwards-compatible and portable across
all supported LuaJIT platforms.
</p>
<p>
It's an <b>8-bit binary format</b> and not human-readable. It uses e.g.
embedded zeroes and stores embedded Lua string objects unmodified, which
are 8-bit-clean, too. Encoded data can be safely concatenated for
streaming and later decoded one top-level object at a time.
</p>
<p>
The encoding is reasonably compact, but tuned for maximum performance,
not for minimum space usage. It compresses well with any of the common
byte-oriented data compression algorithms.
</p>
<p>
Although documented here for reference, this format is explicitly
<b>not</b> intended to be a 'public standard' for structured data
interchange across computer languages (like JSON or MessagePack). Please
do not use it as such.
</p>
<p>
The specification is given below as a context-free grammar with a
top-level <tt>object</tt> as the starting point. Alternatives are
separated by the <tt>|</tt> symbol and <tt>*</tt> indicates repeats.
Grouping is implicit or indicated by <tt>{…}</tt>. Terminals are
either plain hex numbers, encoded as bytes, or have a <tt>.format</tt>
suffix.
</p>
<pre>
object → nil | false | true
@ -261,6 +545,73 @@ string → (0x20+len).U len*char.B
0xe0..0x1fdf → (0xe0|(((n-0xe0)>>8)&0x1f)).B ((n-0xe0)&0xff).B
0x1fe0.. → 0xff n.I
</pre>
<h2 id="error">Error handling</h2>
<p>
Many of the buffer methods can throw an error. Out-of-memory or usage
errors are best caught with an outer wrapper for larger parts of code.
There's not much one can do after that, anyway.
</p>
<p>
OTOH you may want to catch some errors individually. Buffer methods need
to receive the buffer object as the first argument. The Lua colon-syntax
<tt>obj:method()</tt> does that implicitly. But to wrap a method with
<tt>pcall()</tt>, the arguments need to be passed like this:
</p>
<pre class="code">
local ok, err = pcall(buf.encode, buf, obj)
if not ok then
-- Handle error in err.
end
</pre>
<h2 id="ffi_caveats">FFI caveats</h2>
<p>
The string buffer library has been designed to work well together with
the FFI library. But due to the low-level nature of the FFI library,
some care needs to be taken:
</p>
<p>
First, please remember that FFI pointers are zero-indexed. The space
returned by <tt>buf:reserve()</tt> and <tt>buf:ref()</tt> starts at the
returned pointer and ends before <tt>len</tt> bytes after that.
</p>
<p>
I.e. the first valid index is <tt>ptr[0]</tt> and the last valid index
is <tt>ptr[len-1]</tt>. If the returned length is zero, there's no valid
index at all. The returned pointer may even be <tt>NULL</tt>.
</p>
<p>
The space pointed to by the returned pointer is only valid as long as
the buffer is not modified in any way (neither append, nor consume, nor
reset, etc.). The pointer is also not a GC anchor for the buffer object
itself.
</p>
<p>
Buffer data is only guaranteed to be byte-aligned. Casting the returned
pointer to a data type with higher alignment may cause unaligned
accesses. It depends on the CPU architecture whether this is allowed or
not (it's always OK on x86/x64 and mostly OK on other modern
architectures).
</p>
<p>
FFI pointers or references do not count as GC anchors for an underlying
object. E.g. an <tt>array</tt> allocated with <tt>ffi.new()</tt> is
anchored by <tt>buf:set(array,&nbsp;len)</tt>, but not by
<tt>buf:set(array+offset,&nbsp;len)</tt>. The addition of the offset
creates a new pointer, even when the offset is zero. In this case, you
need to make sure there's still a reference to the original array as
long as its contents are in use by the buffer.
</p>
<p>
Even though each LuaJIT VM instance is single-threaded (but you can
create multiple VMs), FFI data structures can be accessed concurrently.
Be careful when reading/writing FFI cdata from/to buffers to avoid
concurrent accesses or modifications. In particular, the memory
referenced by <tt>buf:set(cdata,&nbsp;len)</tt> must not be modified
while buffer readers are working on it. Shared, but read-only memory
mappings of files are OK, but only if the file does not change.
</p>
<br class="flush">
</div>
<div id="foot">

View File

@ -2,17 +2,18 @@ lib_aux.o: lib_aux.c lua.h luaconf.h lauxlib.h lj_obj.h lj_def.h \
lj_arch.h lj_err.h lj_errmsg.h lj_state.h lj_trace.h lj_jit.h lj_ir.h \
lj_dispatch.h lj_bc.h lj_traceerr.h lj_lib.h
lib_base.o: lib_base.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \
lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_str.h \
lj_tab.h lj_meta.h lj_state.h lj_frame.h lj_bc.h lj_ctype.h lj_cconv.h \
lj_ff.h lj_ffdef.h lj_dispatch.h lj_jit.h lj_ir.h lj_char.h lj_strscan.h \
lj_strfmt.h lj_lib.h lj_libdef.h
lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_buf.h \
lj_str.h lj_tab.h lj_meta.h lj_state.h lj_frame.h lj_bc.h lj_ctype.h \
lj_cconv.h lj_ff.h lj_ffdef.h lj_dispatch.h lj_jit.h lj_ir.h lj_char.h \
lj_strscan.h lj_strfmt.h lj_lib.h lj_libdef.h
lib_bit.o: lib_bit.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h lj_def.h \
lj_arch.h lj_err.h lj_errmsg.h lj_buf.h lj_gc.h lj_str.h lj_strscan.h \
lj_strfmt.h lj_ctype.h lj_cdata.h lj_cconv.h lj_carith.h lj_ff.h \
lj_ffdef.h lj_lib.h lj_libdef.h
lib_buffer.o: lib_buffer.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \
lj_def.h lj_arch.h lj_gc.h lj_buf.h lj_str.h lj_serialize.h lj_lib.h \
lj_libdef.h
lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h \
lj_tab.h lj_udata.h lj_meta.h lj_ctype.h lj_cdata.h lj_cconv.h \
lj_strfmt.h lj_serialize.h lj_lib.h lj_libdef.h
lib_debug.o: lib_debug.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \
lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_lib.h \
lj_libdef.h
@ -51,10 +52,10 @@ lj_api.o: lj_api.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \
lj_meta.h lj_state.h lj_bc.h lj_frame.h lj_trace.h lj_jit.h lj_ir.h \
lj_dispatch.h lj_traceerr.h lj_vm.h lj_strscan.h lj_strfmt.h
lj_asm.o: lj_asm.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \
lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ctype.h lj_ir.h lj_jit.h \
lj_ircall.h lj_iropt.h lj_mcode.h lj_trace.h lj_dispatch.h lj_traceerr.h \
lj_snap.h lj_asm.h lj_vm.h lj_target.h lj_target_*.h lj_emit_*.h \
lj_asm_*.h
lj_buf.h lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ctype.h lj_ir.h \
lj_jit.h lj_ircall.h lj_iropt.h lj_mcode.h lj_trace.h lj_dispatch.h \
lj_traceerr.h lj_snap.h lj_asm.h lj_vm.h lj_target.h lj_target_*.h \
lj_emit_*.h lj_asm_*.h
lj_assert.o: lj_assert.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h
lj_bc.o: lj_bc.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_bc.h \
lj_bcdef.h
@ -80,8 +81,8 @@ lj_ccallback.o: lj_ccallback.c lj_obj.h lua.h luaconf.h lj_def.h \
lj_target_*.h lj_mcode.h lj_jit.h lj_ir.h lj_trace.h lj_dispatch.h \
lj_traceerr.h lj_vm.h
lj_cconv.o: lj_cconv.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \
lj_err.h lj_errmsg.h lj_tab.h lj_ctype.h lj_gc.h lj_cdata.h lj_cconv.h \
lj_ccallback.h
lj_err.h lj_errmsg.h lj_buf.h lj_gc.h lj_str.h lj_tab.h lj_ctype.h \
lj_cdata.h lj_cconv.h lj_ccallback.h
lj_cdata.o: lj_cdata.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \
lj_gc.h lj_err.h lj_errmsg.h lj_tab.h lj_ctype.h lj_cconv.h lj_cdata.h
lj_char.o: lj_char.c lj_char.h lj_def.h lua.h luaconf.h
@ -137,8 +138,8 @@ lj_lex.o: lj_lex.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \
lj_strfmt.h
lj_lib.o: lj_lib.c lauxlib.h lua.h luaconf.h lj_obj.h lj_def.h lj_arch.h \
lj_gc.h lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_func.h lj_bc.h \
lj_dispatch.h lj_jit.h lj_ir.h lj_vm.h lj_strscan.h lj_strfmt.h lj_lex.h \
lj_bcdump.h lj_lib.h
lj_dispatch.h lj_jit.h lj_ir.h lj_ctype.h lj_vm.h lj_strscan.h \
lj_strfmt.h lj_lex.h lj_bcdump.h lj_lib.h
lj_load.o: lj_load.c lua.h luaconf.h lauxlib.h lj_obj.h lj_def.h \
lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_func.h \
lj_frame.h lj_bc.h lj_vm.h lj_lex.h lj_bcdump.h lj_parse.h

View File

@ -19,6 +19,7 @@
#include "lj_gc.h"
#include "lj_err.h"
#include "lj_debug.h"
#include "lj_buf.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_meta.h"
@ -406,10 +407,22 @@ LJLIB_CF(load)
GCstr *name = lj_lib_optstr(L, 2);
GCstr *mode = lj_lib_optstr(L, 3);
int status;
if (L->base < L->top && (tvisstr(L->base) || tvisnumber(L->base))) {
GCstr *s = lj_lib_checkstr(L, 1);
if (L->base < L->top &&
(tvisstr(L->base) || tvisnumber(L->base) || tvisbuf(L->base))) {
const char *s;
MSize len;
if (tvisbuf(L->base)) {
SBufExt *sbx = bufV(L->base);
s = sbx->r;
len = sbufxlen(sbx);
if (!name) name = &G(L)->strempty; /* Buffers are not NUL-terminated. */
} else {
GCstr *str = lj_lib_checkstr(L, 1);
s = strdata(str);
len = str->len;
}
lua_settop(L, 4); /* Ensure env arg exists. */
status = luaL_loadbufferx(L, strdata(s), s->len, strdata(name ? name : s),
status = luaL_loadbufferx(L, s, len, name ? strdata(name) : s,
mode ? strdata(mode) : NULL);
} else {
lj_lib_checkfunc(L, 1);

View File

@ -14,14 +14,286 @@
#if LJ_HASBUFFER
#include "lj_gc.h"
#include "lj_err.h"
#include "lj_buf.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_udata.h"
#include "lj_meta.h"
#if LJ_HASFFI
#include "lj_ctype.h"
#include "lj_cdata.h"
#include "lj_cconv.h"
#endif
#include "lj_strfmt.h"
#include "lj_serialize.h"
#include "lj_lib.h"
/* ------------------------------------------------------------------------ */
#define LJLIB_MODULE_buffer_method
/* Check that the first argument is a string buffer. */
static SBufExt *buffer_tobuf(lua_State *L)
{
if (!(L->base < L->top && tvisbuf(L->base)))
lj_err_argtype(L, 1, "buffer");
return bufV(L->base);
}
/* Ditto, but for writers. */
static LJ_AINLINE SBufExt *buffer_tobufw(lua_State *L)
{
SBufExt *sbx = buffer_tobuf(L);
setsbufXL_(sbx, L);
return sbx;
}
LJLIB_CF(buffer_method_free)
{
SBufExt *sbx = buffer_tobuf(L);
lj_bufx_free(G(L), sbx);
lj_bufx_init(L, sbx);
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_reset)
{
SBufExt *sbx = buffer_tobuf(L);
lj_bufx_reset(sbx);
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_skip)
{
SBufExt *sbx = buffer_tobuf(L);
MSize n = (MSize)lj_lib_checkintrange(L, 2, 0, LJ_MAX_BUF);
MSize len = sbufxlen(sbx);
if (n < len) {
sbx->r += n;
} else {
sbx->r = sbx->w = sbx->b;
}
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_set)
{
SBufExt *sbx = buffer_tobuf(L);
const char *p;
MSize len;
#if LJ_HASFFI
if (tviscdata(L->base+1)) {
CTState *cts = ctype_cts(L);
lj_cconv_ct_tv(cts, ctype_get(cts, CTID_P_CVOID), (uint8_t *)&p,
L->base+1, CCF_ARG(2));
len = (MSize)lj_lib_checkintrange(L, 3, 0, LJ_MAX_BUF);
} else
#endif
{
GCstr *str = lj_lib_checkstrx(L, 2);
p = strdata(str);
len = str->len;
}
lj_bufx_free(G(L), sbx);
lj_bufx_init_cow(L, sbx, p, len);
setgcref(sbx->cowref, gcV(L->base+1));
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_put)
{
SBufExt *sbx = buffer_tobufw(L);
ptrdiff_t arg, narg = L->top - L->base;
for (arg = 1; arg < narg; arg++) {
cTValue *o = &L->base[arg], *mo = NULL;
retry:
if (tvisstr(o)) {
lj_buf_putstr((SBuf *)sbx, strV(o));
} else if (tvisint(o)) {
lj_strfmt_putint((SBuf *)sbx, intV(o));
} else if (tvisnum(o)) {
lj_strfmt_putfnum((SBuf *)sbx, STRFMT_G14, numV(o));
} else if (tvisbuf(o)) {
SBufExt *sbx2 = bufV(o);
lj_buf_putmem((SBuf *)sbx, sbx2->r, sbufxlen(sbx2));
} else if (!mo && !tvisnil(mo = lj_meta_lookup(L, o, MM_tostring))) {
/* Call __tostring metamethod inline. */
copyTV(L, L->top++, mo);
copyTV(L, L->top++, o);
lua_call(L, 1, 1);
o = &L->base[arg]; /* The stack may have been reallocated. */
copyTV(L, &L->base[arg], L->top-1);
L->top = L->base + narg;
goto retry; /* Retry with the result. */
} else {
lj_err_argtype(L, arg+1, "string/number/__tostring");
}
/* Probably not useful to inline other __tostring MMs, e.g. FFI numbers. */
}
L->top = L->base+1; /* Chain buffer object. */
lj_gc_check(L);
return 1;
}
LJLIB_CF(buffer_method_putf)
{
SBufExt *sbx = buffer_tobufw(L);
lj_strfmt_putarg(L, (SBuf *)sbx, 2, 2);
L->top = L->base+1; /* Chain buffer object. */
lj_gc_check(L);
return 1;
}
LJLIB_CF(buffer_method_get)
{
SBufExt *sbx = buffer_tobuf(L);
ptrdiff_t arg, narg = L->top - L->base;
if (narg == 1) {
narg++;
setnilV(L->top++); /* get() is the same as get(nil). */
}
for (arg = 1; arg < narg; arg++) {
TValue *o = &L->base[arg];
MSize n = tvisnil(o) ? LJ_MAX_BUF :
(MSize) lj_lib_checkintrange(L, arg+1, 0, LJ_MAX_BUF);
MSize len = sbufxlen(sbx);
if (n > len) n = len;
setstrV(L, o, lj_str_new(L, sbx->r, n));
sbx->r += n;
}
if (sbx->r == sbx->w) sbx->r = sbx->w = sbx->b;
lj_gc_check(L);
return narg-1;
}
#if LJ_HASFFI
LJLIB_CF(buffer_method_putcdata)
{
SBufExt *sbx = buffer_tobufw(L);
const char *p;
MSize len;
if (tviscdata(L->base+1)) {
CTState *cts = ctype_cts(L);
lj_cconv_ct_tv(cts, ctype_get(cts, CTID_P_CVOID), (uint8_t *)&p,
L->base+1, CCF_ARG(2));
} else {
lj_err_argtype(L, 2, "cdata");
}
len = (MSize)lj_lib_checkintrange(L, 3, 0, LJ_MAX_BUF);
lj_buf_putmem((SBuf *)sbx, p, len);
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_reserve)
{
SBufExt *sbx = buffer_tobufw(L);
MSize len = (MSize)lj_lib_checkintrange(L, 2, 0, LJ_MAX_BUF);
GCcdata *cd;
lj_buf_more((SBuf *)sbx, len);
ctype_loadffi(L);
cd = lj_cdata_new_(L, CTID_P_UINT8, CTSIZE_PTR);
*(void **)cdataptr(cd) = sbx->w;
setcdataV(L, L->top++, cd);
setintV(L->top++, sbufleft(sbx));
return 2;
}
LJLIB_CF(buffer_method_commit)
{
SBufExt *sbx = buffer_tobuf(L);
MSize len = (MSize)lj_lib_checkintrange(L, 2, 0, LJ_MAX_BUF);
if (len > sbufleft(sbx)) lj_err_arg(L, 2, LJ_ERR_NUMRNG);
sbx->w += len;
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_ref)
{
SBufExt *sbx = buffer_tobuf(L);
GCcdata *cd;
ctype_loadffi(L);
cd = lj_cdata_new_(L, CTID_P_UINT8, CTSIZE_PTR);
*(void **)cdataptr(cd) = sbx->r;
setcdataV(L, L->top++, cd);
setintV(L->top++, sbufxlen(sbx));
return 2;
}
#endif
LJLIB_CF(buffer_method_encode)
{
SBufExt *sbx = buffer_tobufw(L);
cTValue *o = lj_lib_checkany(L, 2);
lj_serialize_put(sbx, o);
lj_gc_check(L);
L->top = L->base+1; /* Chain buffer object. */
return 1;
}
LJLIB_CF(buffer_method_decode)
{
SBufExt *sbx = buffer_tobufw(L);
setnilV(L->top++);
lj_serialize_get(sbx, L->top-1);
lj_gc_check(L);
return 1;
}
LJLIB_CF(buffer_method___gc)
{
SBufExt *sbx = buffer_tobuf(L);
lj_bufx_free(G(L), sbx);
lj_bufx_init(L, sbx);
return 0;
}
LJLIB_CF(buffer_method___tostring)
{
SBufExt *sbx = buffer_tobuf(L);
setstrV(L, L->top-1, lj_str_new(L, sbx->r, sbufxlen(sbx)));
lj_gc_check(L);
return 1;
}
LJLIB_CF(buffer_method___len)
{
SBufExt *sbx = buffer_tobuf(L);
setintV(L->top-1, (int32_t)sbufxlen(sbx));
return 1;
}
LJLIB_PUSH("buffer") LJLIB_SET(__metatable)
LJLIB_PUSH(top-1) LJLIB_SET(__index)
/* ------------------------------------------------------------------------ */
#define LJLIB_MODULE_buffer
LJLIB_PUSH(top-2) LJLIB_SET(!) /* Set environment. */
LJLIB_CF(buffer_new)
{
MSize sz = L->base == L->top ? 0u :
(MSize)lj_lib_checkintrange(L, 1, 0, LJ_MAX_BUF);
GCtab *env = tabref(curr_func(L)->c.env);
GCudata *ud = lj_udata_new(L, sizeof(SBufExt), env);
SBufExt *sbx = (SBufExt *)uddata(ud);
ud->udtype = UDTYPE_BUFFER;
/* NOBARRIER: The GCudata is new (marked white). */
setgcref(ud->metatable, obj2gco(env));
setudataV(L, L->top++, ud);
lj_bufx_init(L, sbx);
if (sz > 0) lj_buf_need2((SBuf *)sbx, sz);
return 1;
}
LJLIB_CF(buffer_encode)
{
cTValue *o = lj_lib_checkany(L, 1);
@ -35,13 +307,14 @@ LJLIB_CF(buffer_encode)
LJLIB_CF(buffer_decode)
{
GCstr *str = lj_lib_checkstr(L, 1);
GCstr *str = lj_lib_checkstrx(L, 1);
SBufExt sbx;
lj_bufx_init_cow(L, &sbx, strdata(str), str->len);
/* No need to set sbx.cowref here. */
setnilV(L->top++);
lj_serialize_get(&sbx, L->top-1);
lj_gc_check(L);
if (sbx.r != sbx.w) lj_err_caller(L, LJ_ERR_BUFFER_LEFTOV);
return 1;
}
@ -51,6 +324,9 @@ LJLIB_CF(buffer_decode)
int luaopen_string_buffer(lua_State *L)
{
LJ_LIB_REG(L, NULL, buffer_method);
lua_getfield(L, -1, "__tostring");
lua_setfield(L, -2, "tostring");
LJ_LIB_REG(L, NULL, buffer);
return 1;
}

View File

@ -11,6 +11,7 @@
#if LJ_HASJIT
#include "lj_gc.h"
#include "lj_buf.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_frame.h"

View File

@ -58,6 +58,10 @@ typedef struct SBufExt {
(lj_assertG_(G(sbufL(sb)), sbufisext(sb), "not an SBufExt"), (SBufExt *)(sb))
#define setsbufflag(sb, flag) (setmrefu((sb)->L, (flag)))
#define tvisbuf(o) \
(LJ_HASBUFFER && tvisudata(o) && udataV(o)->udtype == UDTYPE_BUFFER)
#define bufV(o) check_exp(tvisbuf(o), ((SBufExt *)uddata(udataV(o))))
/* Buffer management */
LJ_FUNC char *LJ_FASTCALL lj_buf_need2(SBuf *sb, MSize sz);
LJ_FUNC char *LJ_FASTCALL lj_buf_more2(SBuf *sb, MSize sz);

View File

@ -8,6 +8,7 @@
#if LJ_HASFFI
#include "lj_err.h"
#include "lj_buf.h"
#include "lj_tab.h"
#include "lj_ctype.h"
#include "lj_cdata.h"
@ -621,6 +622,8 @@ void lj_cconv_ct_tv(CTState *cts, CType *d,
tmpptr = uddata(ud);
if (ud->udtype == UDTYPE_IO_FILE)
tmpptr = *(void **)tmpptr;
else if (ud->udtype == UDTYPE_BUFFER)
tmpptr = ((SBufExt *)tmpptr)->r;
} else if (tvislightud(o)) {
tmpptr = lightudV(cts->g, o);
} else if (tvisfunc(o)) {

View File

@ -616,10 +616,12 @@ static TRef crec_ct_tv(jit_State *J, CType *d, TRef dp, TRef sp, cTValue *sval)
sp = lj_ir_kptr(J, NULL);
} else if (tref_isudata(sp)) {
GCudata *ud = udataV(sval);
if (ud->udtype == UDTYPE_IO_FILE) {
if (ud->udtype == UDTYPE_IO_FILE || ud->udtype == UDTYPE_BUFFER) {
TRef tr = emitir(IRT(IR_FLOAD, IRT_U8), sp, IRFL_UDATA_UDTYPE);
emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, UDTYPE_IO_FILE));
sp = emitir(IRT(IR_FLOAD, IRT_PTR), sp, IRFL_UDATA_FILE);
emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, ud->udtype));
sp = emitir(IRT(IR_FLOAD, IRT_PTR), sp,
ud->udtype == UDTYPE_IO_FILE ? IRFL_UDATA_FILE :
IRFL_UDATA_BUF_R);
} else {
sp = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, sizeof(GCudata)));
}

View File

@ -298,6 +298,7 @@ typedef struct CTState {
_(P_VOID, CTSIZE_PTR, CT_PTR, CTALIGN_PTR|CTID_VOID) \
_(P_CVOID, CTSIZE_PTR, CT_PTR, CTALIGN_PTR|CTID_CVOID) \
_(P_CCHAR, CTSIZE_PTR, CT_PTR, CTALIGN_PTR|CTID_CCHAR) \
_(P_UINT8, CTSIZE_PTR, CT_PTR, CTALIGN_PTR|CTID_UINT8) \
_(A_CCHAR, -1, CT_ARRAY, CTF_CONST|CTALIGN(0)|CTID_CCHAR) \
_(CTYPEID, 4, CT_ENUM, CTALIGN(2)|CTID_INT32) \
CTTYDEFP(_) \

View File

@ -67,6 +67,7 @@ ERRDEF(PROTMT, "cannot change a protected metatable")
ERRDEF(UNPACK, "too many results to unpack")
ERRDEF(RDRSTR, "reader function must return a string")
ERRDEF(PRTOSTR, LUA_QL("tostring") " must return a string to " LUA_QL("print"))
ERRDEF(NUMRNG, "number out of range")
ERRDEF(IDXRNG, "index out of range")
ERRDEF(BASERNG, "base out of range")
ERRDEF(LVLRNG, "level out of range")

View File

@ -65,6 +65,12 @@ static void gc_mark(global_State *g, GCobj *o)
gray2black(o); /* Userdata are never gray. */
if (mt) gc_markobj(g, mt);
gc_markobj(g, tabref(gco2ud(o)->env));
if (LJ_HASBUFFER && gco2ud(o)->udtype == UDTYPE_BUFFER) {
SBufExt *sbx = (SBufExt *)uddata(gco2ud(o));
if (sbufiscow(sbx) && gcref(sbx->cowref) != NULL) {
gc_markobj(g, gcref(sbx->cowref));
}
}
} else if (LJ_UNLIKELY(gct == ~LJ_TUPVAL)) {
GCupval *uv = gco2uv(o);
gc_marktv(g, uvval(uv));

View File

@ -204,6 +204,7 @@ IRFPMDEF(FPMENUM)
_(UDATA_META, offsetof(GCudata, metatable)) \
_(UDATA_UDTYPE, offsetof(GCudata, udtype)) \
_(UDATA_FILE, sizeof(GCudata)) \
_(UDATA_BUF_R, sizeof(GCudata) + offsetof(SBufExt, r)) \
_(CDATA_CTYPEID, offsetof(GCcdata, ctypeid)) \
_(CDATA_PTR, sizeof(GCcdata)) \
_(CDATA_INT, sizeof(GCcdata)) \

View File

@ -16,6 +16,9 @@
#include "lj_func.h"
#include "lj_bc.h"
#include "lj_dispatch.h"
#if LJ_HASFFI
#include "lj_ctype.h"
#endif
#include "lj_vm.h"
#include "lj_strscan.h"
#include "lj_strfmt.h"
@ -301,3 +304,54 @@ int lj_lib_checkopt(lua_State *L, int narg, int def, const char *lst)
return def;
}
/* -- Strict type checks -------------------------------------------------- */
/* The following type checks do not coerce between strings and numbers.
** And they handle plain int64_t/uint64_t FFI numbers, too.
*/
#if LJ_HASBUFFER
GCstr *lj_lib_checkstrx(lua_State *L, int narg)
{
TValue *o = L->base + narg-1;
if (!(o < L->top && tvisstr(o))) lj_err_argt(L, narg, LUA_TSTRING);
return strV(o);
}
int32_t lj_lib_checkintrange(lua_State *L, int narg, int32_t a, int32_t b)
{
TValue *o = L->base + narg-1;
lj_assertL(b >= 0, "expected range must be non-negative");
if (o < L->top) {
if (LJ_LIKELY(tvisint(o))) {
int32_t i = intV(o);
if (i >= a && i <= b) return i;
} else if (LJ_LIKELY(tvisnum(o))) {
/* For performance reasons, this doesn't check for integerness or
** integer overflow. Overflow detection still works, since all FPUs
** return either MININT or MAXINT, which is then out of range.
*/
int32_t i = (int32_t)numV(o);
if (i >= a && i <= b) return i;
#if LJ_HASFFI
} else if (tviscdata(o)) {
GCcdata *cd = cdataV(o);
if (cd->ctypeid == CTID_INT64) {
int64_t i = *(int64_t *)cdataptr(cd);
if (i >= (int64_t)a && i <= (int64_t)b) return (int32_t)i;
} else if (cd->ctypeid == CTID_UINT64) {
uint64_t i = *(uint64_t *)cdataptr(cd);
if ((a < 0 || i >= (uint64_t)a) && i <= (uint64_t)b) return (int32_t)i;
}
#endif
} else {
goto badtype;
}
lj_err_arg(L, narg, LJ_ERR_NUMRNG);
}
badtype:
lj_err_argt(L, narg, LUA_TNUMBER);
return 0; /* unreachable */
}
#endif

View File

@ -46,6 +46,12 @@ LJ_FUNC GCtab *lj_lib_checktab(lua_State *L, int narg);
LJ_FUNC GCtab *lj_lib_checktabornil(lua_State *L, int narg);
LJ_FUNC int lj_lib_checkopt(lua_State *L, int narg, int def, const char *lst);
#if LJ_HASBUFFER
LJ_FUNC GCstr *lj_lib_checkstrx(lua_State *L, int narg);
LJ_FUNC int32_t lj_lib_checkintrange(lua_State *L, int narg,
int32_t a, int32_t b);
#endif
/* Avoid including lj_frame.h. */
#if LJ_GC64
#define lj_lib_upvalue(L, n) \

View File

@ -240,8 +240,8 @@ TValue *lj_meta_cat(lua_State *L, TValue *top, int left)
int fromc = 0;
if (left < 0) { left = -left; fromc = 1; }
do {
if (!(tvisstr(top) || tvisnumber(top)) ||
!(tvisstr(top-1) || tvisnumber(top-1))) {
if (!(tvisstr(top) || tvisnumber(top) || tvisbuf(top)) ||
!(tvisstr(top-1) || tvisnumber(top-1) || tvisbuf(top-1))) {
cTValue *mo = lj_meta_lookup(L, top-1, MM_concat);
if (tvisnil(mo)) {
mo = lj_meta_lookup(L, top, MM_concat);
@ -277,10 +277,12 @@ TValue *lj_meta_cat(lua_State *L, TValue *top, int left)
** next step: [...][CAT stack ............]
*/
TValue *e, *o = top;
uint64_t tlen = tvisstr(o) ? strV(o)->len : STRFMT_MAXBUF_NUM;
uint64_t tlen = tvisstr(o) ? strV(o)->len :
tvisbuf(o) ? sbufxlen(bufV(o)) : STRFMT_MAXBUF_NUM;
SBuf *sb;
do {
o--; tlen += tvisstr(o) ? strV(o)->len : STRFMT_MAXBUF_NUM;
o--; tlen += tvisstr(o) ? strV(o)->len :
tvisbuf(o) ? sbufxlen(bufV(o)) : STRFMT_MAXBUF_NUM;
} while (--left > 0 && (tvisstr(o-1) || tvisnumber(o-1)));
if (tlen >= LJ_MAX_STR) lj_err_msg(L, LJ_ERR_STROV);
sb = lj_buf_tmp_(L);
@ -290,6 +292,9 @@ TValue *lj_meta_cat(lua_State *L, TValue *top, int left)
GCstr *s = strV(o);
MSize len = s->len;
lj_buf_putmem(sb, strdata(s), len);
} else if (tvisbuf(o)) {
SBufExt *sbx = bufV(o);
lj_buf_putmem(sb, sbx->r, sbufxlen(sbx));
} else if (tvisint(o)) {
lj_strfmt_putint(sb, intV(o));
} else {

View File

@ -332,6 +332,7 @@ enum {
UDTYPE_USERDATA, /* Regular userdata. */
UDTYPE_IO_FILE, /* I/O library FILE. */
UDTYPE_FFI_CLIB, /* FFI C library namespace. */
UDTYPE_BUFFER, /* String buffer. */
UDTYPE__MAX
};

View File

@ -346,10 +346,7 @@ SBufExt * LJ_FASTCALL lj_serialize_put(SBufExt *sbx, cTValue *o)
SBufExt * LJ_FASTCALL lj_serialize_get(SBufExt *sbx, TValue *o)
{
char *r = serialize_get(sbx->r, sbx, o);
if (r != sbx->w)
lj_err_caller(sbufL(sbx), LJ_ERR_BUFFER_LEFTOV);
sbx->r = r;
sbx->r = serialize_get(sbx->r, sbx, o);
return sbx;
}

View File

@ -164,6 +164,10 @@ const char *lj_strfmt_wstrnum(lua_State *L, cTValue *o, MSize *lenp)
if (tvisstr(o)) {
*lenp = strV(o)->len;
return strVdata(o);
} else if (tvisbuf(o)) {
SBufExt *sbx = bufV(o);
*lenp = sbufxlen(sbx);
return sbx->r;
} else if (tvisint(o)) {
sb = lj_strfmt_putint(lj_buf_tmp_(L), intV(o));
} else if (tvisnum(o)) {
@ -421,6 +425,10 @@ int lj_strfmt_putarg(lua_State *L, SBuf *sb, int arg, int retry)
if (LJ_LIKELY(tvisstr(o))) {
len = strV(o)->len;
s = strVdata(o);
} else if (tvisbuf(o)) {
SBufExt *sbx = bufV(o);
len = sbufxlen(sbx);
s = sbx->r;
} else {
GCstr *str = lj_strfmt_obj(L, o);
len = str->len;